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Abstract: Chemical reactions with oscillating behavior can present a chaos state in specific conditions.
In this study, we analyzed the dynamic of the chaotic Belousov–Zhabotinsky (BZ) reaction using
the Györgyi–Field model in order to identify the conditions of the chaos behavior. We studied the
behavior of the reaction under different parameters that included both a low and high flux of chemical
species. We performed our analysis of the flow regime in the conditions of an open reaction system,
as this provides information about the behavior of the reaction over time. The proposed method for
determining the favorable conditions for obtaining the state of chaos is based on the time evolution
of the intermediate species and phase portraits. The synchronization of two Györgyi–Field systems
based on the adaptive feedback method of control is presented in this work. The transient time until
synchronization depends on the initial conditions of the two systems and on the strength of the
controllers. Among the areas of interest for possible applications of the control method described in
this paper, we can include identification of the reaction parameters and the extension to the other
chaotic systems.

Keywords: chaos; chaos in chemical reaction; dynamic Györgyi–Field system; Belousov–Zhabotinsky
chemical reaction; oscillation behavior of chemical reaction; synchronization
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1. Introduction

The Belousov–Zhabotinsky (BZ) reaction is the prototype system for nonlinear chem-
ical dynamics. Initially, the reaction was discovered accidentally by the Soviet chemist
Boris Pavlovich Belousov in the 1950s, who mixed bromate, citric acid and cerium ions [1].
Zhabotinsky [2] visually highlighted the oscillation of concentration of the chemical species
by replacing citric acid with malonic acid in Belousov reaction. The red-blue visual effect
and cycle period are given by the nature of a catalyst. The cycle period can be increased by
using ferroin as a catalyst, which acts as a perturbator on frequency, and by changing the
pH of medium which perturbs the cycle’s magnitude and direction [3].

The BZ reaction is famous because it passes through multiple intermediary stages,
which can be considered metastable states. In the early 1970s, Field, Körös and Noyes [4]
(FKN) used combined kinetic and thermodynamic approaches to propose a detailed mech-
anism capable of describing the oscillatory reactions by using 11 main reactions and
12 chemical species. Later, in 1974, Field and Noyes [5] reduced the FKN model to a
simpler, realistic model described by few metastable reactions—the model known as Oreg-
onator. After that, Györgyi, Rempe and Field [6] developed a new model that relied on
11 dynamic variables and 19 reactions to explain the chaos in the BZ reaction.

Currently, it is generally accepted that chemical systems can exhibit chaotic behavior,
which is very important for chemical processes and biological structures. The control of
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these phenomena has a great practical impact, even though it is very difficult to do; this is
the reason why theoretical models are useful in these situations. In addition, information
about the control of these models can provide insight into the self-control of biological struc-
tures where the behavior of the dynamic systems is performed by a feedback mechanism.

The oscillation states of the BZ reaction can be experimentally controlled by monitoring
the continuous flow in reaction tanks [7]. The spatiotemporal pattern of these oscillations
can be simulated by using the dynamics of the coupled map lattice [7] or Brusselator
equation [8,9]. Over the last decades, there has been considerable progress in generalizing
the concept of synchronization to include the case of clusters [10], neuron networks [11] and
chaotic oscillators networks [12], especially from technical reasons [13–15]. Many examples
of synchronizations have been documented in the literature, as a current, theoretical
understanding of the phenomena behind experimental studies is needed [12–26]. The
main aim of this paper is to study the synchronization of two chemical chaotic systems
based on the adaptive feedback method of control by considering one of the famous ideal
chemical models, named Györgyi–Field [27], which explains the chaotic behavior of the
Belousov–Zhabotinsky chemical reaction.

In the next section, we present the model and method used for obtaining an efficient
mechanism that describes both behaviors of the dynamic systems, oscillatory and chaotic,
especially for the BZ reactions. The results obtained for two cases of the input reaction
are presented and discussed in the third section. We determined the conditions under
which the reaction can be controlled in order to obtain different behaviors using two
input concentrations. Additionally, a new adaptive method for the synchronization of two
dynamic Györgyi–Field systems is proposed.

2. Models and Methods

Dynamic chemical systems depend on the environmental conditions and initial con-
centrations of species. There reactions can be explained by using the mathematical models
and parameters which are determined by using the synchronization method.

2.1. Györgyi–Field Model

In this paper, we used a mathematical model, developed in 1992, by Györgyi and
Field [27] to describe the BZ reaction, which exhibits chaotic behavior in specific conditions,
using differential equations. The model considered that the reaction takes place in a
continuous-flow stirred-tank reactor and has the advantage that the intermediate species of
BZ chemical reactions are reduced at three (x, v, z).

The GF model represents the evolution of specific chemical reactions in an open system
and its mechanism consists of the following (1)–(7) elementary steps [27,28]:

X + Y + H
k1→ 2V (1)

Y + A + 2H
k2→ V + X (2)

2X
k3→ V (3)

1/2X + A + H
k4→ X + Z (4)

X + Z
k5→ 1/2X (5)

V + Z
k6→ Y (6)

Z + M
k7→? (7)

In the GF model, the reactants are ions or molecules whose concentrations change
in time. The mathematical variables of the GF model represent the following chemical
species: X = [HBrO2], Y = [Br−] şi Z = [Ce4+], A = [BrO3

−], H = [H+], M = [CH2(COOH)2],
V = BrCH(COOH)2 [29].
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The evolution of the intermediate species in time is described by a nonlinear system
of Equation (8), in which C play the role of a catalyst. In this reaction, the catalyst is
represented by the total concentration of Ce ions in the system (C = [Ce]).

The nonlinear system is described by the following differential equations:

dx
dτ = T0[−k1HY0xy + k2AH2Y0X−1

0 y− 2k3X0x2 + 1/2k4A
1
2 H

3
2 X−

1
2

0 ·
·(C− Z0z)x

1
2 − 1/2k5Z0xz− k f x]

dz
dτ = T0

[
k4A

1
2 H

3
2 X

1
2
0 ·
(

C
Z0
− z
)

x
1
2 − k5X0xz− αk6V0zv− βk7Mz− k f z

]
dv
dτ = T0

[
2k1HX0Y0V−1

0 xy + k2AH2Y0V−1
0 y + k3X2

0V−1
0 x2 − αk6Z0zv− k f v

] (8)

where

y =
[
(αk6Z0V0zv)/

(
k1HX0x + k2AH2 + k f

)]
/Y0; T0 = 1/(10k2AHC)

X0 = k2AH2/k5; Y0 = 4k2AH2/k5; Z0 = CA/40M; V0 = 4AHC/M2;
τ = t/T0; x = X/X0; z = Z/Z0 and v = V/V0.

(9)

For simplicity, the terms were normalized (Equation (9)), where τ is the term of
normalization for the time t, and x, v, z correspond to the intermediate chemical species in
the reaction.

2.2. Numerical Calculations

The numerical calculations were performed using ordinary differential equations
implemented in the ODE45 solver from MATLAB®, developed by The MathWorks Inc.,
Natick, MA, USA. The ODE45 solver was used to solve first-order equations for time
dependence due to good accuracy for the present study.

The initial conditions used in numerical calculations were chosen so that the concen-
trations of intermediate species sustain the chemical reactions.

2.3. The Synchronizations

The synchronization of two systems is one of the most studied topics in chaos and it
is used in physical, chemical, biological, social and engineering dynamic systems [7,8,15].
Theoretical methods of synchronization are very difficult to develop but are necessary
for controlling the evolution of systems. Until now, numerous models of synchronization
were proposed to describe chemical reactions, biological systems, electrical circuits and
networks [12–26].

To synchronize two identical chemical systems, we followed an adaptive-feedback
method [22,25,26] based on the Lyapunov–Lasalle theory. For synchronization, in this
method, a driver system is considered in the following form:

dy
dτ

= f (y) + z(y− x) (10)

where

z(y− x) =
n

∑
i=1

ziei

with
ei = (yi − xi)

The coupling will be determined by the equation:

dz
dt

= −Υi(yi − xi)
2 = −Υiei

2 (11)
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The objective of the synchronization is:

lim
τ→∞

‖ e(τ) ‖→ 0 (12)

The model is based on a master and slave systems, respectively, on controllers (Υ). The
values of the controllers were chosen so that the fastest synchronization is obtained. A faster
synchronization relies on choosing adequate values for Υ and for the initial concentrations.
According to this method, the master system of the Györgyi–Field mechanism is described
by Equation (8), and the slaves are described by:

dx1
dτ = T0[−k1HY0x1y + k2AH2Y0X−1

0 y− 2k3X0x1
2 + 1/2k4A1/2H3/2X−1/2

0 ·
(C− Z0z1)x1/2 − 1/2k5Z0x1z1 − k f x1] + x2(x1 − x)

dz1
dτ = T0[k4A1/2H3/2X1/2

0 ·(C/Z0 − z1)x1
1/2 − k5X0x1z1 − αk6V0z1v1−

−βk7Mz1 − k f z1] + z2(z1 − z)
dv1
dτ = T0[2k1HX0Y0V−1

0 x1y + k2AH2Y0V−1
0 y + k3X2

0V−1
0 x1

2−
−αk6Z0z1v1 − k f v1] + v2(v1 − v).

(13)

The control strengths used for synchronization is defined by:

dx2
dτ = −(x1 − x)2

dz2
dτ = −(z1 − z)2

dv2
dτ = −(v1 − v)2

(14)

The method is simpler and more efficient than other methods used for the synchroniza-
tions of chemical reactions and avoids constructing the Lyapunov–Lasalle functions [22].
The method is not faster than techniques based on symmetry and synchronization coeffi-
cients [24], but, in our case, the present model was the only one that gave adequate results
for the analyzed time intervals.

3. Results and Discussion

We considered that the chemical reaction take place in an open system in which we
can control the flow of chemical compounds. We studied the evolution of the reaction
according to the flow rate in order to identify the conditions when the reaction presents
chaotic and oscillatory behavior.

3.1. Behavior of the System at Different Input Concentrations

Initially, in this type of reaction, oscillatory behavior was observed [4], but later, it
was demonstrated that in some specific conditions, the experimental reaction deviates
from this characteristic to chaotic behavior [6,27]. We proposed to determine possible
experimental conditions when the reaction would become chaotic based on analyzing
two cases. We presumed that the flow of chemicals’ input influences output behavior. To
demonstrate this hypothesis, we considered two identical systems with very different input
concentration values.

3.1.1. Low Flux Input

Our simulations show that the BZ reaction presents chaotic behavior if the concentra-
tions of chemical species and the values of reaction parameters fulfill certain conditions. In
nonlinear dynamical systems, the initial conditions are important because they completely
change the course of the reaction [30]. First, we considered a low flux for the dynamic
Györgyi–Field system with the reaction values, as shown in Table 1.
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Table 1. The concentrations of intermediate species and the values of reaction parameters in the GF
model for chaotic behavior at low flux.

Chemical
Intermediate

Species
Concentration

Reaction
Parameters in GF

Model
Value

Reaction
Parameters in GF

Model
Value

A 0.1 mol α 666.67 k3 3000 mol−1 s−1

M 0.25 mol β 0.3478 k4 55.2 mol−2.5 s−1;
H 0.26 mol kf 3.9 × 10−4 k5 7000 mol−1 s−1;

C 8.33·10−4 mol
k1 4 × 106 mol−1 s−1 k6 0.09 mol−1 s−1

k2 2 mol−3 s−1 k7 0.23 mol−1 s−1

The time variations of the intermediate species were obtained using the following
initial values: x(0) = 0.045 (Figure 1); z(0) = 0.9 (Figure 2) and v(0) = 0.85 (Figure 3).
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The evolution of the concentrations of intermediate species can exhibit a simple or
complex periodic behavior and, in some situations, it can become chaotic (Figures 1–3).
For small values of the kf parameter, the concentration of x(τ) shows a simple periodic
oscillation. This behavior changes into a periodic oscillation with different numbers of
peaks by increasing the value of the kf, and chaotic behavior is obtained for kf = 3.9 × 10−4.
After this stage, the oscillating behavior with multiple peaks is resumed.

In systems with multi-metastable stages, the phase trajectory of the attractors depends
on the initial conditions [31]. For specific conditions at low flux (Table 1), the bidimensional
attractors are open cycles where the portraits of the phases do not overlap (Figures 4–6),
which confirms the hypothesis that the system has a chaotic behavior.
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3.1.2. High Flux Input

The simulations for high flux were performed for the parameters listed in Table 2 to
evaluate if the chaotic state will be reached. Increasing the flow rate (Table 2) in the reaction
tank, for the same initial values of variables previously observed, lead to the oscillatory
behaviors from Figures 7–10.
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Table 2. The concentrations of intermediate species and the values of reaction parameters in GF
model for oscillatory behavior at high flux.

Chemical
Intermediary

Species
Concentration

Reaction
Parameters in GF

Model
Value

Reaction
Parameters in GF

Model
Value

A 0.14 mol α 333.33 k3 3000 mol−1 s−1

M 0.3 mol β 0.2609 k4 55.2 mol−2.5 s−1

H 0.26 mol kf 6.18 × 10−4 k5 7000 mol−1 s−1

C 0.001 mol
k1 4 × 106 mol−1 s−1 k6 0.09 mol−1 s−1

k2 2 mol−3 s−1 k7 0.23 mol−1 s−1
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z(0) = 0.9; v(0) = 0.85.
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z(0) = 0.9; v(0) = 0.85.
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Figure 10. Bidimensional attractor (x, z) for high flux in dynamic Györgyi–Field system (α = 3000/9;
β = 6/23; C = 0.001; A = 0.14 mol; M = 0.3 mol; H = 0.26 mol and kf = 6.18 × 10−4).

For a high flow in the open reaction system, the concentrations of all intermediate
species and parameter values listed in Table 2 presented oscillatory behaviors (Figures 6–8)
in time (τ). The amplitudes of the oscillations are high and decrease for the x and y species
in time, instead the concentration of v have a small variation which increase during the
process (Figure 9). For researchers, the variation of the concentrations of the intermediate
species is important tools for determining the experimental conditions of reaction.

At the beginning, the trajectories of bidimensional and three-dimensional attractors
exhibit large open cycles that shrink until they become stabile closed cycles (Figures 10–12).
The trajectories obtained in the GF model indicate the pure oscillatory behavior of BZ
reaction (Figures 10–12), in which the amplitudes and frequencies of oscillations the depend
by time [32] and temperature [33].
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Figure 12. The three-dimensional attractor (x, z, v) for high flux in dynamic Györgyi–Field system
(α = 3000/9; β = 6/23; C = 0.001; A = 0.14 mol; M = 0.3 mol; H = 0.26 mol and kf = 6.18 × 10−4).

3.2. Synchronization of Two Györgyi–Field Systems

The proposed method can be used to determine the synchronization time for the
two identical systems. In time, the differences between masters and slaves reduce to
zero (Figure 13), demonstrating the synchronization of the two Györgyi–Field systems.
The value of normalized time variable (τ) is almost the same value (τ = 25) in all cases
(Figure 13).
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Figure 13. Synchronization errors between master and slave systems for the following initial con-
ditions: x(0) = 0.045; z(0) = 0.9; v(0) = 0.85; x1(0) = 0.8; z1 (0) = 0.95; v1(0) = x2(0) = z2(0) = v2(0) =1.
Master–slave systems are colored with red for (z1 − z), black for (x1 − x) and purple for (v1 − v).

Comparing the phase portraits of masters [(x, z), (z, v), (v, x)] and the phase portraits of
master–slave systems [(x, x1), (z, z1), (v, v1)] we observe that the last phase portraits become
straight lines (Figures 14–16), which is proof that synchronization is achieved.

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 14 
 

 

 

Figure 13. Synchronization errors between master and slave systems for the following initial condi-

tions: x(0) = 0.045; z(0) = 0.9; v(0) = 0.85; x1(0) = 0.8; z1 (0) = 0.95; v1(0) = x2(0) = z2(0) = v2(0) =1. Master–

slave systems are colored with red for (z1 − z), black for (x1 − x) and purple for (v1 − v). 

Comparing the phase portraits of masters [(x, z), (z, v), (v, x)] and the phase portraits 

of master–slave systems [(x, x1), (z, z1), (v, v1)] we observe that the last phase portraits be-

come straight lines (Figures 14–16), which is proof that synchronization is achieved. 

 

Figure 14. Master (x, z)—black color, and master–slave (x, x1)—red color phase portraits. Figure 14. Master (x, z)—black color, and master–slave (x, x1)—red color phase portraits.

Figure 17a,b show that the values of controllers became constants in time further proof
that synchronization is achieved.
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Figure 17. The evolution of the control strengths in time: (a) The variation of the x2(τ) control
strength; (b) the stabilization values of the v2(τ) and z2(τ).
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4. Conclusions

In this study, we analyzed the Belousov–Zhabotinsky chemical reaction using two
dynamic Györgyi–Field systems which can offer information about the behavior of the
reaction in time. The results highlighted that in specific reaction conditions at a low
flow of chemical compounds through the reaction tank a chaotic state can be obtained,
whereas for high flow only an oscillatory behavior can be achieved. The method used for
synchronization of the two Györgyi–Field systems based on controllers has the advantage
that can be easily applied for this type of systems and can also be extended to the other
chemical reactions or biological structures with oscillatory behavior.

The synchronization technique is not the fastest method but for the GF model it proved
to be a relatively simple and effective method.

At continuous high flux, the cycle periods of oscillations (τ = 0.0476) and the syn-
chronization periods for all control strengths (τ = 25) are the same for all intermediate
species. These denote that the reaction conditions are met. The transient time until synchro-
nization depends on initial conditions of the two systems, the concentrations of chemical
compounds from reaction tank and on the strength of the controllers.

Establishing the initial conditions, the concentrations of the chemical species and
the synchronization parameters is necessary to achieve the control of chaotic behavior in
future experiments.
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