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Abstract: The objective of this paper was to present a new inverse problem statement and numerical
method for the Volterra integral equations with piecewise continuous kernels. For such Volterra
integral equations of the first kind, it is assumed that kernel discontinuity curves are the desired ones,
but the rest of the information is known. The resulting integral equation is nonlinear with respect
to discontinuity curves which correspond to integration bounds. A direct method of discretization
with a posteriori verification of calculations is proposed. The family of quadrature rules is employed
for approximation purposes. It is shown that the arithmetic complexity of the proposed numerical
method is O(N3). The method has first-order convergence. A generalization of the method is also
proposed for the case of an arbitrary number of discontinuity curves. The illustrative examples are
included to demonstrate the efficiency and accuracy of proposed solver.

Keywords: Volterra integral equation of the first kind; discontinuous kernels; inverse problem;
unknown discontinuity curves; arithmetic complexity
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1. Introduction

The paper deals with the numerical study of integral dynamic models based on
Volterra integral equations of the first kind with kernels having discontinuities on a set of
smooth curves. Namely, let us consider the following linear integral model∫ t

0
K(t, s)x(s)ds = f (t), 0 ≤ s ≤ t ≤ T, f (0) = 0, (1)

where the kernel K(t, s) is defined as follows

K(t, s) =


K1(t, s), t, s ∈ m1,
. . . . . . . . . . . .

Kn(t, s), t, s ∈ mn.
(2)

where mi = {t, s
∣∣ αi−1(t) < s < αi(t)}, α0(t) = 0, αn(t) = t, i = 1, n, αi(t), f (t) ∈ C1

[0,T],
functions Ki(t, s) have continuous derivatives with respect to t for (t, s) ∈ cl(mi), Kn(t, t) 6= 0,
αi(0) = 0, 0 < α1(t) < α2(t) < . . . < αn−1(t) < t, for t ∈ (0, T], functions α1(t), . . . , αn−1(t)
increase in a small neighborhood 0 ≤ t ≤ τ, 0 < α′1(0) ≤ . . . ≤ α′n−1(0) < 1, and cl(mi)
denotes closure of set mi.

Such weakly regular Volterra equations of the first kind with piecewise continuous
kernels were first classified and employed by Sidorov [1] and Lorenzi [2] and extensively
studied by many authors during the last decade. Here, readers may refer to the monograph
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by Sidorov [3] and references therein. Volterra operator equations of the first kind were
studied by Sidorov and Sidorov [4], who obtained the sufficient conditions for the existence
of a unique solution. Muftahov, Tynda and Sidorov [5] employed direct quadrature meth-
ods for the solution of such equations in both linear and nonlinear cases. Such Volterra
models have many applications in modeling evolving dynamical processes including en-
ergy storage systems [6,7] and models for the electric power systems development [8]. The
nonlinear integral equations with unknown lower limits of integration are in the core of
different models in economics, operations research, population biology, and environmental
sciences. The systems of such equations and the existence and uniqueness theorems studied
by Hritonenko and Yatsenko [9,10]. For a comprehensive introduction to numerical meth-
ods for the solution to the Volterra equations of the first kind (including cases of variable
integration limits), we refer the reader to books by Brunner [11] and Apartsyn [12].

Inverse Problem

The classical problem statement for model (1) and (2) is to determine function x(t)
under the assumption of a known kernel K(t, s) and source function f (t). However,
a number of applications of model (1) and (2) in practice leads to the inverse problem
of determining the curves αi(t). With this formulation, the Equation (1) is interpreted as
a nonlinear integral equation with unknown integration limits, its numerical study is a
novel, mathematically challenging problem. The theory of such equations has not yet been
developed and attacked for the first time in the present paper.

Indeed, if one considers just single term (i = 2, K2(t, s) ≡ 0) of Equation (1) as an
integral operator

A(α1(t)) :=
∫ α1(t)

0
K(t, s)x(s) ds,

it can be outlined that such an operator is obviously nonlinear since it is not homogeneous
nor additive.

The complexity of the discretization is primarily related to the approximation of
integrals with unknown lengths of integration segments.

The models described by integral equations with unknown integration limits were
first formulated in the seminal works of Glushkov. Here, readers may refer to his book [13].
The applications of such integral models in economics were investigated in the works of
Hritonenko and Yatsenko, as can be seen, for example, in ref. [14] and book [15]. The num-
ber of direct and iterative numerical methods are proposed by Tynda, and here readers
may refer to [16–18].

The objective of this paper is to provide the new problem statement (inverse problem)
as well as to propose the efficient numerical method for the solution. In this paper, the
direct method of discretization with a posteriori verification of calculations is proposed for
the inverse problem (1) and (2) in the case of n = 2.

The paper is organized as follows. Section 3 analyzes the arithmetic complexity of
calculations. A generalization of the method is also proposed in Section 4 for an arbitrary
number of discontinuity curves. In Section 5, the numerical results of solving model
problems are given.

2. Numerical Method

Let us first consider in detail the problem (1) and (2) for n = 2, which consists in
determining the unknown function α1(t) = α(t):

α(t)∫
0

K1(t, s)x(s)ds +
t∫

α(t)

K2(t, s)x(s)ds = f (t), t ∈ [0, T]. (3)
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In order to construct an approximate solution, we introduce a grid of nodes (not
necessarily uniform) on the segment [0, T]:

0 = t0 < t1 < · · · < tN = T.

Let the approximate solution αN(t) be a piecewise linear function constructed on
the points

(tk, αk), αk = α(tk), k = 0, 1, 2, . . . , N.

Let us start defining the unknown values αk, k = 0, 1, 2, . . . , N. In order to carry out
the discretization of the Equation (3), we also introduce an auxiliary integer-valued function

v(k) = vk if tvk−1 < αk 6 tvk , k = 1, 2, . . . , N.

In other words, v(k) denotes the number of the grid segment that the unknown value
αk falls on. Since α(t) is a monotonically increasing function and α(t) < t, we have

vk 6 k and vp 6 vm for p < m.

We require that, at the nodes of the grid t = tk, k = 1, 2, . . . , N, the Equation (3) turn:

αk∫
0

K1(tk, s)x(s)ds +
t∫

αk

K2(tk, s)x(s)ds = f (tk), k = 1, 2, . . . , N. (4)

Using the definition of vk and denoting fk = f (tk), we can represent the Equation (4)
in the following form

vk−1

∑
m=1

tm∫
tm−1

K1(tk, s)x(s)ds +
αk∫

tvk−1

K1(tk, s)x(s)ds

+

tvk∫
αk

K2(tk, s)x(s)ds +
k−1

∑
p=vk

tp+1∫
tp

K2(tk, s)x(s)ds = fk.

(5)

Assuming that the values vk, k = 1, 2, . . . , N, are somehow obtained, we approximate
the integrals in (5) as follows

vk−1

∑
m=1

K1

(
tk,

tm−1 + tm

2

)
x
(

tm−1 + tm

2

)
(tm − tm−1) + (αk − tvk−1)K1(tk, tvk−1)x(tvk−1)

+(tvk − αk)K2(tk, tvk )x(tvk ) +
k−1

∑
p=vk

K2

(
tk,

tp + tp+1

2

)
x
(

tp + tp+1

2

)
(tp+1 − tp) = fk.

(6)

Here, to approximate the integrals in the first and fourth terms of (5), the quadrature
rule of the middle rectangles is applied. For the second and third terms, the formulas of the
left and right rectangles are applied, respectively.

From (6), we have

αk =
fk − S1 − S2 + tvk−1K1(tk, tvk−1)x(tvk−1)− tvk K2(tk, tvk )x(tvk )

K1(tk, tvk−1)x(tvk−1)− K2(tk, tvk )x(tvk )
, (7)

where

S1 =
vk−1

∑
m=1

K1

(
tk,

tm−1 + tm

2

)
x
(

tm−1 + tm

2

)
(tm − tm−1),
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S2 =
k−1

∑
p=vk

K2

(
tk,

tp + tp+1

2

)
x
(

tp + tp+1

2

)
(tp+1 − tp).

Thus, with the knowledge of the numbers vk, k = 1, N, approximate values αk of the
unknown function at grid points can be found by the explicit Formula (7).

The idea of determining the numbers vk consists of sequentially iterating over the
possible values vk for each node number k = 1, 2, . . . , N:

v1 = 1;

v2 = v1 or v2 = 2;

v3 = v2 or v3 = v2 + 1 or v3 = 3;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

vk = vk−1, vk = vk−1 + 1, vk = vk−1 + 2, . . . , vk = k.

For each possible vk, the corresponding values αk are calculated using the Formula (7).
The iteration for each value k stops if the condition αk ∈ (tvk−1, tvk ] is met, confirming the
assumption that αk belongs to the specified interval.

It is easy to see that the estimate of the accuracy of the approximate solution for the
problem (3) according to the proposed computational scheme as follows

max
t∈[0,T]

|αN(t)− α(t)| = O
(

1
N

)
, (8)

meaning that the proposed method has the first order of convergence. As a note, let us
highlight here that for the introduction to the theory of uniform approximation of the
functions by polynomials, readers may refer to the book by Dziadyk [19], and for the theory
of functional equations and applications of functional analysis to applied analysis and
computational mathematics, readers may refer to the classic book by Kantorovich and
Akilov [20] .

3. Arithmetic Complexity

Let us turn to the question of the computational cost of the proposed method from the
point of view of the arithmetic complexity of calculations. We will count the number of
required arithmetic operations, calculations of the values of the functions included in the
equation, as well as operations for comparing the two numbers.

1. Calculation of the values of functions f (t), K1(t, s), K2(t, s) and x(t) at grid nodes and
at midpoints:

4N + N2;

2. Calculation of the values αk, k = 1, 2, . . . , N:

12·

summation S1,S2︷ ︸︸ ︷
3 ·

N

∑
k=1

2 · 1 + k− 1
2

(k− 1)= 36
N

∑
k=1

k(k− 1)

= 36
(

N(N + 1)(2N + 1)
6

− 1 + N
2

N
)
= 12N(N2 − 1);

3. Estimation of the number of arithmetic operations P1
N to iterate over possible values αk:

P1
N 6

N

∑
k=1

(1 + 2 + · · ·+ k) =
1
2

N

∑
k=1

k(k + 1) =
N(N + 1)(N + 2)

6
;
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4. Estimation of the number of comparison operations P2
N when iterating over possible

values αk:

P2
N 6 2P1

N =
N(N + 1)(N + 2)

3
.

Thus, we obtain a general estimate P(N) of the arithmetic complexity of the method:

P(N) = 4N + N2 + 12N(N2 − 1) + P1
N + P2

N 6 4N + N2

+12N(N2 − 1) +
N(N + 1)(N + 2)

6

+
N(N + 1)(N + 2)

3
=

N(25N2 + 5N − 14)
2

= O(N3).

(9)

4. General Case

The presented approach is naturally generalized to the case of a system of integral
equations with an arbitrary number of discontinuity curves αi(t).

Let us consider the problem of determining the entire family of discontinuity curves

α1(t), α2(t), . . . , αn−1(t),

of the following nonlinear integral model

n
∑

i=1

αi(t)∫
αi−1(t)

K1,i(t, s, xi(s))ds = f1(t);

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
n
∑

i=1

αi(t)∫
αi−1(t)

Kn−1,i(t, s, xi(s))ds = fn−1(t), t ∈ [0, T].

(10)

Here, α0(t) = 0, αn(t) = t and the functions αi(t), i = 1, n− 1, satisfy the following
conditions: αi(t) ∈ C1

[0,T], αi(0) = 0, 0 < α1(t) < α2(t) < . . . < αn−1(t) < t, for t ∈ (0, T],
functions α1(t), . . . , αn−1(t) increase in a small neighborhood 0 ≤ t ≤ τ, 0 < α′1(0) ≤ . . .
≤ α′n−1(0) < 1.

In order to construct an approximate solution, let us introduce a grid of nodes on the
segment [0, T]:

0 = t0 < t1 < · · · < tN = T.

Let approximate solutions αi,N(t) be piecewise linear functions constructed on the points

(tk, αi,k), αi,k = αi(tk), i = 1, 2, . . . n− 1, k = 0, 1, 2, . . . , N.

To discretize the system of Equation (10), we also introduce an auxiliary integer-valued
vector function

{vi(k)} = vi,k if tvi,k−1 < αi,k 6 tvi,k , i = 1, 2, . . . n− 1, k = 1, 2, . . . , N.

where vi(k) denotes the number of the grid segment on which the unknown value αi,k falls.
Since αi(t) are monotonically increasing functions and αi(t) < t, we have

vi,k 6 k and vi,p 6 vi,m for p < m, ∀i = 1, n− 1.
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Then, starting with sufficiently large values N, the system (10) in the nodes tk of the
grid can be represented as follows

v1,k−1

∑
m=1

tm∫
tm−1

Ki,1(tk, s, x1(s))ds +

α1,k∫
tv1,k−1

Ki,1(tk, s, x1(s))ds

+

tv1,k∫
α1,k

Ki,2(tk, s, x2(s))ds + · · ·+
αn−1,k∫

tvn−1,k−1

Ki,n−1(tk, s, xn−1(s))ds

+

tvn−1,k∫
αn−1,k

Ki,n(tk, s, xn(s))ds +
k−1

∑
p=vn−1,k

tp+1∫
tp

Ki,n(tk, s, xn(s))ds = fi(tk),

(11)

i = 1, 2, . . . , n− 1, k = 1, 2, . . . , N.

Approximating the integrals in (11), as before in (6), we obtain a system of linear
algebraic equations with respect to the coefficients αi,k.

Next, these systems of equations are successively solved for each of the permissible
sets of values of vi,k and selection is performed according to a principle similar to the
scalar case.

5. Numerical Experiments

Let us illustrate the effectiveness of the proposed algorithm by the example of solving
two model problems.

5.1. Problem 1

Let us consider the following equation
α(t)∫
0

(t− s)2esds +
t∫

α(t)

(t + s)esds = e
2
3 t2
(

4
9

t4 − 4
3

t3 − t2 + 1
)
+ et(2t− 1)− t2 − 2t− 2, (12)

The exact solution of this problem is the function α(t) = 2
3 t2, t ∈ [0, 1].

The results of solving Equation (12) are given in Table 1, in which the following
designations are adopted: N is the number of grid nodes, εN = max

t∈[0,T]
|αN(t)− α(t)| is the

error norm, and r = log2

(
εN
ε2N

)
is the order of accuracy.

A graphical illustration of convergence is shown in Figure 1.

Table 1. The dependence of the error on the number of grid nodes for Problem 1.

N 16 32 64 128 256 512 1024 2048 4096

εN 0.075 0.0094 0.00273 0.00079 5.43× 10−5 1.61× 10−5 4.21× 10−6 1.12× 10−6 3.11× 10−7

r — 2.99 1.78 1.79 3.86 1.75 1.93 1.91 1.85
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Figure 1. Problem 1. Exact and approximate solutions α(t) and αN(t) for N = 8, N = 16, N = 32.

5.2. Problem 2

Let us consider the following equation

α(t)∫
0

(t− s)2x(s)ds +
t∫

α(t)

(t + s)x(s)ds = f (t), t ∈ [0, 1.1], (13)

where x(t) = et, and the right part f (t) is selected in such a way that the exact solution is
the function α(t) = 2

5 sin(t2).
The results of solving the problem (13) are shown in Table 2, and the graphic illustra-

tion is in Figure 2.

Table 2. The dependence of the error on the number of grid nodes for Problem 2.

N 16 32 64 128 256 512 1024 2048

εN 0.005 0.00133 0.00049 0.00012 2.69× 10−5 8.32× 10−6 2.31× 10−6 6.49× 10−7

r — 1.91 1.43 2.07 2.13 1.69 1.85 1.83
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Figure 2. Problem 2. Exact and approximate solutions α(t) and αN(t) for N = 8, N = 16, N = 32.

The results shown in the Tables 1 and 2 show the stable convergence of the proposed
numerical method. We obtain an acceptable error even with sufficiently small values of N.
The calculation time is proportional to the value of N3 and corresponds to the estimate of
arithmetic complexity (9). Since the problem is new, there are no alternative analytical or
numerical methods for solving it in the literature to date.

It should also be noted that the practical order r of accuracy is higher than the stated
theoretical order (8). This is explained by the fact that the first order of accuracy in the
estimation arises due to the need to use quadrature formulas of left and right rectangles.
However, they are only used for two integrals with small integration segments and in
practice do not significantly affect the error.

6. Conclusions

The paper considers a fundamentally new problem for an integral model with discon-
tinuous kernels, which has not previously been studied in the literature. A new numerical
approach to its solution in a fairly general case is proposed. The proposed numerical
results confirm the effectiveness of the method. The discussion of a number of theoretical
aspects of the suggested inverse problem (such as the smoothness of solutions and the
well-posedness conditions) is the subject of future research.

Further development of the special Volterra models will enable the dynamic optimiza-
tion of the power systems modes on a given time horizon by the automatic selection of
the composition of the equipment with different efficiency defined in terms of desired
functions αi(t).
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