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Abstract: RGB and depth modalities contain more abundant and interactive information, and convo-
lutional neural networks (ConvNets) based on multi-modal data have achieved successful progress
in action recognition. Due to the limitation of a single stream, it is difficult to improve recognition
performance by learning multi-modal interactive features. Inspired by the multi-stream learning
mechanism and spatial-temporal information representation methods, we construct dynamic images
by using the rank pooling method and design an interactive learning dual-ConvNet (ILD-ConvNet)
with a multiplexer module to improve action recognition performance. Built on the rank pooling
method, the constructed visual dynamic images can capture the spatial-temporal information from
entire RGB videos. We extend this method to depth sequences to obtain more abundant multi-modal
spatial-temporal information as the inputs of the ConvNets. In addition, we design a dual ILD-
ConvNet with multiplexer modules to jointly learn the interactive features of two-stream from RGB
and depth modalities. The proposed recognition framework has been tested on two benchmark multi-
modal datasets—NTU RGB + D 120 and PKU-MMD. The proposed ILD-ConvNet with a temporal
segmentation mechanism achieves an accuracy of 86.9% and 89.4% for Cross-Subject (C-Sub) and
Cross-Setup (C-Set) on NTU RGB + D 120, 92.0% and 93.1% for Cross-Subject (C-Sub) and Cross-View
(C-View) on PKU-MMD, which are comparable with the state of the art. The experimental results
shown that our proposed ILD-ConvNet with a multiplexer module can extract interactive features
from different modalities to enhance action recognition performance.

Keywords: convolutional neural network; rank pooling; feature interactive learning; action recognition

MSC: 65Z05

1. Introduction

As an important means of information and intelligent human–computer cooperation,
action recognition has a broad application prospect in video monitoring, video retrieval,
virtual reality, human–computer interaction, etc. [1–5]. Recently, deep convolutional neural
networks (ConvNets) have strong feature learning and model generalization ability by
automatically learning feature information from the bottom to the top, which have been
applied to many fields, such as video understanding [6–10]. However, it is difficult to
further improve the performance of models because of the limited ability of information
representation and discrimination feature learning.

In recent years, most approaches mainly focus on designing deep ConvNets to learn
spatial-temporal features, which improved action recognition performance through extract-
ing the discriminative features from different modalities [11–15]. Most of those approaches
are designed to work on a single frame or a single stack of frames in a short clip for extract-
ing spatial-temporal features, while some methods obtain rich information by compressing
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action videos [16–20]. Although these ConvNets based methods have achieved amazing
performance in action recognition, the performance improvement of the models is limited
due to the inherent limitations, e.g., some video frame sparse sampling methods are easy
to cause the loss of temporal information and most single-stream ConvNets cannot jointly
learn interactive features of different modalities.

Inspired by the video compression representation method proposed in [17,21,22], in
this paper, we use the compression method to generate visual dynamic images (VDIs) and
depth dynamic images (DDIs) to obtain rich information from those two modalities, and
a multi-modal feature interactive learning model (ILD-ConvNet) is provided to extract the
interactive features of RGB and depth modalities in order to improve recognition performance.

The main contributions of this paper are as follows:

1. An effective 2D-ConvNet framework is proposed to extract interactive features from
different modalities to recognize human action, which jointly learn features from
different modalities for human action recognition.

2. We experimentally demonstrate that the constructed VDIs and DDIs can effectively
represent spatial-temporal information from the whole RGB-D sequences.

3. The proposed ILD-ConvNet recognition framework has been evaluated on large-scale
human action datasets. The results show that our proposed ILD-ConvNet achieved
better recognition performance and generalization performance, which demonstrated
the effectiveness of our ILD-ConvNet.

2. Related Work

The extraction of underlying features is mainly divided into spatial and temporal
features as for RGB and depth sequences, which can well describe the details of human
actions. Early low-level feature information extraction mainly includes feature extraction
algorithms with prior knowledge, geometric features, motion information, and Histogram
of Oriented Gradient (HOG). [23,24]. In addition, some recognition methods used to
represent time information mainly focus on spatial configuration modeling, dynamic
time axis (DTW), Hidden Markov model (HMM), and the recognition methods based on
hand-draft are summarized in [25,26].

In the past two decades, with the development of deep learning networks, action recog-
nition methods based on RGB and depth modalities have made great progress. Simonyan
et al. proposed a two-stream ConvNet recognition framework to fuse RGB and optical
flow features, which achieved the effect of combining spatial-temporal information [27].
Wang et al. [28] present a series of good training practices for deep action recognition,
Temporal Segment Networks (TSN), which included a sparse temporal sampling strategy
and video-level supervision. However, it is difficult to ensure that the interactive infor-
mation between different streams can be differentiated and explored. Zhang et al. [29]
designed a cross-stream ConvNet to investigate syndicated information from multiple
modalities. Wang et al. [30] provided a Temporal Difference Network (TDN) to learn multi-
scale temporal information. In addition, 3D ConvNets can obtain more comprehensive
spatiotemporal feature information, such as C3D, I3D, and X3D [31–33]. However, the
amount of computation is too large and requires a lot of computing resources. In addition,
transformer-based methods achieved remarkable results due to globally connected patterns
across spatial and temporal dimensions [34–36].

Recently, some researchers have designed a series of ConvNets to realize human
action recognition based on depth sequences, because it can reflect the comprehensive
three-dimensional geometric information. Wang et al. [37,38] expressed the depth se-
quences to dynamic images through rank pooling and applied 3D point cloud mapping
transformation to improve recognition performance, which achieved relatively good recog-
nition results on multi-modal datasets. In addition, Recurrent Neural Networks (RNNs)
can capture the feature information of temporal well, which have developed rapidly in
action recognition [39–41].
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The above feature learning methods have achieved success in improving the human
action recognition performance. However, the single-modality data cannot provide the
comprehensive information required for action recognition. Based on the multi-stream
recognition framework, some strategies are proposed to capture distinguishing features,
such as sparse temporal sampling [14], motion image [33] and dynamic image representa-
tion [17,21,22]. In [42], a cooperative ConvNets is designed to jointly learn the middle-level
feature information of RGB and depth sequences, which obtained good recognition per-
formance on the existing RGB-D datasets such as NTU RGB + D 60 [43]. In addition,
the joint learning mechanisms are designed to learn single-modal and cross-modal in-
formation for action recognition tasks, such as c-ConvNet [42], SC-ConvNets [44] and
J-ResNet-CMCB [45]. In addition, some approaches improved recognition performance
through fusing RGB, depth and skeleton in multi-stream feature learning, such as Modality
Compensation Network [46] and multi-modal action recognition model [47].

To overcome the lack of the above multi-stream ConvNets, with the advent of an in-
creasing amount of multi-modal data, we are motivated to design more efficient recognition
frameworks to represent spatial-temporal information from entire action sequences and
extract complimentary features from different modalities.

3. The Proposed Method

The proposed ILD-ConvNet architecture as shown in Figure 1, which has three parts:
the ILD-ConvNet, network input representation and joint optimization.
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Figure 1. Overview of the proposed recognition framework.

3.1. ILD-ConvNet Framework

By considering 2D ConvNets, 3D ConvNets and RNNs, a dual ConvNets framework
is designed based on the multi-modal feature interactive learning and fusion strategy. The
designed multi-modal interactive learning dual flow network ILD-ConvNet consists of two
separate paths, multiplexer modules and two losses. Given an RGB and depth sequences,
the rank pooling method converted them into a pair of dynamic images 〈VDI, DDI〉. Then,
a designed single ResNet with multiplexer modules is used to extract the discriminative
features from 〈VDI, DDI〉. Then, the two losses and effective fusion strategy are used to
jointly optimize and fuse multi-modal features.

Due to the high modularity, ResNet is selected as the basic module for RGB and depth
information flow learning [48]. The ILD-ConvNet recognition framework includes two
independent information flow learning networks. Each network includes 7× 7 convolution
layer, four bottleneck blocks, a full connection layer and softmax mapping layer. The
network adopts the same strategies as ResNet. The network framework based on the



Mathematics 2022, 10, 3923 4 of 15

ResNet50 model is summarized in Table 1. In the ResNet50 model, the input maps of the
4 bottleneck blocks are 64, 256, 512 and 1024. To reduce the number of parameters of
the multiplexer module, the network is placed before each bottleneck block to learn the
interaction characteristics of different modalities.

Table 1. The network architecture of ILD-ConvNet-based ResNet50. Down sampling is performed by
conv3_x, conv4_x and conv5_x with a stride of 2.

Layer Name Output Size
ILD-ConvNet50

RGB Stream Depth Stream

Conv1 112× 112 14× 14, 64, stride 2 7× 7, 64, stride 2

Multiplexer_1 112× 112
[

1× 1, 64× 2
1× 1, 64

]
× 1

Conv2_x 56× 56

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

 1× 1, 64
3× 3, 64

1× 1, 256

× 3

Multiplexer_2 56× 56
[

1× 1, 256× 2
1× 1, 256

]
× 1

Conv3_x 28× 28

1× 1, 128
3× 3, 128
1× 1, 512

× 4

1× 1, 128
3× 3, 128
1× 1, 512

× 4

Multiplexer_3 28× 28
[

1× 1, 512× 2
1× 1, 512

]
× 1

Conv4_x 14× 14

 1× 1, 256
3× 3, 256
1× 1, 1024

× 23

 1× 1, 256
3× 3, 256
1× 1, 1024

× 23

Multiplexer_4 14× 14
[

1× 1, 1024× 2
1× 1, 1024

]
× 1

Conv5_x 7× 7

 1× 1, 512
3× 3, 512

1× 1, 2048

× 3

 1× 1, 512
3× 3, 512

1× 1, 2048

× 3

Multiplexer_5 7× 7
[

1× 1, 2048× 2
1× 1, 2048

]
× 1

FC 1× 1 FC-RGB FC-depth

3.2. Network Inputs

Represent RGB or depth sequences as 〈I1, I2, I3, . . . , IT〉. ∅(It) ∈ Rd is the feature
vector extracted therefrom of It, and the average feature vector at the time t is defined as

Vt =
1
t ∑t

τ=1 ∅(Iτ), (1)

where the sorting score function of Vt at the time t is as follows.

S(t|d) = 〈d, Vt〉, d ∈ Rd, (2)

where d is the learned parameter vector. The score S(t|d) reflects the ordering of each image
frame in the sequence, which satisfies q > t→ S(q|d) > S(t|d) .

E(d) =
λ

2
||d||2 + 2

T(T − 1) ∑q>t max{0, 1− S(q|d) + S(t|d)}, (3)

where the first and second terms are the quadratic term of SVM optimization and the error
accumulation of score ranking, respectively. The interval between q and t is set as 1 to
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distinguish the score ranking. The mapping function from video to parameter feature d*
vector is further defined as [49]:

d∗ = ρ(I1, . . . , IT ;∅) = argmindE(d), (4)

where d* is the optimal estimate of d. d∗ contains all the ordering information of the
video sequence, which is equal to the number of pixels of a single frame of the sequence.
Therefore, it can be seen as a descriptor of the videos and interpreted as a standard image
frame. For depth sequence, we first normalize them into single-channel images, and
then use the introduced rank pooling method (d∗) to compress them into one dynamic
image (DDI).

3.3. Multiplexer Modules

In terms of network architecture design, ResNet is selected as the basic network based
on the highly modular residual unit. The proposed ILD-ConvNet is divided into two
paths to process the input RGB and depth information flow characteristics, respectively.
High-level interactive learning is conducted through the multiplexer module, as shown in
Figure 2.

RGB

(b)

Conv_1

FC-RGB

Depth

Conv_1

Multiplexer_1

Multiplexer_5

… …

FC-depth

Multiplexer

(a)

1х1 Convolutions

Normalization

ReLU

Normalization

ReLU

1х1 Convolutions

Normalization Normalization

Normalization Normalization

ReLU ReLU

ReLU ReLU

Figure 2. Multiplexer module and information stream. (a) Multiplexer module. (b) Two-stream information.

The multiplexer module combines the characteristics of two-path information flow.
After weighted redirection interactive learning, it is input back to RGB and depth informa-
tion flow, respectively. The characteristic output function of the multiplexer module can be
defined as

Fmultiplexer(x) = ReLU(BN( f1×1(ReLU(BN( f1×1(w ∗ x)))))), (5)
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where BN(·) and ReLU(·) denote the batch normalization and rectified linear units activa-
tion function, respectively, and f1×1 is a learnable 1× 1 convolution kernel. The information
flow input is defined as:

XRGB = λXRGB + (1− λ)Fmultiplexer

(
XRGB + Xdepth

)
, (6)

Xdepth = λXdepth + (1− λ)Fmultiplexer

(
XRGB + Xdepth

)
, (7)

where XRGB and Xdepth represent the output of the information flow, respectively. λ ∈ (0, 1)
is the adjustment coefficient.

3.4. Optimization Learning

Different from the ConvNets, which is trained on a single frame, the designed ILD-
ConvNet has paired sample objects 〈VDI, DDI〉 for training. In order to eliminate the
deviation between two different modalities, a dual loss function is used to jointly optimize
RGB and depth information flows. In the meantime, standard cross-entropy loss functions
are used in the training process.

The information flow of the training sample 〈VDI, DDI〉 is expressed as X〈VDI,DDI〉.
The scores of VDI and DDI are obtained by using the softmax function. The classification
probability score can be estimated as follows:

probc =
exp(WcX + bc)

∑ci
exp(wci X + bci )

, (8)

where Wc and bc are the weights and offsets of the softmax layer. The loss function of the
two streams can be described as:

LRGB(y, C) = −
C

∑
c=1

yc(log(probc−RGB)), (9)

Ldepth(y, C) = −
C

∑
c=1

yc(log(probc−depth)), (10)

where C is the classification number of actions, yc is the ground truth label, probc−RGB and
probc−depth are the classification probabilities, respectively.

Different from training on a single RGB or depth frame, ILD-ConvNet operates on
〈VDI, DDI〉 and obtains two-stream features. To make the proposed ConvNets more
discriminative and eliminate the multi-modal variance between the RGB-D information
streams, a dual loss function is adopted to jointly optimized ILD-ConvNet. In the training
process, the standard cross-entropy loss is used to jointly optimize ILD-ConvNet. The
overall loss function can be expressed as:

L(y, C) = LRGB + Ldepth, (11)

The feature vectors vRGB and vdepth of the dual stream network can be obtained in the
testing process. The final score feature vectors of RGB and depth sequences can be obtained
through feature fusion:

v f usion = vRGB◦vdepth, (12)

where “◦” represents the maximum, minimum or inner product operation. Then, the
maximum value of v f usion is used as the classification result of RGB and depth sequences.
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3.5. Datasets Implementation Details
3.5.1. Datasets

NTU RGB + D 120 [50] is the largest multi-modal human action dataset currently
released. NTU RGB + D 120 includes RGB, depth, infrared IR and 3D skeleton modalities,
and two evaluation protocols are defined. For the Cross-Subject (C-Sub) evaluation protocol,
samples collected by subjects with camera numbers of 1, 2, 4, 5, 8, 9, 13, 14, 15, 16, 17, 18, 19,
25, 27, 28, 31, 34, 35, 38, 45, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 70, 74, 78, 80, 81, 82, 83,
84, 85, 86, 89, 91, 92, 93, 94, 95, 97, 98, 100, and 103 were used for training (63,360 samples).
The rest were selected for testing (51,120 samples). For the Cross-Setup (C-Set), the samples
collected by the even ID cameras are divided into training (54,720 samples) and the rest for
testing (59,760 samples).

The PKU-MMD dataset [51] includes multi-modal data such as RGB, depth, in-
frared radiation and skeleton modalities, and each modality includes 1074 long video
sequences, and two action recognition evaluation protocols are designed for the dataset.
For the Cross-Subject (C-Sub) evaluation protocol, it is divided into 18,134 training and
2600 testing samples. For the Cross-View (C-View) evaluation protocol, the training set
have 13,815 samples and the testing have 6919 samples.

3.5.2. Implementation Details

Network input. The RGB and depth sequences are compressed to obtain the input
of the ILD-ConvNet by adopting the rank pooling method proposed above. In order to
adapt to the dual flow network training model, 〈VDI, DDI〉 is scaled to 224× 224. The
DDI sorted by depth sequence is scaled to [0, 255]. In addition, the training samples are
incrementally processed by random clipping and dithering.

Model training and testing. The parameters of ILD-ConvNet can be initialized through
the pre-trained weights of ResNet. In the training and testing process, we follow the good
practice proposed in [16], the methods of mini batch, momentum, random gradient de-
scent and data augmentation methods are used for feature learning, where the batch
and momentum are set as 64 and 0.8, respectively. The initial learning rate is set as 0.01,
which decreases to 0.1 times every 30 generations. In order to overcome the overfitting
phenomenon, dropout technology was further adopted. The dropout rate was set to 0.5.
Inspired by the good practices proposed in [16], we further verified the impact of segmen-
tation strategy on recognition performance in our experiments.

4. Experimental Results and Analysis
4.1. Effectiveness of the Proposed ILD-ConvNet
4.1.1. Effectiveness

In order to evaluate the effectiveness of the proposed recognition framework, compar-
ative experiments of different modalities are conducted on the NTU RGB + D 120 dataset,
including RGB, depth and RGB + depth dual modalities. The parameter λ was set to 0.1
and the average fusion method is used in the experiments, Table 2 shows the experimental
results. The recognition rate of VDI in ResNet50 model is 16.1% and 13.0% higher than
that of RGB, and the DDI is 28.6% and 30.1% higher than that of depth on the basis of the
evaluation protocols of the NTU RGB + D 120 dataset C-Sub and C-Set. The improvement
of the recognition rate shows that the proposed video frame ranking method can improve
the behavior recognition performance of the training mode. The results proves that this
method can effectively represent the spatial-temporal information of samples.

Table 2 shows that the recognition rates of ResNet-50 model achieve 51.4% and 51.3%,
respectively, by fusing RGB and depth modalities. The recognition rates of ILD-ConvNet50
achieve 55.4% and 55.0%, respectively. The recognition rates of ILD-ConvNet50 are 4.0%
and 3.7% higher than those of ResNet50. The recognition rates of ResNet50 model achieve
73.8% and 74.0% by fusing VDI and DDI modalities. ILD-ConvNet50 can obtain 75.3%
and 75.2% recognition rates. The proposed ILD-ConvNet50 are 1.5% and 1.2% higher than
those of ResNet50. Furthermore, we can see that the recognition rate is greatly improved by
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fusing RGB and depth modalities, which indicates the interactive characteristics between
RGB and depth sequences. Furthermore, the experimental results of our ILD-ConvNet
show that learning the interactive characteristics between two different modalities can
better improve recognition performance. The reason of the improvement of recognition
rate is that the designed multiplexer module has learned the interaction characteristics of
RGB and depth.

Table 2. The results of ResNet50 and ILD-ConvNet.

Methods Modality C-Sub C-Set

ResNet50 RGB 40.6% 39.5%
ResNet50 depth 43.6% 42.2%
ResNet50 RGB + depth 51.4% 51.3%
ResNet50 VDI 56.7% 52.5%
ResNet50 DDI 72.2% 72.3%
ResNet50 〈VDI, DDI〉 73.8% 74.0%

ILD-ConvNet50 〈RGB, depth〉 55.4% 55.0%
ILD-ConvNet50 〈VDI, DDI〉 75.3% 75.2%

4.1.2. Comparison of Different Fusion Methods

The average fusion method was adopted to achieve the classification results in Table 2.
To obtain better recognition performance, the weighted average, maximum and product
score fusion methods are evaluated on the NTU RGB + D dataset, and the results are
shown in Table 3. It can be seen from the experimental results that the recognition rates of
the three feature fusion methods are similar, and the average method is relatively good.
Therefore, the average fusion method is selected as the feature fusion method for the
following experiments.

Table 3. Comparative accuracies of the proposed ILD-ConvNet50 with 〈VDI, DDI〉 on the NTU
RGB + D 120 dataset.

Methods C-Sub C-Set

Average 75.3% 75.2%
Product 75.2% 75.0%

Max 74.9% 74.9%

4.1.3. Effectiveness of Parameter λ

The parameter λ is varied from 0 to 0.5 to evaluate recognition performance. The
comparison results are summarized in Figure 3, and we can see that increasing λ will lead
to worse performance. The results implies that increasing λ does not help obtain richer
information from the other modality. Thus, λ = 0.1 is set in the following experiments.

4.2. Comparison to the State of the Art
4.2.1. Experimental on the NTU RGB + D Dataset

To further demonstrate the effectiveness of RGB and depth modalities, BNIncep-
tion, ResNet50, ResNet101, ILD-ConvNet50 and ILD-ConvNet101 were selected for fur-
ther experiments, and the comparison results are shown in Table 4. RGB and depth
modalities are used as inputs in this group of experiments. In addition, BNInception,
ResNet50 and ResNet101 are used to train RGB, depth, VDI and DDI, respectively. Mean-
while, image pairs 〈RGB, depth〉 and 〈VDI, DDI〉 are used as the inputs of ILD-ConvNet50
and ILD-ConvNet101.

The experimental results indicate that ILD-ConvNet101 achieved 82.8% and 83.6%
recognition rates, respectively, on the C-Sub and C-Set protocols of the NTU RGB + D
120 dataset. ILD-ConvNet101 is 0.7% and 2.1% higher than ResNet101, respectively, for
the same input and base network, and our ILD-ConvNet101 is 5.6% and 6.2% higher than
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ResNet101, respectively. Furthermore, inspired by the segmentation training mechanism
proposed in [16], we conduct experiments in 3 segments on the NTU RGB + D 120 dataset,
which obtain 86.9% and 89.4% on two protocols. In specially, the proposed ILD-ConvNet
degenerates to the plain SC-ConvNet as in [44]. Although the proposed recognition frame-
work is only 1.7% higher than SC-ConVnet in C-Set protocol, it also shows the effectiveness
of our designed multiplexer module. Moreover, some subtle actions are easier to recognize,
such as “jump table tennis ball”. The experimental results demonstrated that the interactive
features of RGB and depth modalities learned by the designed multiplexer module can
improve recognition performance.

0 0.1 0.2 0.3 0.4 0.5
75

80

85

A
cc

ur
ac

y 
(%

)

C-Sub
C-Set

Figure 3. Comparison of weight λ for two protocols using the ILD-ConvNet101 with the inputs 〈VDI, DDI〉.

Table 4. Comparative accuracies of different networks, and the segment is set 3 in TSN [16].

Methods Modality C-Sub C-Set

BNInception 〈RGB, depth〉 52.5% 53.1%
ResNet50 〈RGB, depth〉 51.4% 51.3%
ResNet101 〈RGB, depth〉 56.5% 54.1%

BNInception 〈VDI, DDI〉 75.4% 76.2%
ResNet50 〈VDI, DDI〉 73.8% 74.0%
ResNet101 〈VDI, DDI〉 77.2% 78.4%

ILD-ConvNet50 〈RGB, depth〉 55.4% 55.0%
ILD-ConvNet101 〈RGB, depth〉 57.2% 56.2%
ILD-ConvNet50 〈VDI, DDI〉 75.3% 75.2%
ILD-ConvNet101 〈VDI, DDI〉 82.4% 83.1%

J-ResNet-CMCB [45] 〈VDI, DDI〉 82.8% 83.6%
TSN [16] + SC-ConvNet [44] 〈VDI, DDI〉 86.9% 87.7%
TSN [16] + ILD-ConvNet101 〈VDI, DDI〉 86.9% 89.4%

4.2.2. Experimental on the PKU-MMD Dataset

To evaluate the effectiveness and generalization ability of the proposed ILD-ConvNet,
we further conducted experiments on the multi-modal human action dataset PKU-MMD
with different scales and application backgrounds. The basic network is ResNet101, and λ
is set to 0.1. Table 5 shows the experimental comparison results.
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Table 5. Comparative accuracies of different networks on the PKU-MMD dataset; the segment is set 3
in TSN [16].

Methods Modality C-Sub C-View

SA-LSTM [52] skeleton 86.3% 91.4%
TA-LSTM [52] skeleton 86.6% 92.3%

STA-LSTM [52] skeleton 86.9% 92.6%
ResNet101 VDI 77.3% 74.8%
ResNet101 DDI 81.7% 79.0%
ResNet101 〈VDI, DDI〉 83.6% 82.7%

ILD-ConvNet101 RGB + depth 80.7% 79.8%
J-ResNet-CMCB [45] 〈VDI, DDI〉 90.4% 91.4%

TSN [16] + SC-ConvNet [44] 〈VDI, DDI〉 92.1% 93.2%
TSN [16] + ILD-ConvNet101 〈VDI, DDI〉 92.0% 93.1%

Table 5 shows that the proposed ILD-ConvNet based on ResNet101 obtained 92.0%
and 93.1% recognition rates, respectively, on the two protocols. The results show that
the proposed ILD-ConvNet obtained generalization ability on different types and scales
of datasets.

4.3. Analysis

Compared with other ConvNet-based methods, the experimental results on the NTU
RGB + D and PKU-MMD datasets have shown the effectiveness of our ILD-ConvNet. It can
be seen that the proposed dual-stream framework can achieve better recognition perfor-
mance. The experimental results also implied that the introduced rank pooling mechanism
can represent spatial-temporal information from entire RGB and depth sequences, and
the designed multiplexer module can enhance recognition performance by extracting the
interactive features from different modalities.

Figures 4 and 5 shows the confusion matrix under the two evaluation protocols. It
can be seen that the designed ILD-ConvNet can effectively identify most of the actions,
but some refined actions, such as “make an OK sign” and “snap fingers”. On the C-Sub
test protocol, highly similar actions of human–object interaction are easy to be confused,
such as “put on glasses” and “take off glasses”, “reading” and “writing”. In addition, it is
difficult to effectively distinguish actions with similar behavior trajectories, such as “rub
two hands” and “clasping”.

Figures 6 and 7 are the confusion matrix under the two test protocols in the PKU-
MMD dataset. The PKU-MMD is a long video sequence multi-modal dataset. Each video
sequence contains a series of actions, which needs to be preceded by segmentation. We
can see from Figures 6 and 7 that the proposed ILD-ConvNet can distinguish most human
actions after segmentation. However, some actions cannot be effectively identified, such as
“eat meal/snack”, “drink water”, “tear up paper” and “put on glasses”.

The hyper parameter λ controls the weights of the previous convolution layers in
ILD-ConvNet. Adjusting λ should improve the recognition performance of the proposed
ILD-ConvNet. We first roughly get the range of λ through analyzing the contribution of
different item in Equations (6) and (7). The higher λ forces the RGB and depth streams to
obtain more interactive features from different modalities. However, more noise will be
introduced at the same time, which will affect the recognition performance of the proposed
network model. Therefore, we should select the optimal λ through verifying the results
in practice.
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Predicted label

drink water
eat meal

brushing teeth
brushing hair

drop
pickup
throw

sitting down
standing up

clapping
reading
writing

tear up paper
wear jacket

take off jacket
wear a shoe

take off shoe
wear on glasses
take off glasses
put on hat/cap

take off a hat/cap
cheer up

hand waving
kicking something
reach into pocket

hopping
jump up

phone call
playing with phone

typing
pointing to something

taking selfie
check time (from watch)

rub two hands
nod head/bow

shake head
wipe face

salute
put the palms together

cross hands in front
sneeze/cough

staggering
falling

headache
chest pain
back pain
neck pain
vomiting

fan self
punch/slap

kicking
pushing

pat on the back
point finger

hugging
giving something

touch pocket
handshaking

walking towards
walking apart

put on headphone
take off headphone

shoot at basket
bounce ball

tennis bat swing
juggle table tennis ball

hush
flick hair

thumb up
thumb down

make OK sign
make victory sign

staple book
counting money

cutting nails
cutting paper
snap fingers
open bottle
sniff/smell

squat down
toss a coin
fold paper

ball up paper
play magic cube

apply cream on face
apply cream on hand

put on bag
take off bag

put object into bag
take object out of bag

open a box
move heavy objects

shake fist
throw up cap/hat

capitulate
cross arms
arm circles
arm swings

run on the spot
butt kicks

cross toe touch
side kick

yawn
stretch oneself

blow nose
hit with object

wield knife
knock over

grab stuff
shoot with gun

step on foot
high-five

cheers and drink
carry object

take a photo
follow

whisper
exchange things

support somebody
rock-paper-scissors
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Figure 4. Confusion matrix of the ILD-ConvNet101 using C-Sub protocol on NTU RGB + D 120.
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Predicted label

drink water
eat meal

brushing teeth
brushing hair

drop
pickup
throw

sitting down
standing up

clapping
reading
writing

tear up paper
wear jacket

take off jacket
wear a shoe

take off shoe
wear on glasses
take off glasses
put on hat/cap

take off a hat/cap
cheer up

hand waving
kicking something
reach into pocket

hopping
jump up

phone call
playing with phone

typing
pointing to something

taking selfie
check time (from watch)

rub two hands
nod head/bow

shake head
wipe face

salute
put the palms together

cross hands in front
sneeze/cough

staggering
falling

headache
chest pain
back pain
neck pain
vomiting

fan self
punch/slap

kicking
pushing

pat on the back
point finger

hugging
giving something

touch pocket
handshaking

walking towards
walking apart

put on headphone
take off headphone

shoot at basket
bounce ball

tennis bat swing
juggle table tennis ball

hush
flick hair

thumb up
thumb down

make OK sign
make victory sign

staple book
counting money

cutting nails
cutting paper
snap fingers
open bottle
sniff/smell

squat down
toss a coin
fold paper

ball up paper
play magic cube

apply cream on face
apply cream on hand

put on bag
take off bag

put object into bag
take object out of bag

open a box
move heavy objects

shake fist
throw up cap/hat

capitulate
cross arms
arm circles
arm swings

run on the spot
butt kicks

cross toe touch
side kick

yawn
stretch oneself

blow nose
hit with object

wield knife
knock over

grab stuff
shoot with gun

step on foot
high-five

cheers and drink
carry object

take a photo
follow

whisper
exchange things

support somebody
rock-paper-scissors
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Figure 6. Confusion matrix using the C-Sub protocol on the PKU-MMD dataset.
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5. Conclusions

A human action recognition method based on interactive learning of multi-modal fea-
tures is proposed in this paper. The rank pooling method is used to construct 〈VDI, DDI〉
to obtain spatial-temporal information, and a dual-stream framework, ILD-ConvNet, with
multiplexer modules is then employed to learn the interactive features from the RGB-D
modalities for improving recognition performance. The experimental results illustrate the
effectiveness of the rank pooling method and a multiplexer module. Compared with the
state-of-the-art methods, our proposed recognition framework achieves comparable results
on two multi-modal RGB-D datasets. The future research of this work is to extend the 2D
ConvNet framework to 3D, and explore more effective feature fusion methods and reduce
the number of model parameters.
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