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Abstract: Hepatitis D virus is an infectious subviral agent that can only propagate in people infected
with hepatitis B virus. In this study, we modified and further developed a recent model for early
hepatitis D virus and hepatitis B virus kinetics to better reproduce hepatitis D virus and hepatitis B
virus kinetics measured in infected patients during anti-hepatitis D virus treatment. The analytical
solutions were provided to highlight the new features of the modified model. The improved model
offered significantly better prospects for modeling hepatitis D virus and hepatitis B virus interactions.
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1. Introduction

Chronic hepatitis D virus (HDV) is a serious clinical concern with an estimated preva-
lence of ~10–20 million persons worldwide [1,2]. It was first described by Rizzetto and
colleagues in the mid-1970s in patients with chronic hepatitis B virus (HBV) infection [3].
It was found that HDV requires the presence of HBV infection to assemble infectious
HDV progeny virions [4]. In addition, HDV and HBV need the same proteins to en-
ter hepatocytes [5]. There is no therapy approved for HDV by the US Food and Drug
Administration [6]. Pegylated interferon-α treatment [7], which is endorsed by expert
guidelines [8,9] with suboptimal outcomes, affects both HDV and HBV, which precludes
modeling the interplay between the HBV and HDV [10].

Because HBV and HDV replicate in the same cells and influence each other and the
host, we recently developed the first mathematical model to reproduce HDV and HBV
kinetics in two patients receiving the prenylation inhibitor Lonafarnib (termed here anti-
HDV) treatment in the absence of an anti-HBV therapy [11]. In the current study, we
showed that the published model in [11] failed to explain the additional patients’ kinetic
data reported in the LOWR HDV-1 (Lonafarnib with and without Ritonavir in HDV-1)
study by Yurdaydin et al. [12] and suggested modifications to the model along with its
analytical solutions. We provided the analytical solution of the improved model for both
HDV and HBV using hypergeometric functions for HBV [13].
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2. Background

We recently developed a model [11], that accounts for both HDV and HBV dynamics
after the onset of anti-HDV treatment using the following differential equations:

dD
dt

= (1− ε)p1I0e−gt − cD(t) (1)

dB
dt

= p2I0n−4
(

D0

D(t)

)n
− cB(t) (2)

where D and B represent the HDV viral load and HBV viral load in blood, respectively.
Parameters p1 and p2 represent the production rate constant of HDV and HBV from
infected cell number, I0. We assumed that the clearance rate constant, c, is the same
for HDV and HBV and that it is within the range of the HDV clearance rate estimated
in [14,15]. Parameter ε represents the efficacy of the treatment for HDV, with 0 < ε < 1, and
g is the assumed additional treatment inhibitory effect in blocking HDV production as
previously conducted under antiviral treatment for HBV [16,17]. Parameter n governs the
HBV production rate increase under anti-HDV treatment.

Before treatment, HBV and HDV levels are in equilibrium with the production rate of
HDV given by

p1 = (cD0)/I0 (3)

and that of HBV represented by
p2 = (cB0)/I0 (4)

where D0 and B0 are the HDV and HBV levels at the onset of treatment, respectively. The
number of the infected cells, I0, was kept constant under treatment and prior to treatment
onset, where ε = g = 0, and n = 1.

The original model Equations (1) and (2) simulated well the digitized serum HBV
DNA and HDV kinetic data in two patients that were provided in Figure 5 in [12]. The two
digitized patients displayed a moderate decrease in the second phase of HDV decline (i.e.,
low parameter g values) during anti-HDV treatment along with a sharp increase in HBV
levels that could be reproduced by the model, as recently shown in Figures 3 and 4 in [11].
However, in the current study, we reported that the original model Equations (1) and (2)
failed to explain additional patients who had a faster second phase decline in HDV (i.e.,
higher parameter g values) concomitantly with a moderate (or extremely slow) increase in
HBV levels (Figure 1).
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Figure 1. The model Equations (1) and (2) failed to reproduce HBV kinetics in additional patients
reported in Yurdaydin et al. [5]. Model parameter values were D0 = 1.2 × 106, B0 = 282, c = 0.51,
g = 0.089, ε = 0.97.
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3. Modified Model

To address the inability of the model Equations (1) and (2) to reproduce HDV and
HBV kinetics in some patients (Figure 1), we modified Equation (2) by replacing the term

n−4(D0/D(t))n with a (1 + (k/D(t))n) as follows and in Figure 2.

Mathematics 2022, 10, x FOR PEER REVIEW 3 of 14 
 

 

 

Figure 1. The model Equations (1) and (2) failed to reproduce HBV kinetics in additional patients 

reported in Yurdaydin et al. [5]. Model parameter values were D0 = 1.2 × 106, B0 = 282, c = 0.51, g = 

0.089, ε = 0.97. 

3. Modified Model 

To address the inability of the model Equations (1) and (2) to reproduce HDV and 

HBV kinetics in some patients (Figure 1), we modified Equation (2) by replacing the term 

n−4(D0/D(t))n with a (1+(k/D(t))n) as follows and in Figure 2. 

 

Figure 2. Schematic diagram for the modified model, Equations (1) and (5). 

Obtaining 

𝐝𝐁

𝐝𝐭
= 𝐩𝟐𝐈𝟎 (𝟏 + (

𝛋

𝐃(𝐭)
)
𝐧

) − 𝐜𝐁                          (5) 

where κ represents the threshold HDV level in blood that triggers an increase in HBV 

production, and κ is unique to each patient. As an example, in a patient with pre-treatment 

κ/D0~0, as D(t) decreased under treatment, because D0 > κ, the production of HBV in-

creased, e.g., at time t1 after the initiation of treatment. When D(t1) = κ, the pre-treatment 

Figure 2. Schematic diagram for the modified model, Equations (1) and (5).

Obtaining
dB
dt

= p2I0

(
1 +

(
κ

D(t)

)n)
− cB (5)

where κ represents the threshold HDV level in blood that triggers an increase in HBV
production, and κ is unique to each patient. As an example, in a patient with pre-treatment
κ/D0~0, as D(t) decreased under treatment, because D0 > κ, the production of HBV in-
creased, e.g., at time t1 after the initiation of treatment. When D(t1) = κ, the pre-treatment
HBV production p2 doubled (Figure 3). The time t1 at which p2 double depends on the
pre-treatment ratio κ/D0 as shown in Figure 3.
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Figure 3. One-way sensitivity analysis on the impact of parameter κ on predicted HBV kinetics,
B, (red curves) under anti-HDV treatment. Model parameters were set to D0 = 1,202,260, B0 = 282,
c = 0.47, n = 1.25, g = 0.094, τ = 0.1, and ε = 0.97. HDV predicted kinetics, D (blue curve) was not
affected by different κ values.
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Before treatment, the HBV and HDV are in equilibrium, with the production rate of
HDV given by p1 in Equation (3), and p2 for HBV in Equation (4) is replaced by

p2 =
cB0

I0

(
1 +

(
κ

D0

)n) (6)

The number of the infected cells, I0, was kept constant under treatment and prior
to treatment onset, where ε = g = 0 as assumed in the original model. Furthermore, we
assumed that HDV decay begins at time τ (days), corresponding to the delay observed in
the data and possibly reflecting Lonafarnib pharmacokinetics.

A one-way sensitivity analysis of our proposed model was carried out to investigate
its robustness. The sensitivity analysis was carried out on the fittings for patient 10 as
shown in Figures A1–A5, which are provided in Appendix A. We introduced some noise
into our model by varying five parameters (g, c, n, ε, and κ) with a variation of +/− 10%
around our baseline values. It is worth stating that the variation range of ε was a bit lower
than +/− 10%, since it was already closer to its upper bound, i.e., 1. We can clearly see
that varying c, n, and k had no impact on the HDV dynamics, while varying g and ε had a
small impact. Additionally, it can be noted that varying of all the five parameters had no
major effect on the HBV dynamics.

4. Results
4.1. The Modified Model Simulates the Measured Data

Using the Berkely Madonna software (berkeley-madonna.myshopify.com (accessed on
1 August 2022)) with the standard Runge–Kutta scheme of the fourth order, we reproduced
the data well, as shown for four representative patients (Figure 4).
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Figure 4. Model agreement with measured HDV RNA (circles) and HBV DNA (triangles) kinetics
in four representative patients. Model parameters were (a) B0 = 30,200, D0 = 1.14815 × 106, ε = 0.53,
g = 0.077, n = 1.8, and κ = 9799, (b) B0 = 151, D0 = 6.30957 × 105, ε = 0.97, g = 0.054, n = 2, and
κ = 25,503, (c) B0 = 5.88844× 105, D0 = 5.01187× 107, ε = 0.97, g = 0.020, n = 1.1, and κ = 1.23198 × 106,
and (d) B0 = 282, D0 = 1.20226 × 106, ε = 0.97, g = 0.094, n = 1.25, and κ = 26,137. The other model
parameters c and τ were fixed to 0.47 and 0.1, respectively, except for Patient 2 with τ = 0.6, as
depicted in Figure 4a.

4.2. Analytic Solutions

This subsection sought to determine the analytical solutions for D(t) and B(t). The
analytical solution of D(t) was already solved in [11] and is provided herein again for
convenience.

4.3. Analytic Solutions for HDV

We can derive the analytical solution of D(t) as follows:
From Equation (1), we have that

dD
dt

+ c D = (1− ε)p1e−gtI0. (7)

We then determined the integrating factor as, ect, and by multiplying both sides of
Equation (7) by the integrating factor, we have

d
dt
(
Dect) = (1− ε)p1e−gtI0 ect. (8)

By integrating both sides of the Equation (8), it follows that(
Dect) = Me−gt ect + K, (9)

with M = (1−ε)p1e−gtI0D
c−g , which then simplifies to
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D = Me−gt ect + Ke−ct. (10)

At time t = 0, we have D = D0, and evaluating Equation (10) we now have

K = D0 −M.

Thus, the exact solution for D is given by

D(t) = Me−gt + (D0 −M)e−ct (11)

4.4. Analytical Solution for HBV and Plots

Using Wolfram Mathematica version 13.0.1.0, we managed to determine the analytical
solution for B(t). Thus, the analytical solution of HBV (Equation (5)) is given by

b[t]

→ e−ct(B0

+
∫ t

0

B0·c·ecx
(

1 +
(
− ecx(c−g)k

D0·(−c·e(c−g)x+c·e(−1+e(c−g)x)+g)

)n)
1 +

(
κ

D0

)n dx)

(12)

Using the Berkeley Madonna simulation for the newly simulated Patient 10, we found
its best-fit parameters:

n = 1.25, ε = 0.97, g = 0.094, k = 26137 and c = 0.47

With the above, the HBV analytical solution becomes

b[t]

→ 279.66 + 1.28e−0.47t

+35.70
(

1
1157175.25e−0.47t + 45084.75e−0.094t

)1.25
(1157175.25

+45084.75e0.376t)1·Hypergeometric2F1
[
1, 2.5625, 3.8125,−0.039e0.376t

]
(13)

where Hypergeometric2F1 is the Gaussian hypergeometric function 2F1 (α, β; G; z), where
α, β, and Gare the function parameters and z is the variable of the Gaussian hypergeometric
function.

In Figure 5, we show the simulations of the HDV and HBV plots for Patient 10.
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Figure 5. (a) shows the HBV Mathematica analytical solution (i.e., Equation (13) herein), HBV Berke-

ley Madonna fit for Patient 10, which was a result of fitting the modified model Equations (1) and 

(5) with measured data using Berkeley Madonna. (b) follows a similar approach as conducted in 5a 

but for HDV using D. 

Figure 5. Cont.
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(𝟏𝟏𝟓𝟕𝟏𝟕𝟓. 𝟐𝟓
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(13) 

where Hypergeometric2F1 is the Gaussian hypergeometric function 2F1 (⍺, β; ɣ; z), where 

⍺, β, and ɣ are the function parameters and z is the variable of the Gaussian hypergeo-

metric function. 

In Figure 5, we show the simulations of the HDV and HBV plots for Patient 10. 
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Figure 5. (a) shows the HBV Mathematica analytical solution (i.e., Equation (13) herein), HBV Berke-

ley Madonna fit for Patient 10, which was a result of fitting the modified model Equations (1) and 

(5) with measured data using Berkeley Madonna. (b) follows a similar approach as conducted in 5a 

but for HDV using D. 

Figure 5. (a) shows the HBV Mathematica analytical solution (i.e., Equation (13) herein), HBV Berkeley
Madonna fit for Patient 10, which was a result of fitting the modified model Equations (1) and (5)
with measured data using Berkeley Madonna. (b) follows a similar approach as conducted in 5a but
for HDV using D.

Using the Berkeley Madonna simulation for Patient 2, we found its best-fit parameters:

n = 1.80, ε = 0.53, g = 0.070, k = 9799 and the constant c = 0.47

With the above, the HBV analytical solution becomes

b[t]

→ 30194.30 + 2.98e−0.47t

+320523.47e−1.66×10−16t
(

1
514084.16e−0.47t + 634065.8375e−0.07t

)1.8
(514084.16

+634065.84e0.4t)1·Hypergeometric2F1
[
1, 2.49, 4.29,−1.23e0.4t

]
(14)

In Figure 6, we show the simulations of HDV and HBV plots for Patient 2.
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Figure 6. (a) shows the HBV Mathematica analytical solution (i.e., Equation (14) herein), HBV Berke-

ley Madonna fit for Patient 2, which was a result of fitting the modified model with measured data 

using Berkeley Madonna as reported in [4] and the HBV raw data. (b) follows a similar approach as 

conducted in 6a but for HDV using D. 

Using the Madonna simulation for Patient 4, we found its best-fit parameters: 

𝒏 = 𝟐. 𝟎𝟎, ɛ = 𝟎. 𝟗𝟕, 𝒈 = 𝟎. 𝟎𝟓𝟒, 𝒌 = 𝟐𝟓𝟓𝟎𝟑 𝐚𝐧𝐝 𝐭𝐡𝐞 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 𝒄 = 𝟎. 𝟒𝟕  

With the above, the HBV analytical solution becomes 

Figure 6. Cont.
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Figure 6. (a) shows the HBV Mathematica analytical solution (i.e., Equation (14) herein), HBV Berke-

ley Madonna fit for Patient 2, which was a result of fitting the modified model with measured data 

using Berkeley Madonna as reported in [4] and the HBV raw data. (b) follows a similar approach as 

conducted in 6a but for HDV using D. 

Using the Madonna simulation for Patient 4, we found its best-fit parameters: 

𝒏 = 𝟐. 𝟎𝟎, ɛ = 𝟎. 𝟗𝟕, 𝒈 = 𝟎. 𝟎𝟓𝟒, 𝒌 = 𝟐𝟓𝟓𝟎𝟑 𝐚𝐧𝐝 𝐭𝐡𝐞 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 𝒄 = 𝟎. 𝟒𝟕  

With the above, the HBV analytical solution becomes 

Figure 6. (a) shows the HBV Mathematica analytical solution (i.e., Equation (14) herein), HBV
Berkeley Madonna fit for Patient 2, which was a result of fitting the modified model with measured
data using Berkeley Madonna as reported in [4] and the HBV raw data. (b) follows a similar approach
as conducted in 6a but for HDV using D.

Using the Madonna simulation for Patient 4, we found its best-fit parameters:

n = 2.00, ε = 0.97, g = 0.054, k = 25503 and the constant c = 0.47

With the above, the HBV analytical solution becomes

b[t]

→ 150.75 + 0.16e−0.47t

+53617.29
(

1
609571.20e−0.47t + 21385.80e−0.054t

)2·
(609571.20

+21385.80e0.416t)1·Hypergeometric2F1
[
1, 2.39, 4.39,−0.035e0.416t

]
(15)

In Figure 7, we show the simulations of HDV and HBV plots for Patient 4.
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Figure 7. (a) shows the HBV Mathematica analytical solution (i.e., Equation (15) herein), HBV Berke-

ley Madonna fit for Patient 4, which is a result of fitting the modified model with measured data 

using Berkeley Madonna 7. (b) follows a similar approach as conducted in 7a but for HDV using D. 

Using the Madonna simulation for the newly simulated Patient 5, we found its best-

fit parameters: 

𝒏 = 𝟎. 𝟖𝟏, ɛ = 𝟎. 𝟗𝟕, 𝒈 = 𝟎. 𝟎𝟐𝟏, 𝒌 = 𝟏𝟕𝟏𝟔𝟓𝟒𝟒 𝐚𝐧𝐝 𝐭𝐡𝐞 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 𝒄 = 𝟎. 𝟒𝟕  

With the above, the HBV analytical solution becomes 

Figure 7. Cont.
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Figure 7. (a) shows the HBV Mathematica analytical solution (i.e., Equation (15) herein), HBV Berke-

ley Madonna fit for Patient 4, which is a result of fitting the modified model with measured data 

using Berkeley Madonna 7. (b) follows a similar approach as conducted in 7a but for HDV using D. 

Using the Madonna simulation for the newly simulated Patient 5, we found its best-

fit parameters: 

𝒏 = 𝟎. 𝟖𝟏, ɛ = 𝟎. 𝟗𝟕, 𝒈 = 𝟎. 𝟎𝟐𝟏, 𝒌 = 𝟏𝟕𝟏𝟔𝟓𝟒𝟒 𝐚𝐧𝐝 𝐭𝐡𝐞 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 𝒄 = 𝟎. 𝟒𝟕  
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Figure 7. (a) shows the HBV Mathematica analytical solution (i.e., Equation (15) herein), HBV
Berkeley Madonna fit for Patient 4, which is a result of fitting the modified model with measured data
using Berkeley Madonna 7. (b) follows a similar approach as conducted in 7a but for HDV using D.

Using the Madonna simulation for the newly simulated Patient 5, we found its best-fit
parameters:

n = 0.81, ε = 0.97, g = 0.021, k = 1716544 and the constant c = 0.47

With the above, the HBV analytical solution becomes

b[t]

→ 552892.94 + 15911.46e−0.47t

+706.14
(

1
4.85× 107e−0.47t + 1573883.45e−0.021t

)0.81
(4.85× 107

+1573883.45e0.449t)1·Hypergeometric2F1
[
1, 2.08, 2.89,−0.032e0.449t

]
(16)

In Figure 8, we show the simulations of HDV and HBV plots for Patient 5.
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Figure 8. (a) shows the HBV Mathematica analytical solution (i.e., Equation (16) herein), HBV Berke-

ley Madonna fit for patient 5, which was a result of fitting the modified model with measured data 

using Berkeley Madonna 8. (b) follows a similar approach as conducted in 8a but for HDV using D. 

5. Discussion and Conclusions 

In this study, we provided additional insights into the interplay between HDV and 

HBV during anti-HDV treatment by suggesting a modification to our recently published 

mathematical model [4]. The modification was achieved by replacing the term 

n−4(D0/D(t))n in Equation (2) with a new term (1+(k/D)n) as shown in Equation (5). The term 

(1+(κ/D)n) allowed starting with a pre-treatment HBV production rate, which could in-

crease as a result of HDV decline by the several suggested mechanisms that were re-

viewed in [18]. The value of κ, which was unique for each patient (Figure 4), could repre-

sent, in part, the interplay between HDV and HBV. 

The modified model could explain HDV decline with different HBV kinetic changes: 

(i) no change (Figure 4a), (ii) a delay followed by an increase (Figure 4b,d), and (iii) a fast 

Figure 8. Cont.
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Figure 8. (a) shows the HBV Mathematica analytical solution (i.e., Equation (16) herein), HBV Berke-

ley Madonna fit for patient 5, which was a result of fitting the modified model with measured data 

using Berkeley Madonna 8. (b) follows a similar approach as conducted in 8a but for HDV using D. 

5. Discussion and Conclusions 

In this study, we provided additional insights into the interplay between HDV and 

HBV during anti-HDV treatment by suggesting a modification to our recently published 

mathematical model [4]. The modification was achieved by replacing the term 

n−4(D0/D(t))n in Equation (2) with a new term (1+(k/D)n) as shown in Equation (5). The term 

(1+(κ/D)n) allowed starting with a pre-treatment HBV production rate, which could in-

crease as a result of HDV decline by the several suggested mechanisms that were re-

viewed in [18]. The value of κ, which was unique for each patient (Figure 4), could repre-

sent, in part, the interplay between HDV and HBV. 

The modified model could explain HDV decline with different HBV kinetic changes: 

(i) no change (Figure 4a), (ii) a delay followed by an increase (Figure 4b,d), and (iii) a fast 

Figure 8. (a) shows the HBV Mathematica analytical solution (i.e., Equation (16) herein), HBV
Berkeley Madonna fit for patient 5, which was a result of fitting the modified model with measured
data using Berkeley Madonna 8. (b) follows a similar approach as conducted in 8a but for HDV
using D.

5. Discussion and Conclusions

In this study, we provided additional insights into the interplay between HDV
and HBV during anti-HDV treatment by suggesting a modification to our recently pub-
lished mathematical model [4]. The modification was achieved by replacing the term
n−4(D0/D(t))n in Equation (2) with a new term (1+(k/D)n) as shown in Equation (5).
The term (1+(κ/D)n) allowed starting with a pre-treatment HBV production rate, which
could increase as a result of HDV decline by the several suggested mechanisms that were
reviewed in [18]. The value of κ, which was unique for each patient (Figure 4), could
represent, in part, the interplay between HDV and HBV.

The modified model could explain HDV decline with different HBV kinetic changes:
(i) no change (Figure 4a), (ii) a delay followed by an increase (Figure 4b,d), and (iii) a fast
increase followed by a slower increase (Figure 4c). In addition, we provided the analytical
solution of the HBV modified model using hypergeometric functions [6].

In future work, our modified model could be examined in a much larger number of
patients and anti-HDV combination therapies. The modified model could also be extended
to account for additional biological features, e.g., immune response, molecular interactions,
and/or susceptible and infected cell dynamics. In addition, previously reported HDV/HBV
mathematical models [19–21] could be extended to account for the unique HDV and
HBV dynamics proposed in this study. As such, the modified model is a better starting
point for developing more comprehensive HDV/HBV models for understanding the
interactions between HBV and HDV that, in turn, may help to design therapeutic strategies
to fight HDV.
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increase followed by a slower increase (Figure 4c). In addition, we provided the analytical 

solution of the HBV modified model using hypergeometric functions [6]. 
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tended to account for additional biological features, e.g., immune response, molecular in-

teractions, and/or susceptible and infected cell dynamics. In addition, previously reported 

HDV/HBV mathematical models [19–21] could be extended to account for the unique 

HDV and HBV dynamics proposed in this study. As such, the modified model is a better 

starting point for developing more comprehensive HDV/HBV models for understanding 

the interactions between HBV and HDV that, in turn, may help to design therapeutic strat-

egies to fight HDV. 
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Figure A1. One-way sensitivity analysis on the impact of parameter c on predicted HBV/HDV ki-

netics under anti-HDV treatment. Model parameters were set to D0 = 1,202,260, B0 = 282, κ = 26,137, 

n = 1.25, g = 0.094, τ = 0.1, and ε = 0.97, with c being set at c = (0.423, 0.4465, 0.47, 0.4935, 0.517). The 

arrows depict the direction of increase of the parameter c. 

Figure A1. One-way sensitivity analysis on the impact of parameter c on predicted HBV/HDV
kinetics under anti-HDV treatment. Model parameters were set to D0 = 1,202,260, B0 = 282, κ = 26,137,
n = 1.25, g = 0.094, τ = 0.1, and ε = 0.97, with c being set at c = (0.423, 0.4465, 0.47, 0.4935, 0.517). The
arrows depict the direction of increase of the parameter c.
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Figure A2. One-way sensitivity analysis on the impact of parameter n on predicted HBV/HDV
kinetics under anti-HDV treatment. Model parameters were set to D0 = 1,202,260, B0 = 282, κ = 26,137,
c = 0.47, g = 0.094, τ = 0.1, and ε = 0.97, with n being set at n = (1.125, 1.1875, 1.25, 1.3125, 1.375). HDV
predicted kinetics were not affected by different n values.
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Figure A3. One-way sensitivity analysis on the impact of parameter κ on predicted HBV/HDV
kinetics under anti-HDV treatment. Model parameters were set to D0 = 1,202,260, B0 = 282, n = 1.25,
c = 0.47, g = 0.094, τ = 0.1, and ε = 0.97, with κ being set at κ = (23,523, 24,830, 26,137, 27,444, 28,751).
The arrows depict the direction of increase of the parameter κ. HDV predicted kinetics were not
affected by different n values.
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