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Abstract: This paper introduces a novel synchronization scheme for fractional-order neural networks
with time delays and reaction-diffusion terms via pinning control. We consider Caputo fractional
derivatives, constant delays and distributed delays in our model. Based on the stability behavior,
fractional inequalities and Lyapunov-type functions, several criteria are derived, which ensure the
achievement of a synchronization for the drive-response systems. The obtained criteria are easy to
test and are in the format of inequalities between the system parameters. Finally, numerical examples
are presented to illustrate the results. The obtained criteria in this paper consider the effect of time
delays as well as the reaction-diffusion terms, which generalize and improve some existing results.

Keywords: synchronization; neural network models; fractional derivatives; time delays; reaction-
diffusion terms; pinning control
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1. Introduction

It is well known that fractional calculus mainly deals with a generalization of dif-
ferentiation and integration of arbitrary orders. Compared with the classical integer-
order derivatives, the fractional-order differentiation tools own the description of memory
and hereditary properties of processes [1]. Due to these advantages, different classes of
fractional-order systems have been widely utilized in several fields. In fact, fractional calcu-
lus has been demonstrated to be a valuable tool in the modelling of numerous phenomena
studied in different areas of engineering, physics and economics [2,3]. In recent years, it has
played important roles in many fields of pure and applied sciences because it allows the
modelling of real physical systems to be more accurate than the calculus of integer order
does [4,5].

On the other hand, neural network models have potential applications in different
areas such as prediction, optimization, pattern recognition, parallel computing, signal and
image processing, and associative memory [6]. Currently, it has been widely observed
that the fractional-order extensions of neural networks have provided many important
results due to their main superiority in the field of fractional calculus, which ultimately
leads to rapid growth and improvements in the fields of neuronal study and network
approximation. Indeed, the combination of fractional calculus and neural network models
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is a remarkably great advancement. Thus, fractional-order neural networks are more ef-
fective in information processing than the integer-order models. This conclusion has also
been confirmed in some recent studies; see, for example [7,8] and the references therein.
Researchers have specified that fractional-order neural networks are very effective in ap-
plications such as parameter estimations [9]. The popularity of fractional-order neural
networks is motivated mainly by the fact that such models allow for greater flexibility
since a fractional-order differential operator is nonlocal. The formulation of neural network
models of fractional order is also justified by research results concerning biological neurons.
For example, the authors in [10] concluded that fractional differentiation provides neu-
rons with a fundamental and general computation ability that can contribute to efficient
information processing, stimulus anticipation and frequency-independent phase shifts of
oscillatory neuronal firing. Additionally, fractional-order derivatives provide a magnificent
instrument for the description of memory and hereditary properties of various processes
and phenomena. To better model the long-term memory phenomena in biological models,
many existing models have been extended to the fractional-order case [11,12]. Based on the
importance of fractional-order neural networks from an applied point of view, enormous
results comprising the existence of equilibrium points and their stability analysis have been
reported [13,14].

In a synchronization problem, there are two identical systems, where one is considered
as a master and the other one as the slave. The synchronization of neural networks has
received notable attention in the past decade; see [15,16]. As we well know, synchronization
takes place in various forms, such as improved synchronization [16], exponential synchro-
nization [17], event-triggered synchronization [18], cluster synchronization [19], and so on.
How to design synchronization controllers when the master system model is unknown
is a challenging but interesting problem. It should be stressed that in the aforementioned
literature, considering the synchronization analysis of fractional-order neural networks,
prior knowledge of the system models is needed. In addition, compared with stability,
the synchronization of neural networks is being paid increasing attention by researchers
because of its practicality [20,21].

It is a remarkable fact that time delays emerge in the communication of neurons. Time
delays also often occur in the response of neurons. On the other hand, time delays has
been extensively found in many practical problems, namely biological systems, chemical
processes, long transmission lines in pneumatic systems, and so on [22,23]. The presence of
time delays likely results in the poor performance of a neural network system, including
oscillations, bifurcation, instability, etc. Thus, synchronization issues of fractional-order
neural systems having time delays are key research topics and have gained much attention
from research communities recently [24,25]. Additionally, since real networks usually have
a spatial extent due to the presence of a multitude of parallel pathways with a variety of
axon sizes and lengths, it is most common to consider distribution delays. However, only a
few authors have considered the effect of distributed delays on synchronization problems
related to fractional-order neural network models [26,27].

It is also well known that in solving synchronization problems, different control meth-
ods are used [28,29]. Among the control strategies applied, fractional-order control is
widely applied because of its higher control accuracy in comparison with the integer-order
controllers. Fractional-order controllers can increase the degree of freedom of parameter ad-
justment and improve the flexibility of the controller design and the accuracy of the system,
which has been widely implemented in various nonlinear systems. Hence, fractional-order
control methods have made great progress in recent years [30,31].

In addition, from the view point of reality, one should also naturally take into account
some reaction-diffusion terms in a neural network system. However, strictly speaking,
diffusion effects cannot be avoided in the neural networks when electrons are moving in
asymmetric electromagnetic fields. Therefore, we must consider that the activations vary
in space as well as in time. As one of the main factors that bring bad performance to the
system, the diffusion phenomenon is often encountered in neural networks and electric
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circuits once electrons move in a nonuniform electromagnetic field [32]. This implies that
the whole structure and dynamics of neural networks rely on the evolution time of each
variable as well as intensively rely on its position status, and thus, the reaction-diffusion
system arises in response to the above-mentioned phenomenon, so diffusion phenomena
cannot be ignored. For example, electrons move in a nonuniform electromagnetic field,
and, in the process of chemical reactions, different chemicals react with each other and
spatially diffuse in the inter-medium until a balanced-state spatial concentration pattern
has been structured. In fact, diffusion phenomena exist in numerous systems modeled
by neural networks, including biological neural network models [33,34]. For fractional-
order systems, we refer to the very recent publications [35–37] and the references therein.
However, the above-mentioned works on fractional-order neural network models do not
consider pinning control, which is our goal in this paper.

The advantage of the pinning control method is that in this method, not all of the nodes
in the network model are controlled. Hence, it is preferable by the researchers on the topic,
and numerous pinning controllers have been proposed to synchronize different classes of
fractional-order neural networks. For example, the authors in [38] proved some sufficient
criteria ensuring synchronization under pinning control and pinning adaptive feedback
control for a class of fractional-order complex dynamical networks with and without time-
varying delay. The paper [39] studied the pinning control problem of fractional-order
weighted complex dynamical networks. In [40], the pinning synchronization problem
of fractional-order complex networks with Lipschitz-type nonlinear nodes and directed
communication topology is investigated. However, pining controllers are proposed to syn-
chronize fractional-order neural network models with delays and reaction-diffusion terms
only in [41], in which Riemann—Liouville fractional derivative operators are used. Due to
the importance of this control technique, the topic needs future development. Different
from the existing results in [41], we will use Caputo-type partial fractional derivatives
and distributed delays. In fact, Caputo-type fractional derivatives have the advantage of
dealing with initial conditions on initial value problems that are in a format consistent with
that in the integer-order cases, which is observed in most physical processes [42].

Motivated by the above analysis, the synchronization problem for fractional-order
neural networks with constant delays, distributed delays and reaction and diffusion terms
via pinning control is studied. The main contributions of our paper are:

(1) Time delays, including distributed delay and reaction-diffusion terms, are considered
in our system, which makes it more similar to the actual model;

(2) We use the Caputo partial fractional derivatives that allow the initial and boundary
conditions to be in a format uniform to that in the integer-order neural networks;

(3) By employing the stability theory, the fractional-order Lyapunov method, inequality
techniques and the fractional comparison principle, several new sufficient criteria for
synchronization based on pinning control are provided;

(4) Numerical examples are presented to demonstrate the effectiveness of the derived
synchronization criteria.

The organization of the rest of this paper is as follows. The model description and
some preliminary notes are given in Section 2. In Section 3, new synchronization results
for the fractional-order neural network model via pinning control are proposed. The syn-
chronization results proposed are presented by the system’s parameters. Three numerical
examples are presented in Section 4 to show the efficiency and validity of the proposed
results. Finally, some conclusion notes are given in Section 5.

2. Model Description and Preliminaries

In this section, first, some fractional calculus definitions will be given.
We denote R = (−∞, ∞); Rn is the notation for the n-dimensional Euclidean space,

while Rn×n denotes the space of all n× n constant real matrices.
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Definition 1 ([1]). The time-partial Caputo-type fractional derivative of order 0 < ℘ < 1 for a
continuously differentiable function ℵ : [b, ∞)×Ro,R], b > 0 is defined as

∂℘ℵ(t, δ)

∂t℘
=

1
Γ(1− ℘)

∫ t

b

∂ℵ(Ψ, δ)

∂Ψ
dΨ

(t−Ψ)℘
, t ≥ b,

where Γ indicates the gamma function given by Γ(s) =
∫ ∞

0 e−tts−1dt.

In the case when ℵ(t, .) = ℵ(t), then

∂℘ℵ(t, .)
∂t℘

=
d℘ℵ(t)

dt℘
= D℘ℵ(t) = 1

Γ(1− ℘)

∫ t

b
(t−Ψ)−℘ℵ′(Ψ)dΨ, t ≥ b, b ∈ R.

In this paper, we will consider the following fractional-order neural network model
with time delay, distributed delay and reaction-diffusion terms as a master system:

∂℘pϕ(t, δ)

∂t℘
=

o

∑
l=1

∂

∂δl
(Mϕl

∂pϕ(t, δ)

∂δl
)− rϕ pϕ(t, δ) +

n

∑
ς=1

dϕς fς(pς(t, δ)) +
n

∑
ς=1

sϕςgς(pς(t− τ, δ))

+
n

∑
ς=1

aϕς

∫ t

−∞
Lϕς(t− s) fς(pς(s, δ))ds + Jϕ, ϕ = 1, 2, . . . , n, (1)

where δ = (δ1, δ2, . . . , δo)T ∈ Ω, Ω is a bounded compact set with a smooth boundary ∂Ω
in space Ro, the positive constant Mϕl corresponds to the transmission diffusion operator
along the ϕth neuron, pϕ(t, δ) denotes the neural state, rϕ > 0 denotes the self-feedback
connection weight of the ϕth neuron, dϕς, sϕς, and aϕς are the connection weights in space
q at the corresponding times, τ > 0 corresponds to a constant transmission delay, Lϕς is
the delay kernel, Jϕ denotes the external bias, and gς(pς) and fς(pς) denote the activation
functions, under the following Dirichlet-type initial and boundary conditions

pϕ(t, δ) = Φ0ϕ(t, δ), (t, δ) ∈ (−∞, 0]×Ω;

pϕ(t, δ) = 0, (t, δ) ∈ R× ∂Ω, (2)

where Φ0ϕ(t, δ) is bounded and continuous on (−∞, 0]×Ω.
Since time delays and diffusion phenomena may affect the stability of designed neural

networks and may cost instability, oscillation, bifurcation or chaos, the development of
efficient synchronization strategies is a fundamental problem in the control theory as wells
as in applications.

The slave system corresponding to System (1) is given by

∂℘qϕ(t, δ)

∂t℘
=

o

∑
l=1

∂

∂δl
(Mϕl

∂qϕ(t, δ)

∂δl
)− rϕqϕ(t, δ) +

n

∑
ς=1

dϕς fς(qς(t, δ)) +
n

∑
ς=1

sϕςgς(qς(t− τ, δ))

+
n

∑
ς=1

aϕς

∫ t

−∞
Lϕς(t− s) fς(qς(s, δ))ds + Jϕ + wϕ(t, δ), ϕ = 1, 2, . . . , n, (3)

where wϕ(t, δ) is the controller that will be determined.
To ensure the main results, we present the following assumption and lemmas.

Assumption 1. The neuron activation functions fς and gς are Lipschitz-continuous on R with
constants lς > 0, hς > 0:

| fς(X)− fς(Y)| ≤ lς|X−Y|, |gς(X)− gς(Y)| ≤ hς|X−Y|

for all X, Y ∈ R and ς = 1, 2, . . . , n.
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Assumption 2. The delay kernel Lϕς satisfies

∫ t

−∞
Lϕς(t− s)ds ≤ γ < ∞

for t ≥ 0 and ϕ, ς = 1, 2, . . . , n.

Remark 1. Assumptions 1 and 2 are essential in our synchronization analysis. Additionally, they
are necessary for the existence and uniqueness of solutions of Models (1) and (3) and are used by
numerous researchers; see [35,36].

Lemma 1 ([35]). Let a function ℵ(t, δ) : R+ ×Ω → R be continuous and differentiable on the
function t. Then, for any t > 0, one has

∂℘ℵ2(t, δ)

∂t℘
≤ 2ℵ(t, δ)

∂℘ℵ(t, δ)

∂t℘
(4)

when 0 < ℘ < 1.

Remark 2. Note that [35], in the case when ℵ(t, δ) is independent of δ, namely, ℵ(t, .) = ℵ(t),
from Lemma 1, we have

D℘ℵ2(t) ≤ 2ℵ(t)D℘ℵ(t),

which was proved in [43].

Lemma 2 ([44]). Suppose that V(t) ∈ R is a continuous, differentiable, and non-negative function
satisfying

D℘V(t) ≤ −λV(t) +
n

∑
ς=1

ηςV(t− τ), 1 ≤ ς ≤ n,

V(t) ≥ 0, t ∈ [−τ, 0]. (5)

where 0 < ℘ < 1. If λ >
√

2 ∑n
ς=1 ης and ης > 0, ς = 1, 2, . . . , n, then limt→∞ V(t) = 0 with

τ > 0.

Lemma 3. If in Lemma 2, we replace V(t − τ) by sups∈(−∞,t] V(s) and
√

2 ∑n
ς=1 ης by

C = max1≤ϕ≤n ∑n
ς=1 Dϕη̄ςϕ, where Dϕ, η̄ςϕ > 0, ς, ϕ = 1, 2, . . . , n, then the assertion remains

true.

The proof of Lemma 3 is identical to that of Lemma 2. Lemma 3 generalizes Lemma 2
for the case when the delay τ = ∞.

Lemma 4 ([45]). Let Ω be a cube |δl | < Al (l = 1, 2, . . . , o), and let v(δ) be a real-valued function
belonging to C1(Ω) that vanishes on the boundary ∂Ω of Ω, i.e., v(δ)|∂Ω = 0. Then

∫
Ω

v2(δ)dδ ≤ A2
l

∫
Ω

∣∣∣∣∂v(δ)
∂δl

∣∣∣∣2dδ. (6)

3. Synchronization Scheme and Synchronization Results

This section derives the synchronization conditions for the introduced fractional-
order neural network model with time delays and reaction-diffusion terms by designing a
suitable controller.

We assume that =ϕ(t, δ) = qϕ(t, δ)− pϕ(t, δ), ϕ = 1, 2, . . . , n, are the synchronization
errors for t ∈ R+, δ ∈ Ω.
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Let us define the pinning controllers:

wϕ(t, δ) = −kϕµ=ϕ(t, δ), ϕ = 1, 2, . . . , q,

wϕ(t, δ) = 0, ϕ = q + 1, q + 2, . . . , n, (7)

where kϕ and µ are positive constants, ϕ = 1, 2, . . . , q.
Then, the error system that we will use for the synchronization purpose can be

computed as

∂℘=ϕ(t, δ)

∂t℘
=

o

∑
l=1

∂

∂δl
(Mϕl

∂=ϕ(t, δ)

∂δl
)− rϕ=ϕ(t, δ) +

n

∑
ς=1

dϕς[ fς(qς(t, δ))− fς(pς(t, δ))]

+
n

∑
ς=1

sϕς[gς(qς(t− τ, δ))− gς(pς(t− τ, δ))]

+
[ n

∑
ς=1

aϕς

∫ t

−∞
Lϕς(t− s) fς(qς(s, δ))ds−

n

∑
ς=1

aϕς

∫ t

−∞
Lϕς(t− s) fς(pς(s, δ))ds

]
− kϕµ=ϕ(t, δ). (8)

Definition 2. The neural network system (3) is said to be globally asymptotically synchronized
onto System (1) under the pinning controllers (7) if

lim
t→∞
||=(t, δ)|| = 0,

where ||.|| is a norm of =(t, δ) = (=1(t, δ),=2(t, δ) . . . ,=n(t, δ))T ∈ Rn.

Remark 3. The global asymptotic synchronization of Systems (1) and (3) is equivalent to the global
asymptotic stability of the zero solution of the error system (8) under the appropriate controllers (7).

Theorem 1. Assume that Assumptions 1 and 2 and the conditions of Lemma 4 are satisfied. If the
model’s parameters are such that

min
1≤ϕ≤n

{
2(Bϕ + rϕ + µkϕ)−

n

∑
ς=1

lς|dϕς| −
n

∑
ς=1

lϕ|dςϕ| −
n

∑
ς=1

lςγ|aϕς| −
n

∑
ς=1

hς|sϕς|
}

> max
1≤ϕ≤n

{
hϕ

n

∑
ς=1
|sςϕ|+ lϕ

n

∑
ς=1

γ|aςϕ|
}

,

where Bϕ =
o

∑
l=1

Mϕl

A2
l

, ϕ = 1, 2, ..., n, then the neural network system (3) is globally asymptotically

synchronized onto System (1) under the pinning controllers (7).

Proof. Consider a Lyapunov function

V(t) =
∫

Ω

1
2

n

∑
ϕ=1
=2

ϕ(t, δ)dδ. (9)

Then, for the fractional derivative of V of order ℘, 0 < ℘ < 1, we have

d℘V(t)
dt℘

=
1
2

n

∑
ϕ=1

d℘

dt℘
( ∫

Ω
=2

ϕ(t, δ)dδ
)

(10)
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In addition, for ϕ = 1, 2, . . . , n we have that

d℘

dt℘
( ∫

Ω
=2

ϕ(t, δ)dδ
)
=

1
Γ(1− ℘)

∫ t

0

( d
dΨ

∫
Ω
=2

ϕ(t, δ)dδ
) dΨ
(t−Ψ)℘

=
∫

Ω

1
Γ(1− ℘)

( ∫ t

0

∂=2
ϕ(Ψ, δ)

∂Ψ
ds

(t−Ψ)℘

)
dδ =

∫
Ω

∂℘=2
ϕ(t, δ)

∂t℘
dδ.

From the above equality and Lemma 1, we obtain

d℘

dt℘
( ∫

Ω
=2

ϕ(s, δ)dδ
)
≤ 2

∫
Ω
=ϕ(t, δ)

∂℘=ϕ(t, δ)

∂t℘
dδ, ϕ = 1, 2, . . . , n.

We apply the above estimate in (10) and obtain

D℘V(t) ≤
∫

Ω

{
n

∑
ϕ=1
=ϕ(t, δ)D℘=ϕ(t, δ)

}
dδ

≤
∫

Ω

{
n

∑
ϕ=1
{=ϕ(t, δ)

o

∑
l=1

∂

∂δl
(Mϕl

∂=ϕ(t, δ)

∂δl
)− rϕ=2

ϕ(t, δ) +=ϕ(t, δ)
n

∑
ς=1

dϕς

[
fς(qς(t, δ))− fς(pς(t, δ))

]
+=ϕ(t, δ)

n

∑
ς=1

sϕς

[
gς(qς(t− τ, δ))− gς(pς(t− τ, δ))

]
+=ϕ(t, δ)

[ n

∑
ς=1

aϕς

∫ t

−∞
Lϕς(t− s) fς(qς(s, δ))ds−

n

∑
ς=1

aϕς

∫ t

−∞
Lϕς(t− s) fς(pς(s, δ))ds

]
− kϕµ=2

ϕ(t, δ)}
}

dδ

≤
∫

Ω

{
n

∑
ϕ=1
{=ϕ(t, δ)

o

∑
l=1

∂

∂δl
(Mϕl

∂=ϕ(t, δ)

∂δl
)− rϕ=2

ϕ(t, δ) +
n

∑
ς=1
|=ϕ(t, δ)||dϕς|| fς(qς(t, δ))− fς(pς(t, δ))|

+
n

∑
ς=1
|=ϕ(t, δ)||sϕς||gς(qς(t− τ, δ))− gς(pς(t− τ, δ))|

+
n

∑
ς=1
|=ϕ(t, x)||aϕδ|

∫ t

−∞
Lϕς(t− s)| fς(qς(s, δ))− fς(pς(s, δ))|ds− kϕµ=2

ϕ(t, δ)}
}

dδ.

Now, from Assumptions 1 and 2, we obtain

D℘V(t) ≤
∫

Ω

{
n

∑
ϕ=1
{=ϕ(t, δ)

o

∑
l=1

∂

∂δl
(Mϕl

∂=ϕ(t, δ)

∂δl
)− (rϕ + µkϕ)=2

ϕ(t, δ) +
n

∑
ς=1
|=ϕ(t, δ)||dϕς |lς |=ς(t, δ)|

+
n

∑
ς=1
|=ϕ(t, δ)||sϕς |hς |=ς(t− τ, δ)|+

n

∑
ς=1
|=ϕ(t, δ)|γ|aϕς ||lς | sup

s∈(−∞,t]
=ς(s, δ)|}

}
dδ. (11)

Note that

|=ϕ(t, δ)||dϕς|lς|=ς(t, δ)| ≤ 1
2

lς|dϕς|(=2
ϕ(t, δ) +=2

ς(t, δ)),

|=ϕ(t, δ)|γ|aϕς|lς| sup
s∈(−∞,t]

=ς(s, δ)| ≤ 1
2

lςγ|aϕς|(=2
ϕ(t, δ) + sup

s∈(−∞,t]
=2

ς(s, δ)),

|=ϕ(t, δ)||sϕς|hς|=ς(t− τ, δ)| ≤ 1
2

hς|sϕς|(=2
ϕ(t, δ) +=2

ς(t− τ, δ)).
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Additionally,

∫
Ω
{=ϕ(t, δ)

o

∑
l=1

∂

∂δl
(Mϕl

∂=ϕ(t, δ)

∂δl
)dδ =

∫
Ω
=ϕ(t, δ)∇

(
Mϕl

∂=ϕ(t, δ)

∂δl
)
)o

l=1dδ,

=
∫

Ω
∇
(
=ϕ(t, δ)Mϕl

∂=ϕ(t, δ)

∂δl
)
)o

l=1
dδ−

∫
Ω

(
Mϕl

∂=ϕ(t, δ)

∂δl
)
)o

l=1
∇=ϕ(t, δ)dδ

=
∫

Ω

(
=ϕ(t, δ)Mϕl

∂=ϕ(t, δ)

∂δl
)
)o

l=1
dδ−

o

∑
l=1

∫
Ω

(
Mϕl

∂=ϕ(t, δ)

∂δl
)
)2

dδ

= −
o

∑
l=1

∫
Ω

Mϕl

( ∂=ϕ(t, δ)

∂δl
)
)2

dδ,

where “.” is the inner product, ∇ =
(

∂
∂δ1

, ..., ∂
∂δm

)
denotes the gradient operator, and

(
Mϕl

∂=ϕ(t, δ)

∂δl
)
)o

l=1
=
(

Mϕl
∂=ϕ(t, δ)

∂δl
, ............, Mϕl

∂=ϕ(t, δ)

∂δl

)T
.

A straightforward manipulation from Lemma 4 gives a more precisely estimation,
which can be found as∫

Ω
=ϕ(t, δ)

o

∑
l=1

∂

∂δl

(
Mϕl

∂=ϕ(t, δ)

∂δl
)
)

dδ = −
o

∑
l=1

∫
Ω

Mϕl

(∂=ϕ(t, δ)

∂δl

)2
dδ

≤ −Bϕ

∫
Ω
=2

ϕ(t, δ)dδ. (12)

Substituting these into (11), one has

D℘V(t) ≤
∫

Ω

{ n

∑
ϕ=1
{−Bϕ=2

ϕ(t, δ)− (rϕ + µkϕ)=2
ϕ(t, δ) +

1
2

n

∑
ς=1

lς|dϕς|(=2
ϕ(t, δ) +=2

ς(t, δ))

+
1
2

n

∑
ς=1

hς|sϕς|(=2
ϕ(t, δ) +=2

ς(t− τ, δ)) +
1
2

n

∑
ς=1

lςγ|aϕς|(=2
ϕ(t, δ) + sup

s∈(−∞,t]
=2

ς(s, δ))}
}

dδ

=
∫

Ω

{
−

n

∑
ϕ=1

[
(Bϕ + rϕ + µkϕ)−

1
2

n

∑
ς=1

lς|dϕς| −
1
2

n

∑
ς=1

lϕ|dςϕ| −
1
2

n

∑
ς=1

lςγ|aϕς|

− 1
2

n

∑
ς=1

hς|sϕς|
]
=2

ϕ(t, δ) +
1
2

n

∑
ς=1

n

∑
ϕ=1

hς|sϕς|=2
ς(t− τ, δ) +

1
2

n

∑
ς=1

n

∑
ϕ=1

lςγ|aϕς| sup
s∈(−∞,t]

=2
ς(s, δ)

}
dδ

≤
{
− min

1≤ϕ≤n
{2(Bϕ + rϕ + µkϕ)−

n

∑
ς=1

lς|dϕς| −
n

∑
ς=1

lϕ|dςϕ| −
n

∑
ς=1

lςγ|aϕς|

−
n

∑
ς=1

hς|sϕς|
}

V(t) + hϕ

n

∑
ς=1
|sςϕ|V(t− τ) + lϕ

n

∑
ς=1

γ|aςϕ| sup
s∈(−∞,t]

V(s)

≤ −λV(t) +C sup
s∈(−∞,t]

V(s),

where

λ = min
1≤ϕ≤n

{
2(Bϕ + rϕ + µkϕ)−

n

∑
ς=1

lς|dϕς| −
n

∑
ς=1

lϕ|dςϕ| −
n

∑
ς=1

lςγ|aϕς| −
n

∑
ς=1

hς|sϕς|
}

,

C = max
1≤ϕ≤n

{
hϕ

n

∑
ς=1
|sςϕ|+ lϕ

n

∑
ς=1

γ|aςϕ|
}

.

Thus, by Lemma 3, limt→∞ V(t) = 0.
If we set ||=(t, δ)|| = V(t), then we can conclude that the drive system (1) and the

response system (3) are globally asymptotically synchronized under the controllers (7).
This completes the proof of the theorem.



Mathematics 2022, 10, 3916 9 of 18

Now, we will consider the case when, in the pinning control law (7), kϕ are functions
for ϕ = 1, 2, . . . , q. For t ∈ R+, δ ∈ Ω, the pinning controllers are defined as

wϕ(t, δ) = −kϕ(t, δ)µ=ϕ(t, δ), ϕ = 1, 2, . . . , q,

wϕ(t, δ) = 0, ϕ = q + 1, q + 2, . . . , n (13)

with

D℘kϕ(t, δ) = rϕµ=2
ϕ(t, δ), ϕ = 1, 2, ..., q. (14)

Then, the error system can be represented as

D℘=ϕ(t, δ) = −rϕ=ϕ(t, δ) +
n

∑
ς=1

dϕς

[
fς(qς(t, δ))− fς(pς(t, δ))

]
+

n

∑
ς=1

sϕς

[
gς(qς(t− τ, δ))− gς(pς(t− τ, δ))

]
+

n

∑
ς=1

aϕς

∫ t

−∞
Lϕς(t− s)[ fς(qς(s, δ))− fς(pς(s, δ))]ds + wϕ(t, δ), (15)

ϕ = 1, 2, . . . , n.
Since complex networks can be adaptively synchronized [41], we will establish syn-

chronization criteria by the use of the following adaptive law:

D℘C (t, δ) = ℘
n

∑
ϕ=1

φ=2
ϕ(t, δ), (16)

where C is a function well defined for t ∈ R+, δ ∈ Ω, and φ is a small positive constant.

Theorem 2. Assume that Assumptions 1 and 2 and the conditions of Lemma 4 are satisfied. If the
model’s parameters are such that

min
1≤ϕ≤n

{
2(Bϕ + rϕ + k̄ϕµ− (C (t, δ)− C̄ )φ)−

n

∑
ς=1

lς|dϕς| −
n

∑
ς=1

lϕ|dςϕ| −
n

∑
ς=1

lςγ|aϕς| −
n

∑
ς=1

hς|sϕς|
}

> max
1≤ϕ≤n

{
hϕ

n

∑
ς=1
|sςϕ|+ lϕ

n

∑
ς=1

γ|aςϕ|
}

,

where k̄ϕ > 0, ϕ = 1, 2, ..., q, k̄ϕ = 0, ϕ = q + 1, q + 2, . . . , n, and C̄ is an adaptive positive
constant, then the neural network system (3) is globally asymptotically synchronized onto System (1)
under the pinning controllers (13), (14) with the adaptive law (16).

Proof. Consider a Lyapunov function defined by

V(t) =
∫

Ω

{ n

∑
ϕ=1

1
2
=2

ϕ(t, δ) +
n

∑
ϕ=1

(kϕ(t, δ)− k̄ϕ)2

2rϕ
+

(C (t, δ)− C̄ )2

2℘

}
dδ. (17)



Mathematics 2022, 10, 3916 10 of 18

By using Lemma 1, we have

D℘V(t) =
∫

Ω

{
D℘
[ n

∑
ϕ=1

1
2
=2

ϕ(t, δ) +
n

∑
ϕ=1

(kϕ(t, δ)− k̄ϕ)2

2rϕ
+

(C (t, δ)− C̄ )2

2℘
]}

dδ

≤
∫

Ω

{ n

∑
ϕ=1
=ϕ(t, δ)D℘=ϕ(t, δ) +

n

∑
ϕ=1

(kϕ(t, δ)− k̄ϕ)

rϕ
D℘(kϕ(t, δ)) (18)

+
(C (t, δ)− C̄ )

℘
D℘(C (t, δ))

}
dδ.

Now, from Assumptions 1 and 2, applying the pining control (13) and (14) together
with the adaptive law (16), we obtain

D℘V(t) ≤
∫

Ω

{ n

∑
ϕ=1
=ϕ(t, δ)

[ o

∑
l=1

∂

∂δl
(Mϕl

∂=ϕ(t, δ)

∂δl
)− rϕ=ϕ(t, δ)

+
n

∑
ς=1

dϕς
[

fς(qς(t, δ))− fς(pς(t, δ))
]
+

n

∑
ς=1

sϕς
[
gς(qς(t− τ, δ))− gς(pς(t− τ, δ))

]
+
[ n

∑
ς=1

aϕς

∫ t

−∞
Lϕς(t− s) fς(qς(s, δ))ds−

n

∑
ς=1

aϕς

∫ t

−∞
Lϕς(t− s) fς(pς(s, δ))ds

]
+ wϕ(t, δ)

]
+

n

∑
ϕ=1

(kϕ(t, δ)− k̄ϕ)

rϕ
rϕµ=2

ϕ(t, δ) +
(C (t, δ)− C̄ )

℘
℘

n

∑
ϕ=1

φ=2
ϕ(t, x)

}
dδ

≤
∫

Ω

{
n

∑
ϕ=1
=ϕ(t, δ)

o

∑
l=1

∂

∂δl
(Mϕl

∂=ϕ(t, δ)

∂δl
)−

n

∑
ϕ=1

(rϕ + µk̄ϕ)=2
ϕ(t, δ)

+
n

∑
ς=1
|=ϕ(t, δ)||dϕς|lς|=ς(t, δ)|

+
n

∑
ς=1
|=ϕ(t, δ)||sϕς|hς|=ς(t− τ, δ)|+

n

∑
ς=1
|=ϕ(t, δ)|γ|aϕς||lς| sup

s∈(−∞,t]
=ς(s, δ)|}

+ (C (t, δ)− C̄ )φ
n

∑
ϕ=1
=2

ϕ(t, δ)

}
dδ.

The rest of the proof is similar to the proof of Theorem 1 using (12) and Lemma 3.
Hence, the neural network system (3) is globally asymptotically synchronized onto Sys-
tem (1) under the pinning controllers (13) and (14) with the adaptive law (16).

Remark 4. Theorems 1 and 2 offer synchronization criteria for the introduced fractional-order
neural network model with delays and reaction-diffusion terms using pinning control laws. Similar
criteria are elaborated in [36,41]. However, the paper [36] does not considered distributed delays
and pinning control schemes. Different from the results in [41], we consider Caputo fractional
derivatives and distributed delays, which is more appropriate for an applied point of view. Hence,
our results extend and generalize the results in [36,41] and some existing results in [38–40].

Remark 5. Theorem 2 generalizes Theorem 1, considering an adaptive law and a pinning control in
which kϕ are functions for ϕ = 1, 2, . . . , q. It is well known that the simultaneous use of both reduces
the enormous difference in control strength between theoretical values and practical needs [41].

4. Numerical Examples

In order to illustrate the theoretical results, three numerical examples are introduced
in this section.
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Example 1. In order to demonstrate the efficiency of Theorem 1, we consider the master fractional-
order neural network model with constant and distributed delays and reaction-diffusion terms of
type (1)

∂℘pϕ(t, δ)

∂t℘
=

o

∑
l=1

∂

∂δl
(Mϕl

∂pϕ(t, δ)

∂δl
)− rϕ pϕ(t, δ) +

n

∑
ς=1

dϕς fς(pς(t, δ)) +
n

∑
ς=1

sϕςgς(pς(t− τ, δ))

+
n

∑
ς=1

aϕς

∫ t

−∞
Lϕς(t− s) fς(pς(s, δ))ds + Jϕ, ϕ = 1, 2, (19)

where ℘ = 0.98, n = 2, o = 1, Ω = (−1, 1), r1 = 1, r2 = 3, M11 = M21 = 1, τ = 1,
fς(pς) = gς(pς) = tanh(pς), Lϕς = e−t, ϕ, ς = 1, 2,

D = (dϕς)2×2 =

[
d11 d12
d21 d22

]
=

[
0.2 −0.1
−0.5 0.5

]
,

S = (sϕς)2×2 =

[
s11 s12
s21 s22

]
=

[
−0.5 −0.1
−0.2 −0.4

]
,

A = (aϕς)2×2 =

[
a11 a12
a21 a22

]
=

[
−0.4 −0.1
−0.2 −0.3

]
,

and the response system of type (3) with pinning controllers of type (7), defined by the feedback,
gains k1 = 1.1, k2 = 0 and µ = 1.

It is easy to verify that Assumption 1 is satisfied for l1 = l2 = h1 = h2 = 1, and Assumption 2
is true for γ = 1. Additionally, the conditions of Lemma 4 are true for A1 = 1. Hence, B1 = B2 = 1.
In addition, we have that

λ = 4.1 = min
1≤ϕ≤n

{
2(Bϕ + rϕ + µkϕ)−

n

∑
ς=1

lς|dϕς| −
n

∑
ς=1

lϕ|dςϕ| −
n

∑
ς=1

lςγ|aϕς| −
n

∑
ς=1

hς|sϕς|
}

> max
1≤ϕ≤n

{
hϕ

n

∑
ς=1
|sςϕ|+ lϕ

n

∑
ς=1

γ|aςϕ|
}
= 1.3 = C.

According to Theorem 1, the master system (19) and response system (3) are globally asymp-
totically synchronized under the considered pinning controller. The state trajectories of the model
(19) without controllers is shown in Figure 1. The trajectories of the corresponding error system are
shown in Figure 2, which demonstrates that the master system (19) and response system (3) are
globally asymptotically synchronized under the considered pinning controller.
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Figure 1. The state trajectories of System (19) without controllers.
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Figure 2. The state trajectories of the error system (8) in Example 1 with controller (7).

Example 2. In this example, we consider the master fractional-order neural network model with
constant and distributed delays and reaction-diffusion terms of type (1)

∂℘pϕ(t, δ)

∂t℘
=

o

∑
l=1

∂

∂δl
(Mϕl

∂pϕ(t, δ)

∂δl
)− rϕ pϕ(t, δ) +

n

∑
ς=1

dϕς fς(pς(t, δ)) +
n

∑
ς=1

sϕςgς(pς(t− τ, δ))

+
n

∑
ς=1

aϕς

∫ t

−∞
Lϕς(t− s) fς(pς(s, δ))ds + Jϕ, ϕ = 1, 2, 3, (20)

where ℘ = 0.98, n = 3, o = 1, Ω = (−1, 1), r1 = 1, r2 = 3, r3 = 4, M11 = M21 = M31 = 1,
τ = 2, fς(pς) = gς(pς) = tanh(pς), Lϕς = e−t, ϕ, ς = 1, 2, 3,

D = (dϕς)3×3 =

 d11 d12 d13
d21 d22 d23
d31 d32 d33

 =

 0.2 −0.1 0.6
−0.5 0.5 0.2
0.4 0.1 0.4

,

A = (aϕς)3×3 =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 −0.4 −0.6 0.2
−0.2 −0.8 0.1
0.3 0.6 0.2

,

S = (sϕς)3×3 =

 s11 s12 s13
s21 s22 s23
s31 s32 s33

 =

 −0.5 −0.6 0.4
−0.1 −0.7 0.3
0.2 0.8 0.1

,

and the response system of type (3) with pinning controllers of type (12), defined by the feedback
gains k̄1 = 1.5, k̄2 = 0, k̄3 = 0.5, C (t, δ) = 0.1, C̄ = 1.1, φ = 1 and µ = 1.

It is easy to verify that Assumption 1 is satisfied for l1 = l2 = l3 = h1 = h2 = h3 = 1 and
Assumption 2 is true for γ = 1. Also, the conditions of Lemma 4 are true for A1 = 1. Hence,
B1 = B2 = B3 = 1. In addition, we have

4.3 = min
1≤ϕ≤n

{
2(Bϕ + rϕ + k̄ϕµ− (C (t, δ)− C̄ )φ)−

n

∑
ς=1

lς|dϕς| −
n

∑
ς=1

lϕ|dςϕ| −
n

∑
ς=1

lςγ|aϕς| −
n

∑
ς=1

hς|sϕς|
}

> max
1≤ϕ≤n

{
hϕ

n

∑
ς=1
|sςϕ|+ lϕ

n

∑
ς=1

γ|aςϕ|
}
= 4.1.

Since all conditions of Theorem 2 are satisfied, the master system (20) and response system (3)
are globally asymptotically synchronized under the considered pinning controller. The state trajecto-
ries of the model (20) without controllers is shown on Figure 3. The trajectories of the corresponding
error system are shown on Figure 4, which demonstrates that the master system (20) and response
system (3) are globally asymptotically synchronized under the considered pinning controller for
τ = 2.
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Figure 3. The state trajectories of the system (20) without controller.
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Figure 4. The state trajectories of the corresponding error system of the type (8) in Example 2 with
controller (7) for τ = 2.

As it is well known time delay is one the main source of poor performance, oscillation and
unstable of the system behaviors. In order to demonstrate the influence of time delay, we consider
the cases when τ = 3 and τ = 4. The oscillation behavior of the error state trajectories for
τ = 3 is shown on Figure 5 under the same initial and boundary conditions. Also, for τ = 4,
Figure 6 illustrates the unstable state responses of the error system (8) under the same initial and
boundary conditions.
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Figure 5. The state trajectories of the corresponding error system of the type (8) in Example 2 with
controller (7) for τ = 3.
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Figure 6. The state trajectories of the corresponding error system of the type (8) in Example 2 with
controller (7) for τ = 4.

Remark 6. If in Example 2 the adaptive law (15) is ignored, or (C (t, δ)− C̄ )φ = 0, then conditions
of Theorem 1 cannot be applied since min1≤ϕ≤n

{
2(Bϕ + rϕ +µkϕ)−∑n

ς=1 lς|dϕς|−∑n
ς=1 lϕ|dςϕ|−

∑n
ς=1 lςγ|aϕς| − ∑n

ς=1 hς|sϕς|
}
= 2.3 and max1≤ϕ≤n

{
hϕ ∑n

ς=1 |sςϕ|+ lϕ ∑n
ς=1 γ|aςϕ|

}
= 4.1.

Hence, Example 2 again shows that the use of a pinning control together with an adaptive law is
essential to reach the control goals.

Example 3. We consider a higher-dimensional master fractional-order neural network model with
constant and distributed delays and reaction-diffusion terms of type (1)
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∂℘pϕ(t, δ)

∂t℘
=

o

∑
l=1

∂

∂δl
(Mϕl

∂pϕ(t, δ)

∂δl
)− rϕ pϕ(t, δ) +

n

∑
ς=1

dϕς fς(pς(t, δ)) +
n

∑
ς=1

sϕςgς(pς(t− τ, δ))

+
n

∑
ς=1

aϕς

∫ t

−∞
Lϕς(t− s) fς(pς(s, δ))ds + Jϕ, ϕ = 1, 2, 3, (21)

where ℘ = 0.99, n=10, o=2,δ = (δ1, δ2)
T ∈ Ω ⊂ R2, Ω = {δ1, δ2)

T : δl | <
√

2, l = 1, 2},
rϕ = 0.5, Mϕl = 1, ϕ, l = 1, 2, . . . , 10, τ = 1, fς(pς) = gς(pς) = 0.5(|pς + 1| − |pς − 1|),
Lϕς = e−t, ϕ, ς = 1, 2, . . . , 10,

D = (dϕς)10×10 =



0.01 −0.01 0.02 −0.01 0.01 0.01 −0.02 0.01 0.01 −0.01

−0.02 0.01 −0.03 −0.02 0.02 0.01 0.01 −0.02 0.01 0.01

0.01 −0.01 −0.01 0.01 0.01 −0.01 0.01 0.01 0.02 0.01

0.01 −0.02 0.01 0.01 −0.01 0.01 0.03 0.01 0.01 −0.02

−0.01 0.01 −0.01 0.01 0.01 −0.02 0.01 0.01 0.01 0.01

0.02 0.01 0.01 −0.01 0.02 0.03 −0.01 0.02 0.01 0.03

0.01 −0.02 0.03 −0.01 0.01 0.01 −0.01 0.01 0.01 0.01

0.01 −0.01 0.01 0.02 −0.01 0.01 0.02 0.01 0.03 0.02

0.02 0.01 0.02 0.03 −0.01 0.01 0.01 −0.02 0.01 0.03

0.01 0.01 −0.01 0.01 0.02 0.01 0.02 −0.03 0.01 0.01



,

A = (aϕς)10×10 =



−0.1 0.1 0.02 −0.01 0.2 0.02 −0.01 0.01 0.01 −0.02

−0.1 0.05 −0.05 −0.2 0.2 0.02 0.2 −0.01 0.02 0.03

0.01 −0.05 −0.04 0.01 0.01 −0.01 0.03 0.05 0.03 0.01

−0.02 0.05 0.03 0.03 −0.01 0.03 0.01 0.03 0.01 −0.04

0.05 −0.03 −0.01 0.04 0.02 −0.01 0.05 0.01 0.02 0.05

0.03 0.1 0.03 −0.01 0.03 0.08 −0.03 0.02 0.03 0.01

−0.04 −0.02 0.05 −0.02 0.01 0.07 0.05 0.01 0.05 0.06

0.01 −0.01 0.1 0.03 −0.02 0.05 0.02 0.05 0.6 −0.01

0.03 −0.03 0.07 0.04 −0.04 0.06 −0.04 0.1 0.01 0.02

0.02 0.02 −0.02 0.07 0.01 0.03 0.01 −0.04 0.07 0.03



,

S = (sϕς)10×10 =



0.02 −0.1 −0.01 0.07 0.03 0.01 −0.05 0.02 0.01 −0.02

−0.01 0.2 −0.01 −0.01 0.01 0.09 0.06 0.02 0.05 −0.03

0.05 −0.01 0.2 0.03 0.01 −0.08 0.01 0.01 0.06 0.01

0.04 0.03 −0.05 0.02 −0.02 0.07 −0.01 0.02 0.09 0.04

−0.03 0.04 −0.07 0.02 0.07 −0.01 0.02 0.03 0.01 0.03

0.02 0.01 0.09 −0.05 0.08 0.01 −0.03 0.04 0.03 0.01

−0.02 0.03 0.01 −0.04 0.01 0.02 0.05 0.01 0.04 0.02

0.05 −0.05 0.02 0.03 −0.01 0.03 0.01 0.07 0.05 0.01

0.03 0.07 0.02 −0.01 0.09 0.04 0.01 −0.01 0.06 0.01

0.01 −0.03 0.04 0.01 0.08 0.05 0.01 −0.02 0.01 0.05



,

and the response system of type (3) with pinning controllers of type (12), defined by the feedback
gains k̄ϕ = 1.5, ϕ = 1, 2, . . . , 10, C (t, δ) = 0.3, C̄ = 1.8, φ = 1 and µ = 1.

We verify that Assumption 1 is satisfied for lϕ = hϕ = 1, ϕ = 1, 2, . . . , 10, and Assumption 2
is true for γ = 1. Additionally, the conditions of Lemma 4 hold for A1 = A2 =

√
2. Hence, Bϕ = 1,

ϕ = 1, 2, . . . , 10. In addition, we have

7.36 = min
1≤ϕ≤n

{
2(Bϕ + rϕ + k̄ϕµ− (C (t, δ)− C̄ )φ)−

n

∑
ς=1

lς|dϕς| −
n

∑
ς=1

lϕ|dςϕ| −
n

∑
ς=1

lςγ|aϕς| −
n

∑
ς=1

hς|sϕς|
}

> max
1≤ϕ≤n

{
hϕ

n

∑
ς=1
|sςϕ|+ lϕ

n

∑
ς=1

γ|aςϕ|
}
= 1.04.

Since all conditions of Theorem 2 are satisfied, the master system (21) and response system (3)
are globally asymptotically synchronized under the considered pinning controller.
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5. Conclusions

In this article, synchronization problems of fractional-order neural systems with time
delays, distributed delays and reaction diffusion terms by applying pinning controllers
are investigated. Caputo partial fractional derivatives are used in the definition of the
model. New and easy verified conditions are derived to reach the synchronization goal
of the target model. The conditions are in the form of inequalities between the model’s
parameters. In our analysis, special Lyapunov functions with fractional integration terms
are constructed, and the Lyapunov method is applied. Numerical examples are also
elaborated and demonstrated. It is worth noting that the model derived in this paper
is associated with the state variables as well as the effect of the reaction-diffusion terms,
which make the results obtained more general. The proposed control method can be further
applied to extended impulsive models. Considering the effect of some uncertain terms is
also a future direction of research. The established synchronization results can be applied in
the study of the robustness behavior of uncertain fractional-order neural network models.
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