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Abstract: With the advent of smart cities, the text information in an image can be accurately located
and recognized, and then applied to the fields of instant translation, image retrieval, card surface
information recognition, and license plate recognition. Thus, people’s lives and work will become
more convenient and comfortable. Owing to the varied orientations, angles, and shapes of text,
identifying textual features from images is challenging. Therefore, we propose an improved EAST
detector algorithm for detecting and recognizing slanted text in images. The proposed algorithm uses
reinforcement learning to train a recurrent neural network controller. The optimal fully convolutional
neural network structure is selected, and multi-scale features of text are extracted. After importing
this information into the output module, the Generalized Intersection over Union algorithm is used
to enhance the regression effect of the text bounding box. Next, the loss function is adjusted to
ensure a balance between positive and negative sample classes before outputting the improved text
detection results. Experimental results indicate that the proposed algorithm can address the problem
of category homogenization and improve the low recall rate in target detection. When compared
with other image detection algorithms, the proposed algorithm can better identify slanted text in
natural scene images. Finally, its ability to recognize text in complex environments is also excellent.

Keywords: building detection; geographic position; EAST; smart cities

MSC: 68T07; 68U15

1. Introduction

In recent years, more and more devices (smartphones, smart watches, high-definition
surveillance cameras, etc.) for acquiring images and videos have been widely used in
various industries. People have access to massive amounts of image data. Some important
text information is often included in these image data, such as license plate numbers,
product introduction text in billboards, road information and direction indication text
in street signs, etc. [1,2]. Therefore, the text in the image is detected and recognized by
the computer, and the obtained text information plays an important role in promoting
the development of human–computer interaction [3], geographic location positioning [4],
real-time translation [5], robot navigation [6], and industrial automation [7]. However,
the texts in the images have different sizes, different font shapes and orientations, and
even overlap and contamination, which make text detection very difficult. Therefore, text
extraction in natural scenes has gradually become a research hotspot in the field of image
processing.

The traditional text-detection algorithms are cumbersome and less robust. For exam-
ple, Neumann et al. [8] searched for candidate character features through the Maximally
Stable Extremal Region algorithm, and combined the extracted features into word or text
regions according to custom rules or classifiers. This method is relatively efficient, but the

Mathematics 2022, 10, 3914. https://doi.org/10.3390/math10203914 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10203914
https://doi.org/10.3390/math10203914
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math10203914
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10203914?type=check_update&version=2


Mathematics 2022, 10, 3914 2 of 22

performance is poor in the case of uneven lighting. Louloudis et al. [9] used the parallel or
symmetrical properties of upper and lower edges between text lines to achieve the effective
detection of text candidates. However, this method lags behind the deep learning methods
that have appeared in recent years in terms of accuracy and adaptability. In particular,
dealing with scene features such as low resolution and geometric distortion, the text in
the picture is disturbed by the complex background, which increases the difficulty of text
detection.

With the continuous progress of deep learning [10–18] technology and the popular-
ization of high-computing-power hardware in recent years, the application fields of deep
learning are becoming more and more extensive, such as computer vision (biometric recog-
nition, image processing, video analysis), natural language processing (speech recognition,
text data mining, text translation), data mining (consumption habit, weather data, recom-
mendation systems), and composite applications (unmanned driving, unmanned aerial
vehicles, robots), etc. Text detection algorithms based on deep learning have become the
mainstream direction of current text detection technology research. The basic objective
of a text detection algorithm is to use a neural network structure to automatically extract
text features from natural scene images. The weight parameters are updated based on
feedback via a loss function to achieve text localization [19]. Natural scene text detection
methods based on deep learning can be divided into three types: bounding box (BBOX)
regression [20–24], semantic segmentation [25–28], and a combination of these two [29–33].
Of these, the text detection method based on BBOX regression is the most widely used
one. A combination of semantic segmentation and BBOX regression can achieve better
text detection results. However, such a method uses more steps, which increases the pro-
cessing time. The operation of the combined method is similar to that of the Mask-RCNN
algorithm [34]. Huang et al. [35] used the MSER algorithm to find candidate characters,
and then used a deep neural network algorithm as a classifier to screen out the final text
lines. Jaderberg et al. [36] scanned images with the help of sliding windows and used a
convolutional neural network model to generate multi-scale feature images. Shi et al. [37]
proposed a Connectionist Text proposal network model to extract features by combining
a CNN and RNN deep network. This method enhances the connection of text lines and
improves the detection accuracy. However, this method can only detect horizontal text. In
addition, the receptive field range of common convolutional neural networks is limited, and
it is more challenging to directly detect long text lines. Therefore, Zhi et al. [38] proposed
the SegLink text detection algorithm. The method detects the local areas of words or text
lines, and then connects these local areas to form complete words or text lines. However,
the subsequent processing method is complex and slow, and the detection of text with
long feeling fields is not very good. In addition, Zhou et al. [39] proposed an efficient
and accurate scene text detector (EAST) algorithm in 2017. The algorithm can predict
multi-angle quad text areas in natural scene images. The previous text detection algorithm
often contained intermediate steps such as candidate text box proposal, text box formation,
word segmentation, and related post-processing, which made the algorithm structure more
complicated. As an end-to-end text detection algorithm, EAST simplifies the entire work
process into two phases. First, the full convolutional network is used to obtain multi-scale
characteristic images, and then the feature fusion is carried out to obtain a feature map; the
position information of the text box is predicted on this feature image. Then, non-maximum
suppression and fusion of text boxes are performed; finally, the predicted text box is output.
The EAST algorithm has a simple structure and good performance. The output text box is
also suitable for the detection of the text area in the street sign scene. However, the EAST
algorithm has a poor effect on complex scenes and in multi-scale text detection (Figure 1).
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Figure 1. Textual information in multi-scale and complex scene natural imagery.

In this study, we proposed a Neural Architecture Search—Feature Pyramid Network
EAST (NEAST) text detection algorithm to solve the problem whereby images are difficult to
detect in complex scenes and multi-scale text. The algorithm consists of a feature extraction
layer and an output layer. The feature extraction layer adopts an automatic architecture
search network. It can extract features at various levels with diverse scales. The output
layer first addresses the class imbalance problem in the scene image, and then improves
the Intersection over Union (IoU) [40] algorithm to obtain the Generalized Intersection
over Union (GIoU) [41] algorithm. A text suggestion box is selected to obtain the final
text detection result. The algorithm not only better solves the classification homogeneity
problem, but also improves the problem of low recall in target detection. Compared with
other image detection algorithms, our proposed NEAST algorithm can better recognize
skewed text in natural scene images. The algorithm shows excellent text recognition
capability in complex environments.

2. Materials and Methods
2.1. EAST Algorithm

Scene text detection methods have achieved encouraging results on various bench-
marks. However, these methods, even those using deep neural network models, have
shortcomings when dealing with challenging scenarios. Because the overall performance of
a text detection model depends on the interactions among the modules in the algorithmic
model, a simple model can optimize the loss function and neural network structure in
a targeted manner and improve text detection. Therefore, text regions in natural scene
images can be detected quickly and accurately using a simple and efficient EAST algorithm.
The model structure is depicted in Figure 2. The simple structure and fast operation are
the advantages of the EAST algorithm. However, its accuracy of text detection in complex
scenes is not satisfactory.
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Figure 2. EAST algorithm model.

The network structure of EAST is shown in Figure 2. We use the Performance vs.
Accuracy Network (PVANet) to extract features, and merge the features of different layers
after upsampling. Then, the final score and box are predicted. The box is represented
by RBOX and QUAD. If box data are annotated in the form of RBOX, the model finally
predicts the 1-channel score_map and the 4-channel box_map. If the box data are annotated
in the form of QUAD, the model finally predicts the 1-channel score_map and the 8-channel
BOX_map.

2.1.1. Feature Extraction Network

After an image is input, feature extraction is performed using a feature pyramid
network (FPN). Pre-training is performed using a CNN with interleaved convolutional and
pooling layers. Four levels of feature maps, fi, are obtained, whose sizes are 1/32, 1/16,
1/8, and 1/4 of the original image. The objective of this step is to address the problem of
scale diversity of text lines. Low- and high-level features are used to predict smaller- and
larger-sized text lines, respectively.
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2.1.2. Feature Fusion

In the feature fusion step, the feature map extracted in the preceding stage is first
de-pooled. The size of the feature map is increased, and it is connected in series with the
current feature map. Next, a 1 × 1 convolution kernel is used to perform the convolution
operation to reduce the calculation load of the model. Subsequently, the convolution
operation is performed through a 3 × 3 convolution kernel to fuse the feature information.
Finally, the result of the text detection feature fusion stage is output. When the feature
fusion process is completed, a 3 × 3 convolution kernel is used to perform the convolution
operation. The resulting final feature map is input to the output layer. The feature fusion
operates as follows:

gi =

{
unpool(hi) if i ≤ 3
conv3×3(hi) if i = 4 if i = 1

hi =

{
fi otherwise
conv3×3(conv1×1([gi−1; fi])) othere

(1)

2.1.3. Output Layer

The output layer is obtained using the convolution operation with many 1×1 convolu-
tion kernels. Then, 32-channel feature maps are projected to generate 1-channel fractional
and multi-channel geometry feature maps. The geometry output can be rectangular or
quadrilateral (see Table 1).

Table 1. EAST algorithm output.

Geometry Channels Description

AABB 4 G = R = {di|i ∈ {1, 2, 3, 4}}
RBOX 5 G = {R, θ}
QUAD 8 G = Q = {(∆xi, ∆yi)|i ∈ {1, 2, 3, 4}}

In Table 1, AABB is a horizontal rectangular frame. The four channels represent
the four distances from the pixel positions to the top, right, bottom, and left borders of
the rectangle, respectively. RBOX is a rotating rectangular box, and the geometric shape
is represented by the horizontal BBOX of four channels and the rotation angle θ of one
channel. QUAD is an arbitrary quadrilateral, and numeral 8 represents the coordinate
offsets from the four vertices of the rectangle to the pixel position. Because each coordinate
offset includes two values of the abscissa and ordinate (∆xi, ∆yi), the output of its geometry
needs to contain eight channels.

This method mainly includes a fully convolutional network and non-maximum sup-
pression. The algorithm model can flexibly generate word-level or text-line-level text
prediction boxes, and the predicted geometric shapes can be rotated or horizontal boxes.
However, the picture detection in complex scenes is not satisfactory.

2.2. NEAST Oblique Text Detection Method

The objective of the proposed algorithm is to obtain a network structure in the search
space and set it as a sub-network through a recurrent neural network (RNN) [42] controller.
Subsequently, this network structure is trained on a dataset. After its accuracy R is obtained
by testing on the validation set, the accuracy values are returned to the controller. The
controller continues to optimize to obtain another network structure. This is repeated until
an optimal feature extraction network structure is obtained. Thereafter, the output layer is
improved to enhance the accuracy, and the final detection result is obtained.

The proposed detection model is shown in Figure 3. We used the Learning Scalable
Feature Pyramid Architecture for Object Detection (NAS-FPN) to combine the features of
multiple layers. NAS-FPN reorganizes the feature images on five scales. FPN uses five



Mathematics 2022, 10, 3914 6 of 22

layers of resolution features (C3, C4, C5, C6, C7), and C5 is subsampled to obtain C6 and
C7. The resolution downsampling of the features in the five layers is (8, 16, 32, 64, 128), and
(P3, P4, P5, P6, P7) can be obtained through FPN. The output layer convolves the extracted
feature map through several 1 × 1 convolution kernels to generate the score plot and the
rectangle detection block diagram in any direction. The text box regression is guided by
the GIoU algorithm. Positive and negative samples are selected from the prior box. Then,
the positive samples are encoded according to the proposed encoding. The problem that
IoU cannot be optimized without overlap is solved, and it can also be used as a measure in
the target detection task. The regression effect of the text box will be improved. We use the
focus loss (FL) function (including position loss and classification loss) to solve the problem
of positive and negative sample imbalance and hard classification sample learning.
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2.2.1. Feature Extraction Module

Text regions in natural scene images are multi-scale and multi-object. Two types of
features (low resolution, strong semantics; high resolution, low semantics) are combined to
form the FPN structure through top-down paths and lateral connections. This structure
is an inevitable choice for feature extraction. The text region occupies a small proportion
of the image area. The shape of the region is mostly narrow and long. The target size and
structure are significantly different from other target detections. Therefore, an artificially
designed FPN is not necessarily the optimal structure. The combination number of feature
fusion at various scales also increases with an increase in the number of network layers.
Therefore, an FPN is constructed using the neural network architecture search. A search
space that covers all cross-scale connections and captures multi-scale features is designed.
Next, an RNN controller is obtained through reinforcement learning training to select the
optimal FPN structure. The objective of the search is to find particle architectures that
have the same input and output feature levels and can be applied repeatedly. The pyramid
architecture can also be made manageable by modularizing the search space.

The NAS-FPN network architecture is designed based on RetinaNet and includes
two parts: the Backbone Network (Basic Classification Network, MobileNet, ResNet) and
Feature Pyramid Network (FPN). In NAS-FPN, a duplicate FPN module can be searched.
We obtain a tradeoff between speed and accuracy by controlling the number of repetitions
of this module. Then, we output the prediction results at different stages according to the
different computing resources. In RetinaNet, the feature fusion strategy of FPN is adopted.
NAS-FPN replaces the FPN portion of RetinaNet with the searched fusion architecture.
This can find a better FPN architecture of the retinal network framework and improve
the accuracy of text detection. The RetinaNet framework with NAS-FPN is depicted in
Figure 4.
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Figure 4. The NAS-FPN RetinaNet. N is the number of module repetitions.

A neural architecture search algorithm is used to search the FPN. The backbone
network models for class and BBOX predictions follow the original design of RetinaNet.
The FPN, input feature layers generated with multiple sizes, and output feature layers
generated with the same size are depicted in Figure 4. The design of the RetinaNet network
is adopted, using the output of the last layer in each group of networks as the input of the
pyramid network. The output of the previous pyramid network is used as the input for the
next pyramid network. Next, five scales are used as input features (C1, C2, C3, C4, C5),
and their feature steps are (8, 16, 32, 64, 128), respectively. Feature C3 is obtained by the
maximum pooling of C4 or C5 with strides 2 and 4. The input features are passed onto a
pyramid network, which consists of a series of fused units connected across scales. The
pyramid network finally outputs an enhanced multi-scale feature representation. Because
both the input and output of the pyramid network are feature layers of the same size, the
architecture of the FPN can be stacked N times to improve the accuracy.

Multiple cross-scale connections of FPN networks can constitute a huge search space.
In the search space, the FPN network is composed of many merging cells (MC), which
are merged with feature representations. The fusion unit connects and fuses the feature
maps from two different levels of feature layers as a feature output. The unit structure
constitutes the meta-structure of the FPN network. The component feature combination of
the fusion unit constitutes the search space of the algorithm. The structure of the fusion
unit is depicted in Figure 5.

Figure 5. Structure of fusion unit.
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The fusion unit comprises three processes: first, two feature layers are selected from
the candidates; second, the dimension of the output feature is selected; and, finally, the two
previously selected feature layers are combined and output to a specific scale based on the
fusion method. The feature fusion methods are mainly divided into two types: sum and
global pooling. Their structures are depicted in Figure 6.

Figure 6. Feature fusion methods: (a) sum and (b) global pooling.

The two feature fusion methods are characterized by simplicity and effectiveness. No
further trainable parameters are required. Before applying binary operations, the size of the
input feature layer must be adjusted to the desired output size by upsampling the adjacent
layers or by max pooling, if necessary. The merged feature layer includes a ReLu activation
function, convolution operation with kernel size 3 × 3, and batch normalization. The NAS-
FPN network selects the optimal model architecture in a given search space by training
the RNN controller through reinforcement learning. The RNN controller updates the
parameters using the accuracy of the submodel in the search space as a reward signal. After
repeated training, the controller gradually learns how to obtain the optimal architectural
model. A schematic of the learning process is depicted in Figure 7.

Figure 7. Controller reinforcement learning.

The structure and internal connections of the neural network are specified using a
variable-length string. Therefore, the RNN can be used to generate variable-length network
structures. The predicted network contains only convolutional layers, whose hyperpa-
rameters are generated using the RNN. These hyperparameters include the following: the
height, width, and number of convolution kernels, and the height and width of the sliding
stride of the convolution kernel. As depicted in Figure 8, the output predicted by each
SoftMax function in the RNN is used as the next input.
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Figure 8. Predictive structure flowchart for RNN controller.

The controller generates a set of hyperparameters, and the accuracy of the generated
model on the validation set is used as a feedback signal to optimize its expected value. The
algorithm regards the actions of the controller as a function. Parameter updates are carried
out via feedback signals. Then, the optimization of the feedback signal is realized. The
termination condition in generating the network structure is to stop when the number of
network layers reaches an optimal value.

After a parameter θc in the controller RNN is optimized, the resulting network struc-
ture can achieve good accuracy on the validation set.

After generating the network structure, the controller uses the training data to train
until convergence. Next, the accuracy of the controller is confirmed after testing it on the
validation set. The termination condition for the generated network structure is the number
of network layers reaching a specified value. Parameter θc in the RNN controller is opti-
mized. The generated network structure achieves improved accuracy on the verification set.
The RNN controller predicts a series of outcomes, corresponding to a series of operations
a1:T to design sub-networks. The generated network is tested on the validation set and
the accuracy R is obtained. The R value is used as a feedback signal, and reinforcement
learning is used to train the controller. To optimize the network structure, the controller is
required to maximize its expected value. The formula is as follows:

J(θc) = EP(a1:T ;θc)[R] (2)

Feedback signal R is not differentiable. The policy gradient algorithm is used to
iteratively update θc as follows:

∇θc J(θc) =
T

∑
t=1

EP(a1t ;θc)

[
∇θc log P

(
at

∣∣∣a(t−1):1; θc

)
R
]

(3)

The approximate calculation formula is as follows:

∇θc J(θc) =
1
m

m

∑
k=1

T

∑
t−1
∇θc log P

(
at

∣∣∣a(t−1):1; θc

)
Rk (4)

where m is the number of various neural network architectures in a batch of samples during
controller training, T is the number of predicted hyperparameters in the controller design
network structure, and Rk is the tested accuracy on the validation set after the kth neural
network is trained.
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The advantage of the feature extraction network is that it designs a search space
covering all possible cross-scale connections, which can be used to generate multi-scale
feature representations. Particle architectures that have the same input and output feature
levels and can be applied repeatedly are found during the search process. The modular
search space also makes the search pyramid architecture manageable. Furthermore, feature
extraction network models employing automatic architecture search algorithms can obtain
feature pyramid representations at the output of any given pyramid network. The network
model does not need to complete the forward pass of all pyramid networks, providing
a solution that can dynamically allocate computational resources to generate detections.
Therefore, an optimal FPN structure can be obtained to extract the feature of the text region.

2.2.2. Generalized Intersection over Union Algorithm

Currently, the optimization of a BBOX in the text detection method is performed
mostly by reducing the regression loss of the BBOX. In this study, we trained on regression
tasks with IoU as a direct metric. In the anchor-node-based target detection method, the
IoU can be used not only to determine the positive and negative samples but also to judge
the accuracy of the prediction frame. In addition, the IoU is insensitive to scale. Assuming
that A and B denote the predicted box and labeled text area, respectively, the IoU and loss
function are given as follows:

IOU =
|A∩ B|
|A∪ B| (5)

Lossgiou = 1− IOU (6)

There are two problems with using the IoU directly as the loss function. First, when
the two boxes do not intersect, IOU = 0 can be obtained by definition. In this case, the
contact ratio of the two boxes cannot be reflected. Second, when Loss = 0, model training
cannot be performed because there is no gradient backhaul. As depicted in Figure 9, when
the IoU is the same, the detection results of the prediction boxes may also be different. The
text detection result on the far right is the worst.

Figure 9. Text detection results with the same IoU value.

Because the use of IoU has many drawbacks, we propose to use another metric, GIoU,
which is given as follows:

GIoU(A, B) = IoU(A, B)− |C|−|AUB|
|C| (7)

As shown in Figure 10, A is the prediction box, B is the real box, and S is the set of
all boxes. Whether A and B intersect or not, C is the smallest box containing A and B (the
smallest convex closed box containing A and B), and C also belongs to the S set.
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Figure 10. Structure diagram of GIoU.

We calculate IoU (the ratio of the intersection of A and B), and then calculate the area
ratio of the C (no A and B) to C. Finally, the GIoU is obtained by subtracting the specific
gravity value from the IoU.

The coordinates of prediction box Bp and marker box BG are as follows:

BP =
(

xP
1 , yP

1 , xP
2 , yP

2

)
, BG =

(
xG

1 , yG
1 , xG

2 , yG
2

)
(8)

For prediction box Bp, ensure that xP
2 > xP

1 and yP
2 > yP

1 :

x̂p
1 = min

(
xP

1 , xP
2
)

x̂p
2 = max

(
xP

1 , xP
2
)

ŷp
1 = min

(
yP

1 , yP
2
)

ŷp
2 = max

(
yP

1 , yP
2
) (9)

The areas of predicted box Bp and labeled box BG are calculated as follows:

AP =
(

x̂p
2 − x̂p

1

)
×
(

ŷp
2 − ŷp

1

)
AG =

(
xp

2 − xp
1

)
×
(

yp
2 − yp

1

) (10)

The coordinates and area of area I where Bp and BG intersect are calculated as follows:

xI
1 = min

(
xI

1, xI
2
)

xI
2 = max

(
xI

1, xI
2
)

yI
1 = min

(
yI

1, yI
2
)

yI
2 = max

(
yI

1, yI
2
) (11)

I =
{(

xI
2 − xI

1
)
×
(
yI

2 − yI
1
)

if xI
2 > xI

1, yI
2 > yI

1
0 otherwise

(12)

The same method is used to obtain the coordinates and area AC of the smallest BBOX
C. The area of the text area is defined as U, and the value of U is calculated as follows:

U = Ap + AG − I (13)

GIoU is calculated as follows:

GIOU =
I

U
− AC −U

AC (14)

When GIoU is used as the loss function, LGIOU = 1−GIOU, which can meet the basic
requirements of the loss function. In addition, GIoU is also independent of size. It is the
lower bound of IoU. When the two boxes overlap infinitely, IOU = GIOU and the value
is between (0, 1). However, the value range of GIoU is (−1, 1). When the positions of the
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two boxes overlap completely, the maximum value is 1; when the two boxes do not overlap
fully, the minimum value is −1. Therefore, GIoU is a very good distance metric. However,
unlike IoU, GIoU calculates not only the overlapping part but also the non-overlapping
area. In addition, GIoU calculates the overlapping area in the same manner as does the IoU
in text detection. To calculate the minimum closure area, only the maximum and minimum
coordinates are required.

2.3. Class Imbalance

Class imbalance refers to the significant difference in the numbers of training examples
of various classes in the target classification [43]. Owing to the limited number of samples
with BBOX as the target category in an image, the results of the statistical analysis of the
ICDAR2013 [44] dataset are as depicted in Figure 11. The text areas in most images occupy
only 30% of the entire image. Most of the widths are also concentrated between 0 and 0.3.
The height ratio is concentrated between 0 and 0.15. Therefore, the proportion of text areas
in natural scene images is generally small. Furthermore, the shape of the area is narrow
and long.

Figure 11. Characteristic analysis of text area in ICDAR2013 database. (a) Width of text area/width
of full image, (b) height of text area/width of full image, (c) text regional area/full image area, and
(d) width of text area/height of text area.
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As depicted in Figure 12, the BBOX required to calculate the loss value is divided into
two types: positive and negative. When the GIoU between the BBOX and ground truth
(GT) is greater than a threshold value, the BBOX is a positive BBOX. When GIoU is less
than the threshold value, the BBOX is a negative BBOX.

Figure 12. Schematic of four samples.

When an original image is input, the proportion of the target is only a small part of
the whole image. Therefore, the two types of BBOXs are mainly negative, and most of the
negative BBOXs are not in the transition area between the foreground and background.
This clearly classified negative BBOX is called easy negative and is common. This leads to
two problems:

1. An extremely negative BBOX will cause its loss value to be significantly large. The loss
value of a positive BBOX is overwhelmed, which is not conducive to the convergence
of the target.

2. When the parameter changes in the training process are not evident, the model
cannot be effectively trained, and the problem of gradient disappearance may occur.
However, when the easy negative sample is trained, the corresponding target score
is small. That is, the loss value of a single BBOX sample is small. The parameter
changes during model training backpropagation are also significantly small. Small
parameter changes are not conducive to model training. Therefore, for text detection,
it is extremely necessary to find BBOX samples with larger loss values and a greater
impact on parameter convergence—namely, a hard BBOX.

The detection and analysis of the EAST algorithm indicate that class imbalance is
another reason for its poor performance. Therefore, it is necessary to reduce the proportion
of simple sample loss values. Furthermore, the sample loss values with confidence greater
than 0.5 must be suppressed.

The cross-entropy (CE) loss for binary classification is calculated as follows:

CE(p, y) =
{

− log(p) y = 1
− log(1− p) otherwise

(15)

where y = 1 represents a positive sample and the p value is the model’s estimated probability
for the class with the y = 1 label. Parameter pt is defined as follows:

pt =

{
p y = 1

1− p otherwise
(16)

CE(p, y) = CE(pt) = − log(pt) (17)
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A parameter is added to control and balance the proportion of positive and negative
sample loss values:

CE(pt) = −αt log(pt) (18)

Although the proportion of positive and negative samples is balanced, easy and
difficult examples are not distinguished. A modulation factor (1− pt)

γ is added to the CE
loss function, where γ ≥ 0. The FL loss function is defined as

FL(Pt) = −(1− Pt)
γ log(pt) (19)

Figure 13 is the FL diagram at the γ = 0, 1, 2, 5 value, whereas the CE loss is
represented by curve 1.

Figure 13. Loss function change curve.

As depicted in Figure 13, when the example is misclassified and pt is small, modulation
factor (1− pt)

γ is close to 1 and the loss is not affected. When pt → 1 , the factor becomes
0 and the loss on well-classified examples is weighted. Furthermore, the focus parameter z
smoothly adjusts the weights of simple examples. When γ = 0, FL is equal to CE. As the
parameter increases, the effect of the modulation factor also increases. For the third curve
γ = 2, FL works the best. The modulation factor reduces the loss contribution in the simple
example. Furthermore, the range of the sample reception low loss is extended. Finally, the
b-balanced variant of FL is used.

The α of FL is used to balance the variant:

FL(pt) = −αt(1− pt)
γ log(pt) (20)

This approach improves the accuracy when compared with the non-α-balanced form.
AP is the average precision. The formula is as follows:

N

∑
k=1

P(k)∆r(k) (21)

where N represents the number of all pictures in the test set; P(k) represents the precision
value when k images can be recognized. Delta r(k) represents the change in the recall value
when the number of recognized images changes from k − 1 to k.
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2.4. Experimental Dataset

The datasets that we used are ICDAR 2013 and ICDAR 2015 [45]. Resolutions range
from 720 × 480 to 1280 × 960. They include real-world images (road signs, billboards,
posters, etc.). ICDAR 2013 contains 229 training images and 233 test images of focused scene
text. Text is in English and aligned horizontally. Annotations are axis-aligned bounding
boxes that divide a total of 1015 cropped word images. ICDAR 2015 contains 1000 training
images and 500 test images. Annotations are word-level quadrilateral tilted text. The
details of the datasets are listed in Table 2.

Table 2. Experimental datasets.

Dataset Size Number of Images (Train/Test) Amount of Text

ICDAR 2013 250 M 462 (229/233) 1943
ICDAR 2015 131.8 M 1500 (1000/500) 17,548

3. Results
3.1. Impact of Pyramid Network on Text Detection

The text detection model can be controlled by adjusting the dimensions of the backbone
model and pyramid network. The model was trained and evaluated on the ICDAR2015
dataset. The training parameters were set as listed in Table 3.

Table 3. Training parameter settings.

Type Setting

Batch size 16
learning rate 10−3

Focal loss
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Pyramid networks offer the advantage that they can be extended to larger architectures
by stacking multiple repeated architectures. We first changed the number of FPNs to
test their impact on text detection. The experimental results are depicted in Figure 14a,
where the numbers on the lines indicate the number of pyramid networks. Stacking
FPN architectures does not always improve the performance of the model; however,
stacking NAS-FPN can significantly improve the accuracy. This result indicates that the
proposed search algorithm can find a scalable pyramid network architecture suitable for
text detection.

The backbone architecture has a significant impact on the pyramid network. We
performed comparative experiments with the ResNet-50, ResNet-101, and MobilenetV2
backbone networks. The results of these experiments are depicted in Figure 14b. When
the number of pyramid networks increases, the performance of NAS-FPN on all these
backbone architectures increases. The results indicate that the text detection model can
work well with various architectures. However, the text detection is better on the ResNet
network.

3.2. Impact of Modules on Text Detection

The NEAST text detection model used in this study is an improved text detection
algorithm based on the EAST algorithm. It has an improved FPN, addresses the problem
of class imbalance, and corrects the IoU of the output module. To evaluate the impact of
each module on the entire algorithm model, the modules of the model were disabled in
turn on the ICDAR 2015 dataset to compare the recall, precision, and F-Measure values.
The comparative data are listed in Table 4, where Tt represents the time spent in training
the model and Dt is the time spent in detecting text.
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Figure 14. Impact of NAS-FPN on text detection. Impact of (a) search algorithm and (b) backbone
network on model performance.

Table 4. Experimental results for various modules.

Method Tt/h Dt/ms R P F

EAST 19.7 150.9 0.73 0.84 0.78
FL+GIOU 33.4 198.0 0.79 0.85 0.82

NAS+GIOU 139.3 307.8 0.76 0.87 0.81
NAS+FL 144.9 323.5 0.82 0.85 0.83
Proposed 145.6 337.4 0.84 0.89 0.87

The proposed method takes the longest times for model training and text detection
because the temporal neural network architecture search algorithm and class equalization
process both generate many parameters and increase the complexity of the model. However,
the proposed method is the best in terms of the recall, precision, and comprehensiveness
metrics. The FL function addresses the problem of class imbalance and mitigates the prob-
lem of low recall rate during object detection. The GIoU algorithm can further improve the
accuracy of text detection. Although the GIoU algorithm generates fewer additional pa-
rameters, the accuracy of the text detection model is significantly improved. Experimental
results confirmed that the proposed neural network architecture search algorithm achieved
significantly improved detection results.

4. Discussion

A comparison of the text detection performance between the proposed model and
some commonly used text detection algorithms on the ICDAR 2013 and ICDAR 2015
datasets was conducted in this work. By implementing the model on different datasets, the
applicability and generalization parameters of the model were evaluated.

We discuss fine-scale detection strategies for FASText [46] and Faster R-CNN [47]. As
shown in Table 5, it is difficult for a single RPN to perform accurate text localization due
to the large amount of error detection (low accuracy). Improvements were made to the
RPN algorithm by using the Fast R-CNN detection model, which significantly improves
the positioning accuracy, with an F-measure of 0.73. Faster R-CNN also improves the recall
of the original RPN. This may benefit from the joint bounding box regression mechanism of
Fast R-CNN, which improves the accuracy of bounding box prediction. Although FASText
can roughly locate the text line or the main part of a word, it cannot capture the most
precise location compared to the ICDAR 2013 standard. Obviously, the proposed NEAST
significantly improves Faster R-CNN and FASText in terms of accuracy and recall, which
indicates that NEAST predicts a fine-scale text proposal of a sequence rather than a whole
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line of text. Nonetheless, our detection algorithm is more accurate and reliable. As can be
seen from the data in Table 5, our proposed detection algorithm achieves the optimal recall,
accuracy, and F-measure values on the ICDAR2013 and IDDAR2015 datasets.

Table 5. Comparison of text detection results of various methods on the ICDAR 2013 dataset.

Method R P F

Ren [46] 0.67 0.81 0.73
Faster RCNN [47] 0.68 0.72 0.73

SSD [48] 0.60 0.80 0.68
Diaz-Escobar [49] 0.74 0.83 0.78

Proposed 0.81 0.86 0.83

The complexity and quantity of natural scenes and images in different datasets are
different. The results based on different datasets show that the NEAST text detection
algorithm can achieve better detection results and is more robust in complex backgrounds.
We discussed the impact of repeated connections on NEAST. Compared with the data listed
in Table 6, it is clear that the proposed text detection method performs better on the ICDAR
2015 dataset. Therefore, the conclusion is that the larger the training dataset, the better
the text detection model. Contextual information helps to reduce error detection, such as
text outliers, which is important for recovering highly ambiguous text—for example, very
small text. It is one of the main strengths of our NEAST, which can dramatically increase
the F-measure of EAST from 0.78 to 0.87 through our repeated connections.

Table 6. Comparison of text detection results of various methods on the ICDAR 2015 dataset.

Method R P F

Xue [50] 0.78 0.86 0.82
EAST [39] 0.73 0.84 0.78
SSTD [51] 0.74 0.80 0.77
Jiang [52] 0.83 0.87 0.85

R2CNN [27] 0.80 0.85 0.83
PixelLink [53] 0.82 0.85 0.84

Proposed 0.84 0.89 0.87

From the ICDAR2015 dataset, we selected three natural scene images with high
background complexity, oblique text, and multiple scales. Experiments were performed
on the models with and without the improvement of the EAST algorithm to compare
their text detection performance. Figures 15 and 16 depict the text detection performance
obtained using the EAST algorithm without and with improvement, respectively. It is
evident that the proposed improved text detection model can accurately detect the text
regions in horizontal and oblique directions, and the detection effect on long texts is also
satisfactory. Through targeted training, the proposed detection method can more accurately
exclude non-text regions, thereby improving the accuracy of the final detection results. It is
also evident that the performance of the proposed algorithm for oblique text detection in
any direction is significantly improved when compared with that of the EAST algorithm.
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Figure 15. Text detection results of EAST algorithm: (a) test image 1, (b) test image 2, and (c) test
image 3.

Figure 16. Text detection results of proposed improved EAST algorithm: (a) test image 1, (b) test
image 2, and (c) test image 3.

The performance of the proposed NEAST text detection algorithm was evaluated
on complex natural scenes with oblique multi-scale text. The results are depicted in
Figure 17a–c. The algorithm accurately identified multi-scale text at various shooting
angles. As depicted in Figure 17d–f, the algorithm can also detect text in scenes with
dynamic light conditions. These results confirm the high detection strength and accuracy
of the proposed algorithm against complex scenes.
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Figure 17. Oblique text detection results in natural scenes.

5. Conclusions

In this paper, an improved NEAST algorithm is proposed for skewed text detection in
complex scenes and images with multi-scale text. We propose the following innovations.
Firstly, we use the Learning Scalable Feature Pyramid Architecture for Object Detection
(NAS-FPN) to integrate features of multiple layers and construct an FPN by means of a
neural architecture search. By designing a search space that can cover all cross-scale connec-
tions and acquire multi-scale features, an RNN controller is acquired through reinforcement
learning training to select the optimal FPN structure. Secondly, the GIoU algorithm is used
to replace the IoU algorithm, so as to improve the regression of text BBOX. Finally, the focal
loss function is used to resolve the class imbalance problem. The core idea of our proposed
algorithm is to obtain a network structure in the FPN search space by an RNN controller,
set it as a subnetwork, and then use this network structure to train on the dataset. The final
accuracy is obtained by testing on the validation set. This accuracy rate is applied on the
controller, and the controller continues to optimize to obtain another network structure.
This practice is repeated until the best feature extraction network structure is obtained, and,
finally, the detection result of skewed text is realized. In future research, we will continue



Mathematics 2022, 10, 3914 20 of 22

to improve the NEAST text recognition algorithm by targeting the diversity of languages,
including Chinese and numbers. The unsupervised ultra-lightweight backbone network
will be used to mine the deep semantic information of complex natural scenes and images.
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