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Abstract: In recent years, technological advances in nanofabrication have opened up new applications
in the field of nanophotonics. To engineer and develop novel functionalities, rigorous and efficient
numerical methods are required. In parallel, tremendous advances in algorithmic differentiation,
in part pushed by the intensive development of machine learning and artificial intelligence, has
made possible large-scale optimization of devices with a few extra modifications of the underlying
code. We present here our development of three different software libraries for solving Maxwell’s
equations in various contexts: a finite element code with a high-level interface for problems commonly
encountered in photonics, an implementation of the Fourier modal method for multilayered bi-
periodic metasurfaces and a plane wave expansion method for the calculation of band diagrams
in two-dimensional photonic crystals. All of them are endowed with automatic differentiation
capabilities and we present typical inverse design examples.

Keywords: computational photonics; topology optimization

MSC: 35Q61

1. Introduction

Controlling the flow of light with sub-wavelength photonic devices can be realized by
taking advantage of the huge number of degrees of freedom in such systems. This versatil-
ity paves the way for the development of highly efficient and compact integrated devices,
promising a number of improvements in the growing fields of photonics and optoelectron-
ics. Historically, engineers and researchers have relied on trial-and-error approaches, where
a small set of key parameters is tuned to achieve an acceptable level of matching with a
predefined figure of merit required by the application. This intuition-based method has
helped to develop a diverse and extensively used collection of designs, taking advantage of
photonic resonances, dispersion engineering, waveguiding or antenna radiation principles,
and enabling an increasingly finer control of light across the electromagnetic spectrum.

On the other hand, accurate manipulation of light can be supported by so-called in-
verse design, where the process is automated by an optimization algorithm to attain specific
device performances under prescribed constraints. In the past two decades, gradient-based
topology optimization (TO) [1] has become a widely used tool in computational electro-
magnetism [2] and has allowed the inverse design of a broad range of devices such as
invisibility cloaks [3,4], illusion devices [5], photonic crystals [6,7], metamaterials [8,9], and
metasurfaces [10–12], to name a few. In essence, density-based TO is an inverse design
procedure that can produce highly optimized structures to obtain a prescribed objective.
One of its main advantages is to offer unparalleled design freedom since the material
distribution is updated locally (at the pixel or voxel level) inside the domain of interest.
On the other hand, fabrication constraints often limit this flexibility and several auxiliary
tools can be included to tackle those issues [13], for instance, imposing minimal length
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scales or ensuring the connectivity of the resulting layout. At the heart of this method is
computing the gradient of the objective function with respect to the design parameters.
Since the number of degrees of freedom is usually prohibitively high to obtain the gradient
using naive finite differences, adjoint sensitivity analysis [14] is an indispensable part of
all inverse design algorithms. This method can be often implemented straightforwardly
and often referred to as the backward simulation, typically derived analytically and hard
coded. However, there are instances where the electromagnetic simulation makes the link
between the input parameters and the objective function complex, and it would, therefore,
be tedious to develop the approach reliably in such a non-trivial context.

In computational science, automatic differentiation (AD) is the application of the
adjoint method to arbitrary computational graphs. At the core of an AD programming
framework is gradient-aware elementary functions, which allow the software developer to
implement only the forward simulation and compose the elementary building blocks to
produce more complex code with gradient support.

Here we first report the development of software libraries with automatic differentia-
tion capabilities: a finite element method (FEM)-based code for 2D scattering problems,
an implementation of the Fourier modal method (FMM) for stacked bi-periodic structures,
and a plane wave expansion method (PWEM) to compute the eigenmodes of 2D photonic
crystals. After describing the methods and the automatic differentiation and topology
optimization tools, we give examples of application for each: the design of supperscattering
structures with the FEM, of a metasurface optimized to transmit maximally in a given
diffraction order with the FMM, and maximization of bandgap and dispersion engineering
in dielectric photonic crystals using the PWEM.

2. Materials and Methods

Our starting point common to all methods are Maxwell’s equations in the time-
harmonic regime with a convention in exp(−iωt) assumed throughout:

curl×H = −iωε0εE (1)

curl×E = iωµ0µH (2)

2.1. Finite Element Method

We will take as an example a scattering of a plane wave by an infinitely long object
denoted Ωs embedded in a background with permittivity εb and permeability µb. The
problem is assumed to be independent of z (i.e., a two-dimensional simulation) and we
only consider z-anisotropic materials, so that the permittivity ε and permeability µ are
written as [15]:

ε =

εxx ε?a 0
εa εyy 0
0 0 εzz

, µ =

µxx µ?
a 0

µa µyy 0
0 0 µzz

. (3)

We consider a plane wave of wavelength λ0 incident in the xy plane so the two
polarizations decouple and Maxwell’s equations can be combined into the following scalar
propagation equation:

Mξ,χ(u) = ∇·[ξ∇u] + k2
0χu = 0, (4)

where k0 = 2π/λ0 = ω/c, c is the speed of light in vacuum, u = Hz, ξ = ε‖
T/ det ε‖,

χ = µzz for TE polarization, and u = Ez, ξ = µ‖
T/ det µ‖, χ = εzz for TM polarization.

Here µ‖ and ε‖ denote the left upper 2 × 2 matrices extracted from µ and ε, T matrix
transposition and ? complex conjugation. Denoting u0 = exp(jk · r) the impinging plane
wave, the diffracted field us = u− u0 must satisfy an outgoing waves condition. We can
then recast the scattering problem (4) into a radiation problem:

Mξ,χ(us) = −Mξ−ξb ,χ−χb
(u0) = S . (5)
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We note that the source is localized inside the object since by definitionMξb ,χb
(u0) = 0.

Perfectly matched layers (PMLs, [16,17]) with constant stretching coefficient are used to
truncate the infinite background. The weak form is obtained by multiplying Equation (4)
by the complex conjugate of a test function v and integrating by part:

Rξ,χ(u, v) = −
∫

Ω
dr ξ∇u∇v? +

∫
Ω

dr χuv? +
∫

∂Ω
ds (ξ∇u)v?. (6)

The surface term is set to zero by setting homogeneous Neumann boundary conditions
(ξ∇u)· n = 0 on the outer boundaries of the PMLs. The solution u of the weak formulation
can, therefore, be defined as the element of the space L2(curl, Ω) the Hilbert space of
square-integrable functions with a square-integrable curl on Ω such that:

Rξ,χ(u, v) = 0, ∀v ∈ L2(curl, Ω) (7)

The numerical results are obtained using open-source libraries with bindings for the
python programming language using a custom code gyptis [18]. The mesh generation
is obtained by gmsh [19] and the resolution of Equation (7) is performed with the finite
element method (FEM) library fenics [20] using second-order Lagrange basis functions.

2.2. Fourier Modal Method

The Fourier modal method (FMM), also known as rigorous coupled wave analysis
(RCWA), is particularly suited for modelling a specific type of periodic structure made
up of layers that are invariant in the direction of periodicity. The key idea is to expand the
electromagnetic fields within each layer into eigenmodes represented using a Fourier basis in
the plane of periodicity. Our implementation considers non-magnetic, possibly z-anisotropic
materials (see Equation (3)) and follows closely the derivation from references [21,22]. The
structure is assumed to be periodic in the xy-plane with lattice vectors l1 and l2. Each layer
is normal to the z-axis and indexed by i with thickness di and extending from z = zi to
z = zi + di. The semi-infinite substrate (z < 0) and superstrate (z > ΣM−1

i=1 di) are denoted
layer 0 and M, respectively. The reciprocal lattice is defined by the columns of Lk = 2πL−T

r
where Lr is the matrix whose columns are l1 and l2 and −T denotes the transpose of the
inverse matrix. The structure is illuminated by a plane wave from the superstrate with
incident wavevector kinc with in-plane component k.

The rescaled magnetic field H̃ =
√

µ0/ε0H is expanded as:

H̃(r‖, z) = ∑
G

HG(z)e
i(k+G)·r‖ , (8)

with G = nLk,1 + mLk,2 a reciprocal lattice vector and r‖ the in-plane component of the
position vector. In practice, this sum must be truncated to retain nh terms to perform a
numerical simulation. Defining the Fourier transform:

ε̂G =
1
|Lr|

∫
Ω

ε(r)e−iG·rdr

where Ω denotes one unit cell of the lattice, one can form block Toepliz matrices ε̂mn =

ε̂(Gm−Gn) for each component of ε. We denote by h(z) the vector
[
HG1(z), HG2(z), . . .

]T,
and similarly for e(z). The Fourier coefficients dx and dy of the displacement field D are
related to the electric field by: [

−dy(z)
dx(z)

]
= E

[
−ey(z)
ex(z)

]
(9)
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The calculation of matrix E is a subtle matter since one needs to take into account
discontinuities in both ε and E [23]. The earliest FMM formulations [24] simply used
Laurent’s rule directly, i.e.,:

E =

[
ε̂xx ε̂xy
ε̂yx ε̂yy

]
.

Later, Li introduced the proper Fourier factorization rules [25] and observed an im-
proved convergence of the method. Whilst this is straightforwardly implemented for 1D
gratings, for bi-periodic structures, one needs to find a normal field to decompose the
electric field in its normal and tangential components at material interfaces [26,27]. In
the rest of this subsection, we will assume for simplicity an isotropic permittivity, but the
method can be generalized to tensorial ε [28]. Assuming there exists a smooth (possibly
complex) field t tangent at all material interfaces, we can apply a change of coordinates
from Cartesian to the local basis defined by t and then get in real space:[

−Dy
Dx

]
= T

[
ε

η−1

]
T−1

[
−Ey
Ex

]
, T =

[
ty t?x
−tx t?y

]
, (10)

with η−1 = ε. Note that there are several ways to translate Equation (10) in Fourier space.
In our implementation, we first expand Equation (10):[

−Dy
Dx

]
=

{[
ε

ε

]
−
[

∆
∆

][
Pyy Pyx
Pxy Pxx

]}[
−Ey
Ex

]
, (11)

with ∆ = ε− η−1 and [
Pyy Pyx
Pxy Pxx

]
=

1

|t|2

[ ∣∣ty
∣∣2 t?xty

txt?y |tx|2

]
,

and so in the reciprocal space, we have:

E =

[
ε̂

ε̂

]
−
[

∆̂
∆̂

][
P̂yy P̂yx
P̂xy P̂xx

]
. (12)

After Fourier transforming Equations (1) and (2) and eliminating the z components,
one gets the matrix equations:

(
k2

0 I −K
)[ hx(z)

hy(z)

]
= −ik0

[
−e′y(z)
e′x(z)

]
(13)

(
k2

0E − K
)[ −ey(z)

ex(z)

]
= −ik0

[
h′x(z)
h′y(z)

]
(14)

with

K =

[
k̂y ε̂−1

z k̂y −k̂y ε̂−1
z k̂x

−k̂x ε̂−1
z k̂y k̂x ε̂−1

z k̂x

]
, K =

[
k̂x k̂x k̂x k̂y
k̂y k̂x k̂y k̂y

]
, (15)

where I is the identity matrix of size 2nh × 2nh and f ′ = ∂ f /∂z, and k̂ν, ν ∈ {x, y}, are
diagonal matrices with entries (kν + G1ν, kν + G2ν, . . .).

The next step is to compute the modes of a given layer, assuming the following ansatz
for the magnetic field eigenmode:

H(z) = ∑
G

[
φG,xx + φG,yy−

(kx + Gx)φG,x +
(
ky + Gy

)
φG,y

q
z

]
ei(k+G)·r+iqz
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where x, y, and z are the unit vectors of our Cartesian coordinate system and
φν =

[
φG1,ν, φG2,ν, . . .

]T, ν ∈ {x, y} are column vectors containing expansion coefficients.

We thus have h(z) =
[
φxx + φyy− q−1

(
k̂xφx + k̂yφy

)
z
]
eiqz. Using Equations (13) and (14),

eliminating the electric field and remarking that KK = 0, we get the following eigen-
value problem:

MΦ =
(
E
(

k2
0 −K

)
− K

)
Φ = Q2Φ, Φ =

[
φx
φy

]
where Q2 is the diagonal matrix whose diagonal elements are the eigenvalues q2

n. The
columns of the square matrix Φ are

[
φx,n, φy,n

]T, the Fourier coefficients of the eigenmodes.
Once this crucial and most computationally intensive step has been achieved, the field
inside each layer can be recovered as a linear combination of propagating and counter-
propagating waves: [

hx(z)
hy(z)

]
= ∑

n

[
φx,n
φy,n

](
aneiqnz + bneiqn(di−z)

)
.

The S-matrix algorithm [21,29] is then used starting from the incident medium to
recursively find the S-matrix of each layer and form the total S-matrix. Finally, relevant
electromagnetic quantities of interest, such as diffraction efficiencies in transmission and re-
flection for each order can be retrieved by computing the power flux through the outermost
layers, and this is vastly more efficient in Fourier space [22].

2.3. Plane Wave Expansion Method

We will limit our discussion to two-dimensional bi-periodic media with possibly
z-anisotropic materials in ε and µ but we consider for simplicity non-dispersive properties.
As in Section 2.1, the field decouples and we can expand the z components as:

u(r) = ∑
G

uG ei(k+G)·r , (16)

After Fourier transforming Maxwell’s equations and recombining the relevant z com-
ponent of the fields, we get the following generalized eigenproblem:

QT ε̂‖
−1QΦ = k2

0 χzz Φ (17)

where Q =
[
k̂y,−k̂x

]T
and Φ =

[
uG1 , uG2 , . . .

]T are column vectors containing expansion
coefficients.

To further speed up the band diagram computation, we employ a reduced Bloch mode
expansion (RBME) [30], only solving Equation (17) at symmetry points of the first Brillouin
zone and performing a second expansion using those chosen modes as a basis set. This
technique maintains accuracy while reducing the computation time by up to two orders of
magnitude.

2.4. Automatic Differentiation

For more than fifty years, automatic differentiation [31,32] (AD) has been applied in a
broad range of applications, and its implementation in various programming languages
has been boosted by the recent advent of machine learning [33]. Our goal here is to give
a brief introduction to this field and how it will be applied to the results of this study.
AD may be described as a computer paradigm, therefore, closely connected to a program
or a particular family of techniques that compute derivatives via accumulation of values
throughout code execution to output numerical derivative evaluations. In brief, it performs
an interpretation of a given computer program as a computational graph and propagates
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derivatives using the chain rule of differential calculus. As soon as this graph is built, the
gradient computation turns into a series of fundamental building-block operations.

We assume that the solution vector u we want to compute is parametrized by a vector
of parameters p of size M and defined implicitly through an operator F as:

F(u, p) = 0 (18)

Finally, let G be a functional of interest of dimension N, representing the quantity to
be optimized: for instance, the quality of a design to be maximized, or the error between a
target and computations to be minimized.

To obtain the derivative of the functional with respect to the design variables, several
approaches can be used. A simple idea is to use an approximation using finite differences:

dG
dpi
≈ G(p + hei)−G(p)

h
(19)

where ei is the vector with 0 in all entries except for 1 in the ith entry. However, in addition
to the uncertainty on the choice of the parameter h giving potentially numerical inaccuracy,
this approach is prohibitively computationally demanding for large M and/or N.
Explicitly, the gradient can be computed by applying the chain rule:

dG
dp

=
∂G
∂p

+
∂G
∂u

du
dp

. (20)

Taking the total derivative of Equation (18) we obtain the tangent linear equation:

∂F(u, p)
∂u

du
dp

= −∂F(u, p)
∂p

. (21)

This is similar to forward mode differentiation and scales linearly with the number
of inputs M. However, in typical topology optimization problems, the number of input
parameters is generally much larger than the number of output objectives, so this technique
is rather inefficient.

Assuming the tangent linear system is invertible, we can rewrite the Jacobian as:

du
dp

= −
(

∂F(u, p)
∂u

)−1 ∂F(u, p)
∂p

. (22)

After substituting this value in (20) and taking the adjoint (Hermitian transpose,
denoted by †) we get:

dG
dp

†
=

∂G
∂p

†
− ∂F(u, p)

∂p

†(∂F(u, p)
∂u

)−† ∂G
∂u

†
. (23)

Defining the adjoint variable λ as:

λ =

(
∂F(u, p)

∂u

)−† ∂G
∂u

†
(24)

we obtain the adjoint equation (
∂F(u, p)

∂u

)†

λ =
∂G
∂u

†
. (25)

For a given functional (output), the adjoint solution can be used to easily compute the
gradient with respect to any parameter. Therefore, solving the adjoint system is extremely
efficient when M� N. This approach is closely linked to reverse-mode differentiation in



Mathematics 2022, 10, 3912 7 of 18

AD or backpropagation in the context of neural networks since the flow of information in
the equation system is reversed.

For the FEM simulations, we use the library dolfin-adjoint [34], extending fenics
with automatic differentiation through the resolution of the adjoint equation. We im-
plemented the FMM and PWEM in python with various numerical backends for core
linear algebra operations and array manipulation, with the ability to switch between them:
numpy [35], scipy [36], jax [37], autograd [38], and pytorch [39,40]. The latest two libraries
have built-in support for automatic differentiation.

2.5. Topology Optimization

We consider a design domain Ωdes in which the material distribution is parametrized
by a continuous scalar density function p ∈ [0, 1]. A filtered density p̃ is used to avoid
smaller features and pathological “chessboard” patterns. We use two methods: the first one
consists in solving the following Helmholtz equation [41] with homogeneous Neumann
boundary conditions on Ωdes:

− R2
f∇

2 p̃ + p̃ = p, (26)

with R f being a real positive parameter characterizing the filter radius. This partial dif-
ferential equation (PDE) based filter is more suited and easily implemented using the
FEM. For other numerical methods, we use a Gaussian filter f (r) = 1

A exp(−|r|2/R2
f ), with

the normalization A chosen such that
∫

Ωdes
f (r) = 1. The filtered density in this case is

obtained by a convolution:

p̃(r) = p ∗ f =
∫

Ωdes

p(r′) f (r− r′)dr′ (27)

A threshold projection is then used to progressively obtain a binary design consisting
of two materials only [42]:

p̂( p̃) =
tanh[βν] + tanh[β( p̃− ν)]

tanh[βν] + tanh[β(1− ν)]
, (28)

where the level of projection ν = 1/2 and β is a real positive parameter and is increased
during the course of the optimization. Finally, the permittivity inside the design region is
defined using the solid isotropic material with penalization (SIMP) method [43] as

ε( p̂) = (εmax − εmin) p̂ + εmin, (29)

The gradient-based optimization is initialized with a density p0 and performed for
40 iterations or until convergence on the objective or design variables. This step is then
repeated setting β = 2n, where n is an integer between 0 and 7, restarting the algorithm with
the optimized density obtained at the previous step as an initial guess and incrementing
the value of n. Finally, we use the method of moving asymptotes (MMA, [44]) for the
optimization (with a free implementation via the nlopt package [45]).

3. Results
3.1. Superscatterer

Understanding the interplay between light and subwavelength systems is of funda-
mental significance in optics and photonics and has practical importance for applications
including cloaking, biophysics, optical nanoantennas, sensing, imaging, or in microwave
engineering to enhance the radar visibility of small objects [46–49]. The magnitude of the
interaction can be characterized through the scattering and the absorption cross sections.
Design techniques to boost the field diffracted by objects include transformation optics
based approaches [50,51], but this requires anisotropic and spatially varying permittivity
and permeability, and core-shell objects studied with Mie theory [52–54], which is limited
to radially symmetric designs.
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Our design domain is a circular rod of diameter D = 2R = λ0 = 600 nm, and we
choose the two materials to be SiO2 (εmin = 2.17) and silicon (εmax = 15.59− 0.22i). It
is illuminated by a plane wave of unit amplitude coming from the left. Defining the
Poynting vectors Si =

1
2 Re[Ei × H?

i ] and Ss =
1
2 Re[Es × H?

s ] associated with the incident
and scattered field, respectively, the scattering width is computed on a circle Γ enclosing
the object as [55]:

σs =
1
|Si|

∫
Γ

n· SsdΓ (30)

where n is the unit vector normal to Γ. Our objective is to maximize the normalized
scattering width, which can be mathematically stated as:

max
p(r)

Φ = σs/2R (31)

We perform two separate optimizations for each polarization for a fixed wavelength,
starting with an initial homogeneous density p0 = 1/2, and use a filter of radius R f = R/5.
Results are displayed in Figure 1: the spectra on panel (a) reveal that the scattering width is
enhanced resonantly around the target wavelength of 600 nm for both polarizations. The
insets show the resulting intricate topologies obtained after optimization (the light colour
is silica whilst the dark is silicon). The norm of the near field is displayed in Figure 1b for
TE polarization and Figure 1c for TM polarization, featuring strong forward scattering in
both cases. This is confirmed by the radiation patterns (see insets in Figure 1a).

Figure 1. Optimized superscattering nanorods. (a): normalized scattering width as a function of the
wavelength of the incident light (blue: TE polarization, red: TM polarization). The insets at the top
show the optimized dielectric distribution (white for SiO2 and black for Si), and the bottom insets
are the radiation patterns for the normalized scattering width, in dB. The field maps on the right
panels show the square norm of the fields at the target wavelength λ0 = 600 nm. (b): the square
norm of the magnetic field |Hz|2 for TE polarization. (c): square norm of the electric field |Ez|2 for
TM polarization.

This enhancement is attributed to the simultaneous excitation of several resonances to
achieve mode stacking [49]. To verify that, we perform a modal analysis of the structure,
that is, solving Equation (4) without sources, i.e., finding eigenvalues kn and eigenmodes
vn satisfying:

−∇·[ξ∇vn] = k2
nχvn, (32)
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Because of the open nature of the problem, the modes are quasi-normal modes (QNMs)
associated with complex eigenvalues [56]. Note that we neglect dispersion in our analysis
and consider the material properties at our fixed design wavelength of 600 nm so that this
eigenproblem is linear. In all rigour, one should take it into account by using more advanced
techniques [57,58]. We then perform an expansion of the field onto those modes [59]:

u = ∑
n

Cnvn, (33)

where the expansion coefficient is given by:

Cn = − 1
k2 − k2

n

∫
Ω
S(r)vn(r)dr. (34)

Here we have used the orthonormality relation
∫

Ω vn(r)vm(r)dr = δnm (technically,
the quasi-normal modes are bi-orthonormal to the adjoint eigenmodes wn solution of
an adjoint eigenproblem with adjoint material properties ε† and µ† with respect to the
inner product

∫
Ω vn(r)wm(r)?dr = δnm, but in our case the two set of modes are complex

conjugate of one another [59]). The coupling coefficients Cn characterizes the strength of
the excitation of a particular mode for a given source.

The results of our modal analysis for the optimized nanorods are summarized in
Figure 2. For TE polarization, the dominant eigenmode has a resonant wavelength of
λ1 = 601 nm, very close to the target wavelength λt = 600 nm, and a moderate quality
factor Q1 = 13.8. The other modes have a smaller coupling strength but still contribute
to the scattering behaviour. For TM polarization, we observe a quantitatively equivalent
coupling with modes 1 and 2 at the target wavelength, but their resonances are distributed
around this central value. The magnitude of other coupling coefficients is small compared
to those two modes, although the resonant wavelength for mode 3 is very close to λt.
Furthermore, the field maps (see insets) of modes 1 and 2 clearly show strong forward
scattering. This analysis indeed demonstrates that the strong scattering behaviour is due to
the simultaneous excitation of several QNMs and allows us to quantify the relative strength
of the interaction with each mode.

Figure 2. Modal analysis of optimized supperscatterers for TE (left panel) and TM (right panel)
polarization. The curves are the coupling coefficients as a function of incident wavelength for the
four dominant eigenmodes (those with the highest |Cn| at λ = 600 nm). The insets show the real
part of the eigenfield vn for the corresponding QNMs, its resonant wavelength λn = 2π/Re (kn), and
quality factor Qn = Re (kn)/2 Im (kn).



Mathematics 2022, 10, 3912 10 of 18

3.2. Deflective Metasurface

Metasurfaces have increasingly attracted interest in recent years [60,61], with the po-
tential to design flat optics for manipulating the amplitude, phase, and polarization of light.
Inverse design of metastructures has been proposed and successfully applied [11,12,62–64],
enabling the fabrication of devices with improved performances.

We propose here to design a metasurface with the maximum transmission in the (1, 0)
diffracted order at a target wavelength λt = 732 nm. The calculations are performed with
the FMM with built-in gradient evaluation retaining 197 harmonics. The grating has a
periodicity of Lx = 800 nm and Ly = 400 nm along x and y. A plane wave is normally
incident from the superstrate (silica, ε = 2.16), with the electric field linearly polarized
along x (TE) or y (TM). Our design domain is the metasurface layer of thickness 350 nm,
restricted to one unit cell, and the boundaries for the permittivity interpolation are εmin = 1
(air) and εmax = 14.06− 0.074i (silicon). Our objective is to maximize the average of the
transmission coefficient for both polarizations:

max
p(r)

Φ =
1
2

(
TTE
(0,1) + TTM

(0,1)

)
(35)

We initialize the algorithm with a metasurface consisting of silicon cylindrical nanorods
of radius R0 = 120 nm and enforce symmetry along x. In addition, we use a filter of radius
R f = Lx/40.

The history of our optimization is plotted in Figure 3a and converges to transmitted
efficiencies of around 87% for TE polarization and 87% for TM polarization. Discontinuities
in the values as the iteration increases are attributed to a competing effect between the
two orthogonal polarizations, but also to the projection, filtering techniques, and under-
lying optimization algorithm. Nevertheless, the optimized blazed metasurface features
an excellent transmission coefficient in the target order, showing the convergence of our
algorithm to a local maximum. The optimized layout is displayed in Figure 3b, resulting in
an array of almost touching and almost connected silicon nanostructures. We remark that,
as in any optimization algorithm requiring an initial guess, the influence of the starting
layout may play a significant role in the final result [65]. The high performance exhibited by
topology-optimized metasurfaces has been attributed to complex light–matter interactions
thanks to a high density of Bloch modes with intermode and intramode coupling [62].

Figure 3. Optimized metasurface blazed in the (1, 0) transmitted order. (a): optimization history
showing the figure of merit Φ (black squares) and the transmission coefficient for TE (blue line) and
TM (red line) polarization. The final metagrating has 90.9% and 85.5% transmission efficiency for
TE and TM polarized waves, respectively. (b): optimized density function (0 corresponds to air and
1 to silicon).

The transmission spectra in the (1, 0) order for the optimized metasurface are shown in
Figure 4 and exhibit a maximum around λ = 732 nm. The bandwidth is much larger in the
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TE case compared to the TM case with a narrower resonant peak. Inspecting the field maps
of the norm of the Poynting vector (see insets), we observe that the high transmission is
mediated preferentially through the central inverted C-shaped nanostructure as the energy
is concentrated in this region. For the other polarization, this enhanced transmission is
channelled through the peripheral patterns on the left of the unit cell.

Figure 4. Transmission spectra in the (1, 0) order for the optimized metasurface as a function of
wavelength for TE (blue curve) and TM polarization (red curve). The insets show the norm of the
Poynting vector (colourmap) and its transverse components (arrows) at the target wavelength directly
above the metasurface (z = 350 nm).

3.3. Bandgap and Dispersion Engineering in Photonic Crystals

Topology optimization has enabled the design of metamaterials and photonic crystals
with exotic properties such as large band gap structures [66,67], dispersion engineering in
waveguiding structures [68,69], or Dirac exceptional points tuning [70].

The structure we consider is a square periodic array of size a, and we parametrize the
permittivity distribution with εmin = 1 (air) and εmax = 9. The calculations are performed
with the PWEM using 197 plane waves, starting a random density and using a filter radius
R f = a/20.

Our objective for TE modes is to open and maximize a bandgap between the fifth and
sixth eigenvalues:

max
p(r)

Φ = min
k

ωn+1(k)−max
k

ωn(k), for n = 5. (36)

In this instance, we enforce C4 symmetry on the unit cell. The results of this optimiza-
tion are reported in Figure 5a: we obtain a bandgap centered at ω0 = 0.766× 2πc/a with
relative width of around ∆ω/ω0 of about 26%. The inset shows the dielectric distribution
in the unit cell and is in accordance with the simple rules given in Reference [66]: the walls
of an optimal centroidal Voronoi tessellation with n = 5 points.

For TM modes, the target is to obtain a prescribed dispersion curve for the sixth band
given by ωtar(kx) = −0.02 cos(kxa) + 0.01 cos(2kxa) + 0.007 cos(3kxa):

min
p(r)

Φ = log10

〈
|ωn(kx)− 〈ωn〉 −ωtar(kx)|2

〉
, for n = 6, (37)
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where kx ∈ [0, π/a] with the interval discretized with M points and 〈 f 〉 = 1
M ∑M

m=0 fm
denotes the mean value of f . Note that the target curve is chosen such that the dispersion
has zero derivatives at the high symmetry points of the Brillouin zone by time-reversal
invariance [68]. For this computation, we enforced symmetry with respect to y.

Results are displayed in Figure 5a, and we obtain a dispersion curve for the target
band that matches almost perfectly the required ωtar(kx). The resulting permittivity map
can be seen in the inset and display well-defined freeform dielectric structures connected
in the x direction.

Figure 5. Inverse designed two-dimensional photonic crystals. (a): maximal band gap between
bands 5 and 6 for TE polarization. The band diagram is computed on the edges of the first Brillouin
zone, and the optimized metamaterial exhibits a relative bandgap width of around 26% centred at
ω0 = 0.766× 2πc/a. (b): dispersion engineering to obtain a prescribed target (grey dashed lines) for
the 6th TM mode (black line). The insets show the optimized unit cell with air (light shades) and
dielectric (dark shades).

4. Discussion

Computational electromagnetics has a long-standing history and has grown with
the computing power and codes available. Choosing the right technique for solving a
specific problem is important, but there is no general-purpose tool that is the best in terms
of simplicity, accuracy, computational resources, or memory usage. Thus, in addition to
commercial software products, the availability of open-source codes for solving Maxwell’s
equations is of paramount importance in the growing field of metamaterials and photon-
ics. Indeed, free software, besides being low cost, has many advantages such as being
portable, customizable, and vendor-independent. Our implementation of the three nu-
merical methods commonly used in photonics that we introduced in this paper is freely
available in the form of python packages: gyptis (FEM, [18]), nannos (FMM, [71]), and
protis (PWEM, [72]). Common calculations are specified straightforwardly with a simple
programming interface, and our codes benefit from using such a widely used programming
language, are easily installable, and integrate with the rich and growing scientific Python
ecosystem. A few examples of validation of the codes are provided in Appendix A. In
addition, the integration of automatic differentiability in our implementation makes the
calculation of gradients with respect to inputs straightforward. As illustrated in this study,
it allows the inverse design of photonic structures and metamaterials with improved per-
formances or to explore intriguing effects such as supperscattering, polarization-tolerant
blazed metasurfaces, or photonic crystals with large bandgaps and dispersion engineering.
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Appendix A. Code Validation

We provide here cross-validation of the code with published results for each numerical
method. Other examples and comparisons of our implementations are available online:

• FEM: https://gyptis.gitlab.io/examples (accessed on 17 October 2022)
• FMM: https://nannos.gitlab.io/examples (accessed on 17 October 2022)
• PWEM: https://protis.gitlab.io/examples (accessed on 17 October 2022)

Appendix A.1. FEM

First, we study the diffraction of a plane wave by a perfectly conducting circular
cylinder. Results are plotted in Figure A1a and agree well with those obtained analytically
in [73] for both polarizations.

Next, we compare our code for the scattering of a TE polarized plane wave by a
core-shell nanocylinder as studied in Ref. [74]. Results are displayed in Figure A1b and
show good agreement with the two methods.

https://gitlab.com/benvial/optim_photonics
https://gyptis.gitlab.io/examples
https://nannos.gitlab.io/examples
https://protis.gitlab.io/examples
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Figure A1. (a): Scattering cross-section (SCS) of a perfectly conducting cylinder for a TE (red) and
TM (green) polarized plane wave as a function of kR (k is the wavenumber and R the radius of the
cylinder). Solid lines are results from [73] and markers are from our FEM implementation. (b): Scat-
tering cross-section (SCS) and absorption cross-section (ACS) of a single silver-coated dielectric
nanocylinder (ε = 2). The inner radius is R1 = 60 nm, outer radius R2 = 30 nm. Wider lines are
results from [74] and thin solid lines are from our FEM implementation.

Appendix A.2. FMM

We study here a checkerboard grating made of square unit cells of size d = 2.5λ0,
with square inclusion rotated at 45◦ of permittivity 2.25 (this corresponds to unit cell B in
Ref. [25]). The thickness of the structured layer is h = λ0, the inclusions are embedded in
air (ε = 1), and the permittivity of the substrate and superstrate are ε = 1 and ε = 2.25,
respectively. The structure is illuminated by a plane wave at normal incidence (θ = φ = 0)
polarized parallel to one side of the square inclusion.

Table A1 shows the propagating transmitted orders for 441 harmonics retained in
the modal expansion and a 1000× 1000 discretization of the unit cell and agrees with
Table 1 in Ref. [25].

Table A1. Diffraction efficiencies (%) of the transmitted orders of the checkerboard grating studied
in [25].

Diffraction Order −1 0 1

−1 4.345 12.816 6.130
0 12.816 17.765 12.816
1 6.130 12.816 4.345

We next study the convergence of the (0, −1) transmitted order: Figure A2 shows that
the tangent formulation with proper factorization rules converges must faster than the
original RCWA formulation. Those results are in line with findings in Refs. [22,25].
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Figure A2. Convergence of the (0, −1) transmitted order as a function of truncation number. Blue
triangles: original formulation; green circles: tangent formulation.

Appendix A.3. PWEM

The structure we study here is a square lattice with lattice constant a of dielectric
columns, with radius r = 0.2a and dielectric constant ε = 8.9 in a vacuum. This is the
same photonic crystal considered in Ref. [75] (Chapter 5, Figure 2), and our calculations
agree very well with those reference results (see Figure A3). Furthermore, the agreement
between the full model and the reduced Bloch mode expansion is good, albeit with a slight
discrepancy for higher frequency bands, but the RBME calculation is more than eight times
faster.

Figure A3. The photonic band structure for a square array of dielectric columns. The insets show
the Brillouin zone, with the irreducible zone shaded. Solid lines are results from the full model and
dashed lines are results obtained with the reduced Bloch mode expansion. Here we retained 385
plane waves in the expansion and used the first 8 modes calculated at the three symmetry points Γ,
X, and M for the RBME. The path in reciprocal space is discretized with 144 points.
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