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Abstract: We study numerically the effects of a viscous fluid seabed on wave scattering with a solid
obstacle of rectangular shape fixed at the free surface, on the seafloor, or internally within the water
layer. The computational model is based on OpenFOAM and it is validated using existing analytical
solutions for waves encountering an obstacle on a solid bed and available experimental data for
waves propagating over a muddy seabed with no obstacles. With the consideration of a solid obstacle
on a viscous fluid bottom, we examine the corresponding transformations of incident, reflected, and
transmitted wave components. The velocity field near the obstacle and the wave forces exerted on the
obstacle are also analyzed. Our simulations show that all wave components experience significant
amplitude attenuation caused by the viscous fluid bed. For both surface and bottom obstacles, the
presence of an obstacle enhances the damping of reflected waves. When an internally submerged
obstacle is considered, transmitted waves are the most affected due to a prominent vortex generated
in the lee of the obstacle. Patterns of the velocity field in the vicinity of the obstacle are shown to be
controlled mainly by the obstacle with some modulations in magnitude and wavelength contributed
by the viscous fluid bed. In view of the vertical wave force on the obstacle surface, both a phase
shift and decrease in magnitude are observed. These findings enhance our understanding of the
underlying physical processes in the wave–obstacle–mud problems. More studies are still needed
in order to provide the necessary technical tools for the engineering design of coastal structures in
muddy marine environments.

Keywords: wave scattering; solid obstacle; viscous fluid seabed; OpenFOAM
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1. Introduction

The hydrodynamic impact of coastal structures on the transmission of surface waves
has always been a key subject in the study of water waves. The obstacles of interest often
represent the common protective breakwaters, which are traditionally constructed as wave
attenuators to defend our coasts from wave attacks and facilitate the navigation safety and
operations in ports and harbors [1]. In wave–obstacle problems, the engineered structures
can also appear in various forms as offshore oil drilling platforms [2], floating foundations
of offshore wind turbines [3], underwater tube bridges for road traffic [4], heaving point
absorbers for wave energy harvesting [5], or very large floating structures (VLFS), which
have been regarded as a more sustainable engineering solution for coastal and offshore
development than the traditional land reclamation approach [6].

In order to provide a scientific understanding of the effectiveness of these coastal
structures and the potential impacts they may cause to the environment, many fundamental
studies based on simplified obstacle geometry and idealized wave and seafloor conditions
have been reported in the literature. For instance, within the framework of typical inviscid
and irrotational assumptions for water waves, the scattering of linear progressive waves
due to a rectangular obstacle either fixed at the free surface or resting on a flat solid seabed
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was studied analytically by the method of eigenfunction expansions with both reflection
and transmission coefficients, representing the most prominent scattering properties for
practical engineering considerations, being obtained as functions of water depths, incident
wave periods, and the physical dimensions of the obstacles [7]. Submerged obstacles of
rectangular shape, i.e., a stationary structure situated internally within the water body, have
also been studied analytically using the same mathematical technique of eigenfunction
expansions [8–12], with the theoretical results revealing that, under a linear progressive
wave, both reflection and transmission coefficients and the magnitude of wave forces
exerted on the obstacle show oscillatory patterns with respect to the change in the obstacle
length [11].

To further elucidate the hydrodynamics of wave–obstacle problems, more direct and
telling observations were also made available by means of physical modeling, including
wave flume experiments of regular and irregular waves encountering a surface obsta-
cle [13–16], tests of propagation of linear progressive waves [17–20], solitary waves [21],
and cnoidal waves [22] over a bottom standing obstacle, and laboratory studies of internally
submerged obstacles under various types of incident waves [9,23–28]. These past experi-
ments reported valuable wave gauge records of free surface elevation and measurements of
wave force and dynamic pressure acting on the structures, which have been frequently used
to examine the theoretically predicted reflection and transmission coefficients and wave
forces exerted on the obstacles [7,9,10,20,29–31]. Furthermore, velocity measurements were
also collected by nonintrusive techniques such as laser doppler velocimetry (LDV) [20] and
particle image velocimetry (PIV) [21,22], providing direct evidence of vortex generation and
shedding due to the obstacles that cannot be explained by the existing analytical models
based on the potential flow assumption.

In addition to the analytical solutions and the laboratory experiments, many computa-
tional tools have also been developed for wave–obstacle problems to increase the modeling
capability suitable for more complex and realistic conditions. Some notable numerical stud-
ies include the implementation of the Laplace equation for potential flow by the method
of boundary integral equations [21,32] and finite element approximations [11,33], depth-
integrated Boussinesq-type solvers for non-breaking [34,35] and breaking [36] long water
waves, a two-dimensional Navier–Stokes solver by the finite-analytic method for nonbreak-
ing waves [37], and a finite-difference-based model capable of simulating two-dimensional
breaking waves by solving Reynolds-averaged Navier–Stokes (RANS) equations with
additional parametrized models for turbulence closures and the volume of fluid method
for capturing the free surface [38]. A more sophisticated RANS-based finite volume solver
is also available for modeling three-dimensional wave–obstacle problems [39,40]. As far as
the modeling of free-surface profiles is concerned, the existing numerical results have been
shown to agree with laboratory data and analytical predictions [11,21,36,39].

Most existing theoretical studies of wave–obstacle problems are conventionally based
on the assumption of a rigid and impermeable seabed. However, due to the complex and
diverse compositions of marine sediments, natural seafloors can vary dramatically from
solid rocky beds, to porous sandy bottoms characterized by noncohesive grains, to fluidized
muddy seabeds comprised of cohesive sediments [41,42]. In fact, actual seafloors often
respond to the significant dynamic pressures induced by surface waves, which may cause
liquefaction and shear failure leading to the damage and even destruction of coastal
structures [43]. To account for more realistic bottom conditions, seafloor flexibility and
permeability have been considered by recent studies of surface waves responding to coastal
structures on impermeable elastic beds [44–47], rigid porous bottoms [48–53], or poro-elastic
seabeds [54–65]. In these studies, elastic seabeds are often modeled by the Euler—Bernoulli
beam equation [44], rigid porous bottoms follow Darcy’s law [50], and poro-elastic effects
are governed by Biot’s consolidation theory [54]. Due to the presence of an elastic bed,
an interfacial wave with a shorter wavelength than the surface wave is generated by the
surface wave loading and propagates along the water–seabed interface [44]. Reflection
and transmission coefficients and the waveload on the structure are also affected by the
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seabed conditions [46]. With the consideration of permeability and the inclusion of inertial
resistances in the parameters representing porous effects, noticeable wave attenuation due
to percolation is observed and the wave-induced pore pressure becomes weaker with the
increase in seabed thickness [51,62]. In addition, excessive wave-induced upward seepage
force inside the seabed leads to possible liquefaction, which may cause foundation failures
of the coastal structures [43].

The above discussion suggests that wave scattering by coastal structures on solid,
elastic, or sandy bottoms has been studied extensively. However, the literature on waves
encountering obstacles above a muddy seabed composed of cohesive sediments is relatively
scarce. In fact, muddy seafloors have been observed in many marine environments where
the obstacles of interest may appear for various engineering purposes [42]. Field samples
have also revealed that the flow and deformation characteristics of muddy deposits are
fundamentally different from those of noncohesive sediment particles [42,66,67]. Hence,
we believe that it is necessary to carefully examine the effects of a muddy seabed on
wave scattering by an obstacle. In the present study, the wave–obstacle–mud problem is
studied numerically. There exists a vast literature on the propagation and transformation of
surface waves above a muddy bottom without encountering any coastal structures, where
the rheological behaviors of bottom fluid mud have been idealized as Newtonian [66,68],
viscoelastic [69,70], and viscoplastic [71,72] fluids. Conventionally, existing theoretical
studies of wave–seabed interactions employed a two-layer system consisting of an upper
inviscid water layer above a bottom muddy seabed laying on a solid ground [66,68–70]. It
has been reported that interactions between surface waves and muddy seafloors lead not
only to modifications of important wave characteristics such as wave celerity, wavelength,
and wave height, but also significant motions of bottom cohesive sediments [66,70,71].
Evidently, this calls for the need to study wave–obstacle–mud interactions. Due partially to
the diverse rheological properties of cohesive sediments, it is unrealistic to hope that the full
spectrum of rheological behaviors of fluid mud can be described by a simple rheological
model [42]. Therefore, in the present study we shall focus only on the scenarios where
the bottom cohesive mud can be modeled as a Newtonian fluid. Adopting the canonical
two-layer water–mud system, we perform a series of numerical simulations to investigate
the effects of a viscous fluid bottom on wave scattering by a fixed obstacle placed at the free
surface, on the seabed, or internally in the water layer. Key features, such as the reflection
and transmission coefficients, velocity field in the vicinity of the obstacle, and the wave
forces exerted on the obstacle, are presented and discussed.

The rest of the paper is organized as follows: In Section 2, we introduce the devel-
opment and the validation of the numerical model used in the present study. Numerical
results, including reflected and transmitted waves, velocity field, wave forces exerted on
the obstacle, are presented and discussed in Section 3. Lastly, Section 4 summarizes the
key findings of this study and discusses the limitations and possible improvements of the
present numerical work.

2. Model Development

We introduce the computational model that is used to simulate the wave–obstacle–
seabed problem, followed by the model validation using relevant analytical solutions and
laboratory data available in the literature.

2.1. Assumptions and Simplifications

In the present wave–obstacle–mud problem, we adopted the two-layer system com-
monly used in the studies of wave–mud interactions [66], as shown in Figure 1. The upper
layer is typical sea water and the bottom muddy seabed, which lays on an impermeable
solid bed, is idealized by a Newtonian fluid. A fixed solid obstacle in the shape of a
rectangle was considered. Three different settings were examined: a surface obstacle that
is sufficiently high so that no wave overtopping is possible (Figure 1a); a bottom obstacle
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sitting on the solid bed and penetrating through the water–mud interface (Figure 1b); a
submerged obstacle resting internally in the water layer (Figure 1c).

(a) (b) (c)

Figure 1. Schematic of wave scattering by a fixed obstacle above a fluid mud bottom: (a) surface
obstacle; (b) bottom obstacle; (c) submerged obstacle. d = constant water depth before and after the
obstacle. dm = thickness of the mud layer. Lo, Do = length and submerged depth of the obstacle.
du, d` = depths above and below the obstacle. ζ, ζm = displacements at the free-surface and the
water–mud interface. (x, z) = horizontal and vertical coordinates.

2.2. Numerical Model

We constructed a numerical wave flume to investigate the scattering of periodic waves
by a fixed rectangular obstacle above a fluid mud bottom. The computational model
employes an open-source CFD suite olaFlow [73], which provides specialized functionality,
such as boundary conditions for wave generation and active wave absorption, developed
for water waves problems within the framework of the popular generic C++-based CFD
software package OpenFOAM [74]. In the present study, we considered only laminar
flows in two dimensions. Hence, OpenFOAM essentially solved the familiar 2D Navier–
Stokes equations using an Eulerian finite volume discretization, where the fluid dynamic
quantities were computed at the control volume centroids. Although, our simulations
were limited to idealized 2D behaviors with waves normally incident on a rectangular
obstacle over a simplified bathymetry, nonlinear interactions among waves, obstacles,
and bottom fluid mud can be modeled as vertical variations of both velocity and pressure
are taken into account by the 2D Navier–Stokes equations [40]. Since we needed to resolve
motions of both water and bottom fluid mud, we utilized the solver multiphaseInterFoam,
suitable for problems involving multiple incompressible fluids in the release OpenFOAM
v2012, which is freely available at https://www.openfoam.com (last accessed on 8 August
2022). The PIMPLE algorithm, combining the pressure–velocity calculation procedure
PISO (Pressure Implicit with Splitting of Operator) with the widely used iterative solution
strategy SIMPLE (Semi-Implicit Method for Pressure-Linked Equations), was adopted in
OpenFOAM to solve the finite volume discretized Navier–Stokes equations. In addition,
fluid–fluid interfaces were modeled using the volume of fluid (VOF) method, a phase-
fraction-based interface capturing technique that solves a species transport equation for the
relative volume fraction of each fluid. In VOF, an interface is constructed by an isosurface of
the volume fraction data with an isovalue that can be freely chosen between 0 and 1. In our
simulations, both air–water and water–mud interfaces were defined by the isosurfaces at a
value of 0.5.

The general layout of the 2D numerical wave flume considered in the present study
is shown in Figure 2. The configuration includes inlet, propagation zone for incident and
reflected waves, obstacle region, transmission zone, and finally a wave-absorbing boundary
in the end of the domain. On all solid boundaries, the no-slip condition is imposed.
As for the inlet condition, waveType regular and waveTheory Stokes I are set in olaFlow
to generate a positive-going incident periodic wave. The utility extendedRangeAWA [75],
which provides active wave absorption based on Airy wave theory for waves in water of
arbitrary uniform depth, was implemented as the outlet condition to reduce spurious waves
reflected at the end of the numerical wave tank. With the presence of a fluid mud bottom,
extendedRangeAWA is not as effective as its original design for the case of a solid bottom.

https://www.openfoam.com
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To further minimize the interference due to reflections resulting from the wave-absorbing
boundary, the obstacle region is sandwiched by two 3L long observation windows, where L
is the wavelength of the incident wave, and the lengths of the propagation zone for incident
and reflected waves and the transmission zone are both set at 9L, as shown in Figure 2.
Under this arrangement, we ensure that, for the purpose of wave scattering analysis, in our
simulations at least 18 waves clean from the contamination of reflection can be recorded
before and after the obstacle. Since we considered rectangular obstacles fixed in a typical
wave flume, structured and uniform numerical mesh was generated directly by the use of
the utility blockmesh. The required mesh resolution was determined through the validation
with existing results, i.e., the examination on both wave scattering by an obstacle above a
solid bed [7,11] and wave propagation over a viscous fluid bed without any obstacles [70].
The details of this process are discussed shortly in Section 2.3. In the present numerical
study, a workstation equipped with two Intel Xeon E5-2620 v4 processors and 256 GB RAM
was used. For a 4 m-long incident wave in water at a depth 0.8 m, a simulation of a 1 min
event requires about 150 h wall clock time.

Figure 2. Layout of the present 2D numerical wave flume. Lo = length of the obstacle (see Figure 1).
L = wavelength of the incident wave.

2.3. Model Validation

To examine the numerical implementation of the present model, we performed four
tests relevant to the problem of interest. The first three cases consider waves above a
solid bed, where scattering is due to a fixed free-surface [7], bottom [7], or submerged [11]
obstacle. The final test regards waves over a soft seabed in the absence of obstacles [68,70,76].
In other words, these examples correspond to the problem sketched in Figure 1 but with
either dm = 0 (no mud) or Lo = Do = 0 (no obstacle).

2.3.1. Surface Obstacle above a Solid Bed

We first consider the case of wave scattering due to a surface obstacle by examining the
reflection and transmission coefficients, which are defined as the ratios of reflected wave
amplitude and transmitted wave amplitude to the incident wave amplitude, respectively [7].
In order to determine the refection coefficient from our numerical results, in the region
before the obstacle it is necessary to decompose the incident waves and the reflected
components from the simulated combined waves. Some techniques commonly used
for the reflection analysis in physical wave flume testing include the two-point method
employing fast Fourier transform to analyze records of wave spectra taken simultaneously
at two adjacent stationary wave gauges [77], the N-gauge approach applying three or more
stationary wave gauges with least squares optimization to minimize the noise signal for
improved accuracy [78,79], and the use of Doppler analysis on free-surface data recorded by
one or more continuously moving wave gauges [80]. We note that these methods are based
on the assumption that the principle of superposition is applicable. In the present analysis,
we adopted a more direct but time-consuming approach by performing additional trivial
companion simulations for wave propagation without any obstacles. Hence, under the
linear superposition, the reflection due to the obstacle can be readily deduced as

ηr = η − η f , (1)

where η is the simulated free-surface elevation for the wave–obstacle problem and η f
is the trivial free prorogation wave also obtained numerically. Both η and η f are model
results under the identical numerical setups, except the later has no obstacles. Recall in
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each simulation wave data over a length of 18 wave periods are recorded within a 3L-long
observation window both before and after the obstacle, as indicated by the setup of the
numerical wave tank illustrated in Figure 2. Therefore, when presenting the reflection
and transmission coefficients, we further took a time average of the simulated wave data
over the last eight wave periods since it requires a few waves for the simulations to
become periodic.

Figure 3 shows the reflection and transmission coefficients obtained from both our
simulations and the existing analytical solutions by the method of matched eigenfunction
expansions [7]. The configuration of this surface obstacle example, as indicated in Figure 1a,
has a water depth of d = 0.8 m, an obstacle of Lo = Do = 0.4 m in dimensions, and dm = 0
since a solid bed is considered. In our calculations, incident waves of various wave periods
were examined. As can be expected, Figure 3 indicates that wave reflection becomes
stronger for shorter waves, i.e., larger k0Do values with k0 being the wavenumber of
incident waves. Regarding the comparison between the present numerical results and
the analytical predictions, the overall agreement is reasonable as the discrepancy becomes
more noticeable but still acceptable for waves in shallower waters. In our simulations,
we adopted a uniform mesh with ∆x = L/40 in the horizontal direction and a vertical
resolution of ∆z = 1/30 m. The time step was determined accordingly by the Courant–
Friedrichs–Lewy condition with the Courant number fixed at C = 0.25. We note that this C
value is adopted throughout the present study.

Figure 3. Wave scattering by a surface obstacle above a solid bed: reflection (�; solid line) and
transmission (�; dashed line) coefficients. Symbols: present numerical results. Lines: analyti-
cal predictions reported in the literature [7]. k0 represents the wavenumber of incident waves.
(d, Do, Lo, dm) = (0.8, 0.4, 0.4, 0) m are used in this example. See Figure 1a for the problem sketch.

2.3.2. Bottom Obstacle on a Solid Bed

We now examine the scattering of surface waves by a bottom obstacle illustrated in
Figure 1b with dm = 0. Both the reflection and transmission coefficients corresponding to
(d, Do, Lo, dm) = (0.8, 0.4, 0.4, 0) m are presented in Figure 4. We reiterate that the calculation
of these two dimensionless coefficients is described in Section 2.3.1. The oscillatory nature
of the reflection coefficient shown in Figure 4, which is very different from the monotonic
behavior for the case of a surface obstacle presented in Figure 3, is due to the interference
between the two ends of the obstacle [7]. Figure 4 also suggests that our numerical results
are in satisfactory agreement with the available analytical calculations obtained again by
the eigenfunction expansions [7]. In this example, the temporal and spatial resolutions are
the same as those used in Figure 3 for a surface obstacle.
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Figure 4. Bottom obstacle on a solid bed: reflection (�; solid line) and transmission (�; dashed
line) coefficients. Symbols: numerical results. Lines: existing analytical predictions [7]. k0 is the
wavenumber of incident waves. In this example, (d, Do, Lo, dm) = (0.8, 0.4, 0.4, 0) m. See Figure 1b
for the problem sketch.

2.3.3. Submerged Obstacle above a Solid Bottom

Figure 5 plots the results for the case of a submerged obstacle sketched in Figure 1c
with dm = 0. In this example, (d, Do, d`) = (0.8, 0.02, 0.54) m and the incident wave
period is fixed at T = 1.79 s. In panel (a) of the figure, we present both the reflection and
transmission coefficients, while panel (b) shows the dimensionless horizontal and vertical
forces exerted on the obstacle. The dimensionless wave force components are defined
as [11]

Fx = max
(
|Fx|

ρga0Do

)
(2)

and

Fy = max
(
|Fx|

ρga0Lo

)
, (3)

where ρ is the density of water, g is the gravitational acceleration, a0 is the amplitude of
incident waves, and the horizontal and vertical wave forces erected on the obstacle, Fx
and Fy, are calculated by integrating the pressure, p, obtained by our simulations over the
surface area of the obstacle, Γo, as [11]

Fx =
∫

Γo
pnxds (4)

and
Fy =

∫
Γo

pnyds, (5)

respectively, where ~n = (nx, ny) is the normal direction of the obstacle boundary. In our
2D simulations, Fx and Fy are wave forces per unit width of the wave flume. We note that
Fx and Fy are functions of time, whereas the dimensionless coefficients Fx and Fy, which
represent the maximum quantities, are time-independent.

As shown in Figure 5, the oscillatory feature is evident for both the reflection coefficient
and dimensionless horizontal wave force acting on the obstacle, which is similar to the case
of a bottom obstacle presented in Figure 4. Figure 5 also compares our simulations with the
existing analytical predictions [11], suggesting that the two results are comparable. We note
that, in this example, we adopted ∆x = L/80 and ∆z = 0.01 m for the numerical mesh.
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(a) (b)

Figure 5. Wave scattering by a submerged obstacle above a solid bed: (a) reflection (�; solid
line) and transmission (�; dashed line) coefficients; (b) dimensionless horizontal (�; solid line)
and vertical (�; dashed line) forces acting on the obstacle, as defined in (2) and (3), respectively.
Symbols: numerical simulations. Lines: analytical results reported in the literature [11]. In this case,
(d, Do, d`, dm) = (0.8, 0.02, 0.54, 0) m and the incident wave period is T = 1.79 s. See Figure 1c for the
problem sketch.

2.3.4. Waves over a Layer of Viscous Fluid Mud

The case of periodic waves propagating over a viscous fluid bottom without any
obstacles, i.e., setting Lo = Do = 0 in Figure 1, is now considered. Our model predic-
tions are compared with the existing analytical results [68,70] and laboratory data [76]
reported in the literature. In Figure 6, we plot the amplitude ratio, a/a0, as a function
of dimensionless propagation distance, x/L, to demonstrate the effects of a viscous fluid
bed on wave propagation. In this example, an incident wave of T = 1.79 s in a constant
depth of d = 0.8 m is considered. The fluid mud has a viscosity of νm = 0.003 m2/s and
density ρm = 1111 kg/m3. In addition, the thickness of the muddy bed, dm, is equal to
the Stokes boundary layer thickness of mud, i.e., dm = δm = 0.0413 m. As shown in
Figure 6, we observe a 20% attenuation in wave amplitude over a propagation distance
of six wavelengths, suggesting a strong wave damping due to the presence of a fluid
bottom. Amplitude attenuation is in fact the most dominant effect caused a viscous muddy
bed [68,70]. We reiterate that our numerical results are time-averaged over the last 8 wave
periods as discussed previously in Section 2.3.1. For comparison, in Figure 6 we also
plot the analytical predictions of wave attenuation obtained by using a two-layer Stokes’
boundary layer model [70]. As can be seen, two results agree favorably with each other.
In our numerical simulations, ∆x = L/200 and ∆z = 0.0025 m are used.

Figure 6. Waves over a viscous fluid bottom without obstacles: amplitude ratio, a/a0, as a function
of dimensionless propagation distance, x/L. Dot: present numerical results. Line: existing analytical
predictions [70]. In this example, T = 1.79 s, d = 0.8 m, νm = 0.003 m2/s, ρm = 1111 kg/m3,
and dm = 0.0413 m.
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In Figure 7, we compare simulated horizontal velocities at five different elevations
with experimental data available in the literature [76]. In the laboratory testing, the viscous
fluid mud bed was dm = 0.11 m thick. At a fixed horizontal location 1 m away from
the beginning edge of the model mud bed used in the experiment, five electromagnetic
flowmeters were placed vertically across the mud layer and the water body to record flow
velocity. Among these flowmeters, three were installed at 0.025, 0.06, and 0.09 m below the
undisturbed water–mud interface while the remaining two were fixed at 0.01 and 0.04 m
above the interface [76]. Other key experimental conditions were: T = 1.3 s, a0 = 0.025 m,
d = 0.3 m, νm = 0.03 m2/s, and ρm = 1294.7 kg/m3 [76]. In addition to the present
numerical results and the laboratory measurements [76], Figure 7 also plots the existing
analytical predictions [68] for comparison. As can be seen in the figure, mud flow velocity
(bottom three panels in Figure 7) is much weaker than the water particle velocity (top
two panels) and two velocities are slightly out of phase. In general, our simulations agree
fairly with the measurements although difference is evident at 0.09 m below the interface.
It is interesting to see that our results agree almost perfectly with the analytical solutions
obtained by solving the linearized Navier–Stokes equations in a two-layer viscous fluid
system [68]. We note that in the numerical simulations the temporal and spatial resolutions
are the same as those used in Figure 6.

Figure 7. Time histories of horizontal velocity, u, at five different elevations. The velocity is normal-
ized by the characteristic wave-induced velocity, u0 = a0(2π/T). The first and the second panels
show the results at 0.04 and 0.01 m above the initial water–mud interface, respectively. The remaining
three panels, from top to bottom, plot the velocity at 0.025, 0.06, and 0.09 m below the interface.
Circle: present numerical results. Dashed line: laboratory data [76]. Solid line: existing analytical
solutions [68]. In this example, T = 1.3 s, a0 = 0.025 m, d = 0.3 m, dm = 0.11 m, νm = 0.03 m2/s,
ρm = 1294.7 kg/m3, and u0 = 0.12 m/s. Records of experimental data were slightly less than two
wave periods.

Through the above validation testing, we have demonstrated the capability of the
present model to simulate both wave scattering by an obstacle on a solid bed and wave
propagation above a viscous fluid bed without any obstacles. In the process, we have
gained the experience on the numerical resolution requirements necessary for a satisfactory
comparison, which is valuable for us to study the full problem of the impacts of a viscous
fluid bottom on scattering of periodic waves by a fixed rectangular obstacle as illustrated
in Figure 1.

3. Results and Discussions

We shall now present and discuss the numerical results for three exemplary cases
of the wave–obstacle–mud problem. Specifically, variation of wave amplitudes, wave
forces erected on the obstacle, and velocity fields surrounding the obstacle are analyzed to
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evaluate the effects of a viscous fluid bed on wave scattering by a fixed surface, bottom,
or submerged obstacle. We reiterate that the problem of interest is sketched in Figure 1 and
the configuration of the 2D numerical wave flume can be read in Figure 2. Suggested by
the validation tests discussed in Section 2.3, all the numerical results presented herein are
obtained under the setup of ∆x = L/200 and ∆z = 0.0025 m. Furthermore, the decomposi-
tion and time averaging of incident waves and reflected components follow the procedures
introduced in Section 2.3.1. For the calculations of wave forces, they have been defined in
Section 2.3.3.

3.1. Surface Obstacle

We first discuss the case of a surface obstacle above a viscous fluid bottom, as defined
in Figure 1a. Spatial variations of wave amplitude ratio, a/a0, within the observation
windows before and after the obstacle are shown in Figure 8. In our simulations, we
consider T = 1.79 s, a0 = 0.02 m, d = 0.8 m, νm = 0.003 m2/s, ρm = 1111 kg/m3,
Lo = 0.8 m, and Do = 0.4. To evaluate the effects of mud layer thickness, results for dm = 0,
δm, and 3δm are plotted in the same figure for comparison. As can be seen from the results of
these three cases presented in Figure 8, in the region before the obstacle the simulated wave
amplitudes, which combine both incident and reflected components, oscillate between
a/a0 = 0.1 and 1.75, indicating the phase shift of incident waves and reflected waves.
We also observe that, with the presence of a muddy bed, the combined waves tend to be
flattened out due to the viscous damping within the mud layer, where the wave amplitudes
become smaller and the wavelengths get longer. On the other hand, in the region after
the obstacle the transmitted wave displays a pattern of continuous attenuation of wave
amplitude, which is similar to the validating testing presented in Section 2.3.4 for waves
over a layer of viscous fluid mud with no obstacles.

Figure 8. Effects of mud layer thickness on wave scattering by a surface obstacle: spatial variation of
wave amplitude ratio, a/a0. Solid line: dm = 0 (solid bottom). Dashed line: dm = δm. Dashed-dotted
line: dm = 3δm. Shaded box denotes the surface obstacle. In this case, T = 1.79 s, a0 = 0.02 m,
d = 0.8 m, νm = 0.003 m2/s, ρm = 1111 kg/m3, Lo = 0.8 m, and Do = 0.4 m. See Figure 1a for the
problem definition.

In Figure 9a, we show the decomposed incident waves and reflected waves corre-
sponding to the results with different mud layer thicknesses presented in Figure 8. For the
case of a solid bed (dm = 0), the amplitudes decrease only slightly as waves propagate
towards or away from the obstacle, with around 2% changes over two wavelengths as
shown in the figure. When a viscous fluid bed (dm > 0) is considered, by contrast, consid-
erable wave amplitude attenuation is observed for both incident and reflected components.
For dm = δm, the amplitude of incident wave decreases 7.5% over a propagation distance
of 2L while the amplitude variation for reflected wave is 15.5%. For a thicker mud with
d = 3δm, the attenuation of wave amplitude becomes weaker, dropping to 5.8% and 7.9%
for incident and reflected waves, respectively. In Figure 9b, we take a closer look at the
corresponding transmitted waves in the region after the obstacle. We observe that for the
cases with dm = 0, δm, and 3δm the changes of amplitudes over distance 2L are, respectively,
2.0%, 7.0% and 5.1%. We reiterate that for waves propagating over a fluid mud bed without
any obstacles, the attenuation of wave amplitude over 2L is 7.2% as shown in Figure 6.
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This implies that for the case of a surface obstacle the incident and transmitted waves
experience the same wave damping as if there was no obstacle. The results illustrated in
Figure 9 also indicate that, across all wave components, the largest damping rate occurs
at dm = δm, which is in agreement with the existing laboratory study [66] and analytical
modeling [68,70] all showing that an extreme wave attenuation rate is possible when the
mud layer thickness is about the Stokes boundary layer thickness of mud.

(a) (b)

Figure 9. Wave components corresponding to the amplitude variation shown in Figure 8: (a) incident
waves (thin lines) and reflected components (thick lines); (b) transmitted waves. Solid lines: dm = 0
(solid bottom). Dashed lines: dm = δm. Dashed-dotted lines: dm = 3δm. See Figure 8 for the
model inputs.

Figure 10 examines the velocity field surrounding the obstacle for dm = 0. We present
the snapshots at equally spaced time instants within a wave period, i.e., t/T = 1

6 , 2
6 , 3

6 ,
4
6 , and 5

6 . Similar results for dm = 3δm are plotted in Figure 11. The corresponding free-
surface profiles are also indicated in the figures. Comparing these two sets of results, we
observe that the flows exhibit similar pattern for both solid bed (dm = 0) and muddy bed
(dm = 3δm), suggesting that the main feature of the velocity distribution is controlled by
the obstacle with modulations in magnitude and wavelength contributed by the presence
of a muddy bed.

Figure 10. Surface obstacle on a solid bed (dm = 0): snapshots of velocity field at six time instants
over a wave period. Top to bottom: t/T = 1

6 , 2
6 , 3

6 , 4
6 , and 5

6 . Solid line indicates the free surface. The
arrow inside the obstacle shows the reference magnitude. See Figure 8 for the model inputs.
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Figure 11. Snapshots of velocity field due to a surface obstacle on a muddy bed with dm = 3δm.
Top to bottom: t/T = 1

6 , 2
6 , 3

6 , 4
6 , and 5

6 . Solid line indicates the free surface. See Figure 8 for the
model inputs.

In Figure 12, we show the time histories of dimensionless vertical wave force exerted
on the bottom of the surface obstacle with dm = 0, δm, and 3δm. The dimensionless force
component is obtained by first calculating the vertical wave force, Fy, using (5) and then
normalizing the dimensional Fy by the characteristic wave force, ρga0Lo. Results presented
in the figure suggest considerable phase shift caused by a muddy bed. In this example, we
observe a larger phase difference for the case of a thicker mud layer, i.e., when dm = 3δm.

Figure 12. Time histories of dimensionless vertical force acting on the bottom of a surface obsta-
cle. Solid line: dm = 0 (solid bottom). Dashed line: dm = δm. Dashed-dotted line: dm = 3δm.
The dimensional force Fy is given in (5). See Figure 8 for other model inputs.

3.2. Bottom Obstacle

We continue to examine the effects of a fluid bed on wave scattering by a bottom
obstacle of dimensions Lo = 1.6 m and Do = 0.4 m as illustrated in Figure 1b. In our
simulations, we consider an incident wave of T = 1.79 s and a0 = 0.02 m in a constant depth
of d = 0.8 m. The viscous mud has the properties of νm = 0.003 m2/s and ρm = 1111 kg/m3.
Three different cases with dm = 0 (solid bed), δm, and 3δm are simulated. In Figure 13,
we plot the spatial variation of dimensionless wave amplitudes, a/a0, corresponding to
these three mud layer thicknesses. As can bee seen, for the cases with dm > 0 considerable
amplitude attenuation is persistent after waves passing the obstacle. On the other hand,
in the region before the bottom obstacle the oscillation in wave amplitude suggests the
phase difference between the incident and reflected components. Figure 14a plots the
decomposed incident waves and reflected waves corresponding to the combined waves
presented in Figure 13. Our results show that, over a propagation distance of 2L, the incident
waves experience a 1.7%, 7.5%, and 5.7% decrease in wave amplitude for dm = 0, δm,
and 3δm. Regarding the reflected waves, the changes are higher at 4.0%, 14.5 %, and 10.2%,
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respectively. For the transmitted wave presented in Figure 14b, the amplitude attenuation
over 2L is 1.7% for dm = 0, 7.3% for dm = δm, and 6.4% for dm = 3δm. Similar to the case of a
surface obstacle discussed in Section 3.1, these results again suggest that the bottom obstacle
has little impact on the mud-induced damping of both incident and transmitted waves.
However, the reflected waves experience much stronger wave attenuation. In addition,
the largest damping rate occurs at dm = δm for all wave components.

Figure 13. Spatial variation of amplitude ratio, a/a0, due to a bottom obstacle above a muddy bed
with different thicknesses. Solid lines: dm = 0 (solid bottom). Dashed lines: dm = δm. Dashed-dotted
lines: dm = 3δm. Vertical bars indicate the location of the bottom obstacle. In this case, T = 1.79 s,
a0 = 0.02 m, d = 0.8 m, νm = 0.003 m2/s, ρm = 1111 kg/m3, Lo = 1.6 m, and Do = 0.4 m. See
Figure 1b for the problem definition.

(a) (b)

Figure 14. Wave components corresponding to the case of a bottom obstacle shown in Figure 13:
(a) incident waves (thin lines) and reflected components (thick lines); (b) transmitted waves. Solid
lines: dm = 0 (solid bottom). Dashed lines: dm = δm. Dashed-dotted lines: dm = 3δm. Vertical bars
indicate the location of the bottom obstacle. See Figure 13 for the model inputs.

In Figures 15 and 16, we plot the velocity field in the neighborhood of the obstacle
for dm = 0 and dm = 3δm, respectively. Comparing the snapshots of velocity in these two
figures, we observe that, although the flow patterns look similar, due to the presence of a
fluid bottom the phase shift and the increase in wavelength are both evident. This again
shows the roles of the obstacle and the mud bed in shaping the velocity distribution.

Figure 17 shows the time histories of dimensionless vertical wave force acting on
the top of the bottom obstacle under three different scenarios with dm = 0, δm, and 3δm,
respectively. Phase lag due to the presence of the mud layer is again observed in the figure.
Furthermore, the phase difference is more considerable when dm = 3δm.
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Figure 15. Snapshots of velocity field due to a bottom obstacle on a solid bed (dm = 0) at six time
instants over a wave period. Top to bottom: t/T = 1

6 , 2
6 , 3

6 , 4
6 , and 5

6 . Solid line indicates the free
surface. See Figure 13 for the model inputs.

Figure 16. Bottom obstacle on a muddy bed with dm = 3δm: snapshots of velocity field over a wave
period at t/T = 1

6 , 2
6 , 3

6 , 4
6 , and 5

6 (top to bottom). Solid line indicates the free surface. See Figure 13
for the model inputs.

Figure 17. Time histories of dimensionless vertical force acting on the top of a bottom obstacle with
dm = 0 (solid line), dm = δm(dashed line), and dm = 3δm (dashed-dotted line). See Figure 13 for other
model inputs.
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3.3. Submerged Obstacle

Lastly, we discuss the case of a submerged obstacle as illustrated in Figure 1c with
(Lo, Do, d`) = (1.2529, 0.02, 0.54) m. For convenient, we consider again an incident wave
of T = 1.79 s and a0 = 0.02 m in water of depth d = 0.8 m. Regarding the properties of
viscous fluid mud, νm = 0.003 m2/s and ρm = 1111 kg/m3. In addition, three different
cases with dm = 0, δm, and 3δm are examined to evaluate the effects of mud layer thickness.
In Figure 18, we plot the spatial variation of dimensionless amplitude, a/a0, showing the
amplitude attenuation and phase shift caused by the muddy bed and a sudden change in
wave amplitude due to the obstacle. Figure 19a shows the decomposed incident and re-
flected components corresponding to the simulated combined waves presented in Figure 18.
For the incident waves, we observe a 2.0%, 7.8%, and 6.4% decrease in wave amplitude
over a propagation distance of two wavelengths corresponding to dm = 0, δm, and 3δm.
Similarly, the changes of wave amplitude for the reflected components are comparable at
2.3%, 8.7 %, and 5.7%, respectively. Our results show again a strong damping caused by the
bottom fluid med. Moreover, the largest damping rate occurs when dm = δm. Regarding
the transmitted waves presented in Figure 19b, it is shown that the amplitude variation
over 2L is significantly higher at 13.1% for dm = 0, 18.3% for dm = δm, and 16.6% for
dm = 3δm. This is very different from the observations of both surface and bottom obstacles
presented in Figure 9b and Figure 14b, respectively. In this example, the unexpected large
change in wave amplitude, especially over 10% for the case of a solid bottom (dm = 0), is
mainly attributed to the effects of vortex generation due to the shape edges of the obsta-
cle [20,21]. This amplitude variation can not be explained solely as the wave damping by
the viscous mud. The behavior can be better understood by examining the velocity field
and is discussed in the following.

Figure 18. Effects of mud layer thickness on wave scattering by a submerged obstacle: spatial
variation of amplitude ratio, a/a0. Solid lines: dm = 0 (solid bottom). Dashed lines: dm = δm.
Dashed-dotted lines: dm = 3δm. Vertical bars indicate the location of the obstacle. In this case,
T = 1.79 s, a0 = 0.02 m, d = 0.8 m, du = 0.24 m, d` = 0.54 m, νm = 0.003 m2/s, ρm = 1111 kg/m3,
Lo = 1.2529 m, and Do = 0.02 m. See Figure 1c for the problem definition.

(a) (b)

Figure 19. Wave components corresponding to the case of a submerged obstacle shown in Figure 18:
(a) incident waves (thin lines) and reflected components (thick lines); (b) transmitted waves. Solid
lines: dm = 0 (solid bottom). Dashed lines: dm = δm. Dashed-dotted lines: dm = 3δm. Vertical bars
indicate the location of the obstacle. See Figure 18 for the model inputs.
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The associated velocity field for the case of a submerged obstacle above a solid bottom
is plotted in Figure 20. The figure, which presents the snapshots at several equally spaced
time instants within a wave period, reveals large velocity gradients in both horizontal and
vertical directions around the leading edge of the obstacle. Furthermore, in the lee of the
obstacle a prominent clockwise vortex is formed. The flow pattern shown in Figure 20 is
similar to the laboratory observations of waves passing over a bottom obstacle on a solid
bed [20,21]. In Figure 21, we present the velocity field with the consideration of a muddy
bed with dm = 3δm. Comparing with the results shown in Figure 20 for the case of a solid
bed, the size of the vortex core is considerably smaller when the effects of viscous fluid
mud bed are taken into account. In addition, an obvious phase difference on the formation
of the vortex is observed.

Figure 20. Submerged obstacle on a solid bed (dm = 0): snapshots of velocity field over a wave
period at t/T = 1

6 , 2
6 , 3

6 , 4
6 , and 5

6 (top to bottom). Solid line indicates the free surface. See Figure 18
for the model inputs.

Figure 21. Snapshots of velocity field due to a submerged obstacle on a muddy bed with dm = 3δm.
Top to bottom: t/T = 1

6 , 2
6 , 3

6 , 4
6 , and 5

6 . Solid line indicates the free surface. See Figure 18 for the
model inputs.

In Figure 22, we examine the effects of a muddy bed by showing the time histories of
dimensionless vertical wave acting on the submerged obstacle under different mud layer
thickness, namely dm = 0, δm, and 3δm. We recall the vertical force, Fy, is calculated by (5).
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Results presented in Figure 22 reveal that, due to the presence of a muddy bed, the magni-
tude of vertical force becomes smaller and the phase difference is also considerable. In this
example, the case with dm = δm shows a larger decrease in wave force whereas the phase
shift is more substantial for a thicker layer with dm = 3δm.

Figure 22. Time histories of dimensionless vertical force exerted on a submerged obstacle. Solid line:
dm = 0 (solid bottom). Dashed line: dm = δm. Dashed-dotted line: dm = 3δm. See Figure 18 for other
model inputs.

4. Concluding Remarks

We present a numerical study to investigate the effects of a viscous fluid bed on
wave scattering by a fixed surface, bottom, or submerged obstacle of rectangular shape.
Numerical simulations are realized by an OpenFOAM-based computational model for
wave–obstacle–seabed problem. Limited by our computation resources, we focused only on
two-dimensional flows. Our numerical model was validated using existing analytical and
experimental results for wave scattering by an obstacle on a solid bed and wave propagation
over a muddy seabed without any obstacles. Under the influence of a muddy seabed, we
examined the features of reflected and transmitted waves, velocity fields, and wave forces
exerted on the obstacle. Based on our numerical results, the following main findings
are reported:

1. Surface obstacle: Section 3.1

• Incident and transmitted wave components show an amplitude attenuation rate
similar to the case of waves over a muddy bed without any obstacles. Reflected
waves have a much stronger damping rate.

• For incident, reflected, and transmitted wave components, the largest damping rates
all occur at dm = δm.

• The pattern of the velocity distribution is mainly controlled by the obstacle with
modulation in magnitude and wavelength contributed by the muddy bed.

• In terms of the dimensionless vertical wave force exerted on the obstacle surface,
a larger phase difference was observed for the case of a thicker mud layer.

2. Bottom obstacle: Section 3.2

• The effect of bottom obstacle on mud-induced amplitude attenuation is only consid-
erable for the reflected wave components.

• The largest wave damping of each wave component was observed when the mud
layer thickness was dm = δm.

• The impact of viscous fluid bed on the flow pattern in the vicinity of the obstacle
was not obvious. However, a phase shift and increase in wavelength are both
more evident.

• A thicker mud layer causes a larger phase lag in the dimensionless vertical wave
force on the obstacle surface.

3. Submerged obstacle: Section 3.3

• Due to the vortex generated in the lee of the obstacle of the obstacle, a significantly
larger decrease in wave amplitude is shown for transmitted wave component. This is
very different from the behaviors observed in the cases of surface or bottom obstacles.

• The largest amplitude attenuation rate occurs at dm = δm for every wave component.
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• With the consideration of a viscous fluid mud bed, the size of the vortex core is
considerably smaller and the phase difference on the formation of the vortex can
also be observed.

• The case with dm = δm shows a larger decrease in the dimensionless vertical wave
force on the obstacle surface. However, the phase shift is more substantial for a
thicker layer with dm = 3δm.

We hope the results presented here provide useful information for the practical design
of coastal structures above a muddy seafloor. Of course, there are a number of limita-
tions in our analysis. Above all, three-dimensional problems can be discussed if sufficient
computer power is made available to us. In our study, we consider only viscous fluid
mud. Nevertheless, our methodology can be extended straightforwardly to account for
more complex rheological behaviors of bottom fluid mud since there are many commonly
used rheology models available in OpenFOAM, including generalized Newtonian fluid
(power law model), viscoelastic fluid (Maxwell model), viscoplastic fluid (Herschel–Bulkley
model), among others. To further consider the vertical variation of mud properties, it is also
possible to incorporate the multi-layer system of fluid mud bed [81] since the solver we
utilize, multiphaseInterFoam, can handle flow problems involving multiple incompressible
fluids. In order to be more relevant to practical applications, we shall consider obstacles of
various shapes and also permeable and flexible structures. This can be achieved by imple-
menting the existing numerical treatments of boundary conditions for porous structures
reported in the literature [39]. The present study serves as a preliminary exploration of
the impacts of muddy seabeds on wave scattering by engineered structures. Although we
elucidate several key underlying physical processes, more numerical investigations and
laboratory tests are necessary to eventually provide the technical know-how that can be
implemented to develop engineering tools for the design of coastal structures in muddy
marine environments.
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