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Abstract: The literature related to Artificial Intelligence (AI) models and customer churn prediction
is extensive and rich in Business to Customer (B2C) environments; however, research in Business
to Business (B2B) environments is not sufficiently addressed. Customer churn in the business en-
vironment and more so in a B2B context is critical, as the impact on turnover is generally greater
than in B2C environments. On the other hand, the data used in the context of this paper point to
the importance of the relationship between customer and brand through the Contact Center. There-
fore, the recency, frequency, importance and duration (RFID) model used to obtain the customer’s
assessment from the point of view of their interactions with the Contact Center is a novelty and
an additional source of information to traditional models based on purchase transactions, recency,
frequency, and monetary (RFM). The objective of this work consists of the design of a methodological
process that contributes to analyzing the explainability of AI algorithm predictions, Explainable
Artificial Intelligence (XAI), for which we analyze the binary target variable abandonment in a B2B
environment, considering the relationships that the partner (customer) has with the Contact Center,
and focusing on a business software distribution company. The model can be generalized to any
environment in which classification or regression algorithms are required.

Keywords: churn detection; XAI; interpretability; B2B; RFM; RFID
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1. Introduction

In a global market, where customers can change their preferences and buy from
competitors, it is necessary to adopt strategies that encourage customer-brand engagement,
for example, by proposing alternatives to strategically profitable customers, who could
have a positive tendency to abandon the relationship with the brand, or by letting the
less profitable ones go [1,2]. Through the RFID model [3] based on the recency, frequency,
importance, and duration of interactions between the customer and Contact Center, a
metric is proposed that makes it possible to determine the value of the customer from the
perspective of after sales services, and therefore to design the most recommendable actions
in order to build customer loyalty. However, these decisions, which could be left in the
hands of black box algorithms, must be subject to interpretability to avoid discriminatory
biases and to be able to make explainable decisions, thus constituting the cornerstone of
this document.

Traditionally, customer churn studies are closely related to Business to Customer (B2C)
environments. In fact, customer characteristics and behavior can vary considerably de-
pending on whether the relationships are Business to Business (B2B) or B2C. [4]. Although
companies that base their business model on relationships with other companies tend to
have fewer customers, these customers make larger and more frequent purchases compared
to their counterparts in a B2C environment [5], and their retention is seen as fundamental
in the development of sustainable business relationships [6,7], hence the importance of
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working on a definition of interpretable models related to customer churn in B2B environ-
ments. As we will see in the use case that we will present throughout the document, the
characteristics that define the tendency of customer churn in B2B environments differ from
the behavior in B2C environments.

In several preliminary studies, the data used for the development of predictive models
are based on the RFM model [8], based on recency, frequency, and monetary parameters.
This model is generally used to segment customers so that marketing, cross-selling, or up-
selling actions can be developed according to the category to which the customer belongs.
The metrics of this model are also often used for a customer churn analysis [9]. An extension
of this model is the LRFM [10], based on the relationship time; recency, frequency, and
monetary value of the set of transactions; and a new extension corresponds to the LRFMP
model, where periodicity and seasonality in purchase interactions are included [11]. All
these models are based on the processing of purchases made by the customer in a period.

A crucial aspect of the customer-centric philosophy is to consider that communica-
tions between the company and customer are bidirectional, and that the customer wants
to be served in an integral, consistent way and through any channel. The importance
of technology combined with strategy is fundamental, and systems based on customer
relationship management (CRM) allow multichannel integration and therefore provide a
deeper knowledge of the customer for better customer management [12]. Therefore, for
any customer-centric strategy, the proper implementation of customer support processes
integrated in the CRM and carried out by the Contact Center is essential [13].

Despite the proven and validated usefulness of the RFM model, this model does not
consider the interactions that occur between the company and the customer after the sales
process which, in many cases, are as important or more than the sale itself, to establish a true
customer-centric strategy. Everyday examples in relation to these post-sales interactions
can be delay in the delivery of an order, defective delivery, poor quality of the delivery
service, etc. It is important to note that the literature is poor in relation to the interpretation
of customer value or customer typification from the point of view of the interaction that
the customer has with the Contact Center. In this sense, the RFID model applied to B2C
and B2B environments is particularly relevant, and uses the criteria present in this model
for the prediction and interpretability of customer churn.

In this paper, we will carry out a research process on the tendency to abandon the
technological partners (customers) of a software company. The relationship between
partner and software company is very close; it is usually cemented over years of work;
the partner is responsible for implementing the software’s solutions to end customers,
and, therefore, needs qualified personnel and a high level of knowledge of the software
to be implemented. Therefore, the relationship between the two technological partners is
long-lasting, long-term, collaborative, and mutually supportive, and therefore the Contact
Center takes on special relevance.

Given the importance of the Contact Center in the interaction between brand and
customer, we have chosen to apply a working methodology that allows us to use Artificial
Intelligence (AI) to approach interpretable predictive models [14] that help to understand
the causes related to the abandonment rate of technology partners. In this sense, we have
worked on correlating the customer classification obtained from the RFID model with the
abandonment rate, with the aim of analyzing the possible causes that determine a business
partner to leave the relationship with the software company. To do so, we have proposed
a methodological process that helps to develop and apply the concepts of Interpretable
Artificial Intelligence (XAI) [15], and based on these techniques, a working model has been
implemented that includes a set of interpretability agnostic algorithms, independent of the
selected machine learning (ML) model, in order to provide a methodological guide that
allows the development of an explanatory model applicable to algorithms that are not very
interpretable (black box).

The novelty of this work lies in the following factors, the first of which is to address
the churn rate within a B2B environment where, both in the academic and industrial
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fields, there are a limited number of studies that report a research process applied to
the real world. Secondly, studies related to customer churn are very numerous in the
B2C environment, where machine learning (ML) or deep learning (DL) procedures are
applied with a significant degree of prediction, but without applying interpretability (XAI).
Finally, we use a complementary model to the traditional RFM and LRFMP as a predictive
analysis criterion, the RFID model, to respond to potential customer churn, as we have not
found works that use the variables that typify customer service (RFID) in the prediction
of abandonment.

In the rest of this paper we will develop and apply the XAI model, according to
the following structure: in Section 2, we will review the current status of the use of XAI
methodologies and their application scenarios, contrasting the GAP between the use of
ML algorithms and the use of explainability in relation to the customer churn rate; in
Section 3, we will address the methodological framework that we will use in the prediction
and explainability of churn; in Section 4, we will detail the proposed model; in Section 5,
we will implement the XAI model applied to the customer churn rate in a B2B model
and within a business environment dedicated to the distribution and implementation of
software licenses; and finally, in Sections 6 and 7 we will present the conclusions and
future work.

2. Related Work
2.1. Related Work on Customer Churn B2C and B2B

Customer churn has been one of the main topics of attention for researchers and
companies, with abundant literature in B2C environments (Figure 1), as the loss of a
customer has a direct impact on the bottom line of any company, in addition to the loss of
brand image, and since attracting a new customer is substantially more costly financially
than retaining existing customers [16].
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The following graph shows the studies related to customer churn in B2C environments,
until September 2022.

Research production in recent years has been mainly oriented towards the telecom,
commerce, banking, and insurance sectors, Table 1.
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Table 1. B2C publications by business sector.

Sector Publications %

Telecom 108 21.95%
Banking 67 13.62%

Commerce 121 24.59%
Insurance 48 9.76%

Others 148 30.08%

Some significant examples are related to churn in the telecommunication industry [17],
in the banking sector [18], in the insurance sector [19], in the retail sector [20], and in
Ecommerce [21].

B2B models have received less attention than B2C models, and there is a total of 17
articles published from 1999 to August 2022 (Figure 2, Table 2). The characteristics of
the B2B business, with a lower impact in number of customers, but with much higher
transactional values, make these models acquire special connotations, since the loss of
any customer can have a very negative impact on turnover and brand image [22,23]. In
addition, customer churn in B2B scenarios has been studied mainly from the perspective of
resource allocation for business development, or in the analysis and prediction of current
and future customer profitability [24].
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Table 2. Publications B2B. TS = (CUSTOMER CHURN) AND TS = (B2B) AND (PY = (1999–2022)).

Ref. Fundamentals Datasets Application

Figalist et al. 2019 [25] Several modeling techniques Supplier of SW products Customer churn, challenge

Janssens et al. 2022 [26] XGBoost North American B2B
beverage retailer

Maximum expected benefit from
customer retention campaigns

Jahromi et al. 2014 [27] Several modeling techniques
Australian online Fast

Moving Consumer Goods
(FMCG) retailer

Data mining and retention
campaign modeling

Chen et al. 2015 [28] LRFMP, AHP, SVM Logistics company
Applicability of the LRFMP
model to the B2B context in the
logistics sector
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Table 2. Cont.

Ref. Fundamentals Datasets Application

Mirkovic et al. [9] LRFMP, Logistic Regression,
SVM, Random Forest

Eastern European seller and
distributor of agricultural

goods and equipment

Different churn definitions
and variable window widths
for feature extraction and a
multislicing approach
to dataset

Zhang et al. 2019 [29] RFM, XGBoost, Random
Forest, Others

Software maintenance
service provider

Churn prediction to the
context of software
maintenance contract

Hopmann et al. 2005 [30] Stochastic, and data
mining method Multisectoral

Contrasting the usefulness
and quality of
churn prediction

Sheikh et al. 2019 [31] LRFMP, K-means Fintech industry
Customer clustering method,
helps to predict
customer behavior

De Caigny et al. 2021 [32] Uplift LLM European software provider

Segmentation-based
algorithm that combines
predictive performance with
interpretability

Barfar et al. 2017 [33] Logistic Regression,
Classification Trees B2B service database Quality of service vs.

B2B churn

Gordini et al. 2017 [5] SVM eCommerce
Customers’ churn prediction
and marketing
retention strategies

Lee et al. 2018 [34] Analysis Telecom Company Probability of change with
varying service conditions

Jamjoom 2021 [19] Logistic Regression, RNN Insurance Loss of customers in
insurance companies

Liu et al. 2016 [35] Logistic Regression Multisectoral How B2B sales professionals
deal with customer defection

D’Haen et al. 2013 [36] Logistic Regression, Decission
Trees, Bagging Multisectoral

Investigate which data mining
techniques worked best in
predicting customer profitability

Schaeffer et al. 2020 [37] SVM Prepaid unitary services Analysis of the probability of
churn of prepaid customers

Gattermann-Itschert
et al. 2021 [38]

Multislicing, Logistic
Regression, SVM,
Random Forests

Model for one of Europe’s
largest convenience

wholesalers (company) to
small convenience retail stores

Training on multiple time
slices improves performance
in churn prediction

Figure 2 below shows the publications per year related to customer churn in B2B
environments, and Table 2 shows these papers.

The strategy followed in the work is related to the use of transactional data based on the
RFM model [9,28,29,31]; through the relationship between supplier and customer over time
in different phases, before, during, and after the purchase process, known in marketing as
the Customer Journey Map [25]; or by collecting sales and interaction data [19,27,30,36–38].
The following study [26] uses the metric of the benefit implied by the correct classification
of a customer and a cost associated with those who are incorrectly classified, and this
other study uses the quality of service to determine the subscription rate [33]. As a general
rule, it can be seen that all studies are based on a combination of interpretable (white box)
and non-interpretable (black box) predictive models, but without using interpretability;
however, only the following study proposes a customer segmentation that combines a
predictive analysis with interpretability [32].
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2.2. Related Work XAI

Decisions based on ML algorithms are having an increasingly significant social impact;
however, most of these systems are based on black box algorithms, i.e., models whose rules
are not understandable to humans [39].

AI research since its beginnings has been characterized by the development and imple-
mentation of predictive models. However, the first steps in interpretable models were taken
in the 1970s and 1990s towards initiatives such as MYCIN [40], seeking an explanation in
the diagnosis of infectious diseases; GUIDON [41], in the elaboration of computer-assisted
learning; systems based on alternative lines of reasoning (TMS) and neural networks ap-
plied to the healthcare field were developed. Since 2010, the concern derived from bias
in decision making has led to more focus on the development of Explainable Artificial
Intelligence (XAI) models. Explainability requires interpretability, but explainability has to
do with the need for the explanation to be deep enough to be audited [42].

According to Miller, “Interpretability is the degree to which a human can understand
the cause of a decision.” [43]. It is essential to understand why a given prediction was made
by the model in question.

Features that should be incorporated in interpretable models [14] can be enumerated
as follows: explanations should be contrasting [44], why a certain prediction was made
rather than another. In addition, explanations are selected: we are interested in selecting
the criteria that fit as most probable in the elaboration of the explanation. Explanations
should be social, i.e., an explanation is linked to the explainer and the receiver of the
explanation. Explanations focus on the abnormal [45], i.e., causes that are attributed with
high potential but low probability. Explanations are true, so the event should be predicted
with the highest possible probability. The explanations are consistent with previous beliefs:
this is what is called confirmation bias, devaluing those explanations that do not agree with
our beliefs [46].

The first formula to achieve interpretability is to use interpretable ML algorithms,
including linear regression, logistic regression, decision trees, RuleFit, and Naive Bayes [14],
thus deducing correlations between features that allow defining and interpreting the model
at a global level [47].

Another option is to extract knowledge from a black box model by approximating it
to interpretable models [48,49].

Finally, we have agnostic methods, whose implementation does not depend on the
ML model used [50]. A review of agnostic models according to their global/local character
is presented in Figure 3.
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The current trend is to focus on model-independent interpretation tools [14,50,51].
The following is a list of studies related to interpretability methods applied to black box
ML models (Table 3).

Table 3. ML interpretability studies.

Models Author Description

Lime Eli5
InterpretML AIX360 Skater Ribeiro 2016 et al. [52] “Why Should I Trust You?” Explaining

the Predictions of Any Classifier.
PDPbox

InterpretML Skater Friedman, 2001 [53] Greedy function approximation: A
gradient boosting machine.

Shap
Alibi

AIX360
InterpretML

Lundberg et al., 2017 [54] A unified approach to interpreting
model predictions.

Eli5 Altmann et al., 2010 [55] Permutation importance: A corrected
feature importance measure.

PyCEbox Goldstein et al., 2015 [56]
Peeking inside the black box: Visualizing
statistical learning with plots of
individual conditional expectation.

DLIME Zafar et al., 2019 [57]

DLIME: A Deterministic Local
Interpretable Model-Agnostic
Explanations Approach for
Computer-Aided Diagnosis Systems.

AIX360 Gurumoorthy et al., n.d. [58] Efficient Data Representation by Selecting
Prototypes with Importance Weights.

In the following studies in Table 4, the interpretability models applied to the churn
rate are explored in more detail:

Table 4. XAI, (TS = (CUSTOMER CHURN) AND TS = (XAI)) AND (PY = (1999–2022)).

Ref. Title Description

Leung et al., 2021 [59] Explainable Artificial Intelligence for
Data Science on Customer Churn

Explainable artificial intelligence (XAI)
solution is presented to explain a
Random Forest-based predictive model
of customer churn.

Na et al., 2020 [60]
A Securities Company’s Customer Churn
Prediction Model and Causal Inference
with SHAP Value

Presents the case for the development of
a predictive model for financial churn,
compares and analyses a total of six
churn models, and infers the cause of
churn by classifying and analyzing SHAP
value data.

Ullah et al., 2022 [61]
Explaining deep learning models for
tabular data using layer-wise
relevance propagation

Layered Relevance Propagation (LRP), an
established explanatory technique
developed for deep models in computer
vision, is applied in this study using a
deep neural network (1D-CNN) for the
use cases of credit card fraud detection
and telecom customer churn prediction.

As can be seen, interpretability applied to customer churn prediction is a technique
that is in the process of research and practical application, especially in B2B models. In this
paper, we provide a set of interpretability techniques applied to real data, corresponding to
a management software manufacturing company, using the RFID model by aggregating
the interactions between customer and supplier in a predetermined period.
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3. Methodology

To achieve our goals, we propose a methodology based on knowledge discovery
databases (KDD) and the cross-industry standard process for data mining (CRISP-DM) [62].
Figure 4 shows the stages and the models used in each of them.
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3.1. RFID Model

The RFID model is based on the parameters of recency, frequency, importance, and
duration of interactions between the customer and Contact Center during a defined period
of time [3]. This model helps us to determine the value of the customer from the point
of view of their interactions with the Contact Center, as well as providing us with a
segmentation and a strategy of actions to be carried out for each group of customers.

From the ticket information stored in a conventional operational CRM, the model
obtains two types of recommendations for customers based on the history of their interac-
tions with the customer service: individualized and grouped. The model is parameterized
with the information provided by customer service experts. These same users are also in
charge of determining and implementing the final strategies for the treatment of marketing
campaigns and/or interaction with customers (Figure 5).
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The process is detailed below:

1. Obtaining data from the CRM, which correspond to the set of tickets opened by
each customer.

2. Pre-processing of the information, the period of analysis is defined, and an initial
exploratory data analysis (EDA) is addressed.

3. Information aggregation process: for each customer, and for the period considered,
the values of the recency, frequency, duration, and importance of the interactions are
obtained. A process of information aggregation is carried out, so that an aggregate
value is obtained for each customer for each of the characteristics that make up the
RFID model.

4. Application of the 2-tuple model [63] on the data obtained in the previous step, the
aim of which is to bring all the information into the same working domain. The 2-tuple
model allows working with heterogeneous information, unifying this information in
linguistic evaluations, expressed in a basic set of S linguistic terms. In this way, all the
heterogeneous information based on numerical, interval, or linguistic ranges can be
unified in a fuzzy set, through an aggregation process (Figure 6).
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5. Obtaining the global valuation of each client, by applying the AHP model [65] to each
of the features that make up the RFID model (Table 5). In our model, we will use the
AHP method to establish the weights of each of the criteria that will determine the
total score of each customer, after the aggregation and ranking process using the RFID
2-tuple model.

Table 5. Saaty’s scale [65].

Degree of Importance Definition Description

1 Equal importance The comparative weighting of the criteria
i and j is the same.

3 Moderate importance
The weighting of the criteria compared is
moderately higher for the criterion i over
the criterion j.

5 Strong importance
The weighting of the criteria compared is
strongly higher for the criterion i over the
criterion j.

7 Very strong importance
The weighting of the criteria compared is
very strong for the criterion i over the
criterion j.

9 Extreme importance
The weighting of the criteria compared is
extremely strong for the criterion i over
the criterion j.

2, 4, 6, 8 Intermediate values Intermediate weighting criteria.

Reciprocals

If criterion i compared to criterion j is
associated with one of the preceding
numbers, then j has a reciprocal when
compared to i.
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The vector of weights for each of the criteria, w, is constructed using the eigenvector
method through the following equation:

PWi =
n

∑
j=1

pwijwj = λmax wi (1)

where λmax is the maximum eigenvalue of PWi and wi is the normalized eigenvector
associated with the principal eigenvalue of PWi. This approach provides the best priority
weightings for each criterion or sub-criterion (Figure 7).
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A review of the AHP method and its applications can be found in the following
references [66,67].

6. Establishment of an individualized recommendation strategy.
7. Customer clustering, according to the k-means model [68].
8. Obtaining a recommendation strategy by groups.

In our study, we will apply a set of ML algorithms and try to analyze the interpretability
of the algorithm as a higher accuracy and higher ROC AUC curve score.

In our study, we will transform the data into a numerical domain, integrating the vari-
able abandonment, and then develop the predictive model and analyze its interpretability.

3.2. XAI

From the interpretability point of view, some authors distinguish two types of
models [69]: white box models, that allow one to establish correspondence between input
and output; and black box models, in which the rules on which they base their decision
making must be interpretable [69]. In this other study, the interpretability of white box mod-
els is questioned [70]. An inverse correspondence between interpretability and accuracy
can be seen in Figure 8.
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Interpretation methods for machine learning can be classified according to several
criteria [70].

• ¿Intrinsic or post hoc? Interpretability is either inherent to the learning model (intrin-
sic), or it allows for analysis after model training (post hoc).

• ¿Specific or agnostic? Interpretability is achieved in a specific way by applying specific
models for the object of study. Agnostic models are independent of the ML algorithm.

• ¿Local or global? It is necessary to respond to individual or global predictions. Global
methods describe the average behavior of the ML model, and they are very useful
when you want to analyze the overall mechanism of the data. Local methods, however,
explain individual predictions.

The main XAI techniques are shown in Table 6. These techniques will be applied to
the RFID dataset to analyze the interpretability of the ML algorithms used for the detection
of technology partner abandonment in the proposed business case.

Table 6. XAI techniques applied to the case study.

Explanation Method Scope Description Result

Partial Dependence Plot [53] Global
It analyzes the partial

dependence of one or more
variables on a third variable.

Feature Summary

Individual Condition
Expectation [56] Global/Local

Visualizes the prediction
dependence of a feature

individually, and the result is
a graph for each instance.

Feature Summary

Feature Importance [55] Global/Local

Assess the importance of a
given feature by calculating

the increase in prediction
error after making a

permutation of it.

Feature Summary

Local Surrogate Model [52] Local

LIME acts by checking what
happens to the predictions

when variations in the input
data are introduced.

Surrogate Interpretable Model

Shapley Values [54] Local

SHAP values attempt to
explain the output of a

function f as a sum of the
effects φi of each conditionally

entered characteristic.

Feature Summary

In our study, we will apply a set of ML algorithms and try to analyze the interpretability
of the algorithm with higher accuracy and a higher ROC AUC curve score.

4. Application of XAI to Customer Churn Rate

One of the strengths of the Contact Center is to try to maximize customer satisfaction,
and an important variable in this regard is the degree of satisfaction of the Contact Center
staff [72].

In this methodological guide, we will approach a working procedure whose objective
is to analyze the binary target variable abandonment, based on the values obtained by the
RFID model, and in future works the proposed model will be extended to Contact Center
staff turnover.

Following KDD and CRISP methodology [62], Figure 4:

• In Section 4.1, we will review the problem domain, create a target dataset based on
the RFID model to which we will add the customer cancellation request variable
(abandonment), then pre-process and transform the data to a numeric domain.
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• In Section 4.2, a set of pre-model techniques will be applied to obtain the first knowl-
edge provided by the dataset. Subsequently, the ML algorithms detailed in Table 7
will be applied to obtain the optimal algorithm for the case study.

• In Section 4.3, we will interpret the results and the convenience or not of using
interpretability, in which case we will apply the global and local agnostic algorithms
seen in Section 3 of this paper; finally, conclusions will be drawn.

Table 7. ML algorithms applied to the model.

Algorithm

Logistic Regression
Random Forest

Support Vector Machine
K-nearest neighbors

Decision Tree Classifier
Gaussian NB

XGboost

4.1. Data Collection

The data are collected from the CRM, and we will execute the process described in
Section 3.1. In this case, we are interested in the value of recency, frequency, importance,
and duration in numerical format. We will carry out the aggregation process and from
there we will store this information to determine the binary target variable abandonment
in relation to the rest of the criteria.

The value associated with the type of incident in the CRM indicates whether or
not it is a request for cancellation by the customer, the value in the CRM of attribute
Type = “Cancellation Request”.

Given T = {(u1, r1, f1, i1, d1, t1) , . . . , (u#T , r#T , f#T, i#T, d#T, t#T)},
• re: corresponds to the number of days since the last service request by the

customer ue (using the end date of the analysis period as a reference). Therefore,
re = di f f days(t2 −max(ticket_datei)), where di f f days is a function that returns the
difference in days between two dates, and max is a function that returns the last date
of the different incoming dates.

• fe : is the number of times the customer has made a service request, i.e., with different
ticket codes, ticket_idi.

• ie: is the average importance. This is a linguistic variable that must be transformed
into a numerical variable, ie = xe[ticket_importancei].

• de: contains the total duration in days of all the customer’s tickets. Therefore,
de = ∑i (di f f days (status_datei − ticket_datei).

• te: contains the value of the service type, in this case the customer’s service
cancellation request.

The next step will be to perform a data cleaning, that is, we will check if the information
collected requires some kind of debugging, for example, outliers. It usually happens that
incidents can be opened without a specific customer, with these being imputed to generic
customers, growing in number above the average, and thus distorting the information
collected and therefore the analysis.

Once the data cleaning is done, a normalization process is carried out. The machine
learning algorithms work best when the numerical input variables fall within a similar
scale. In this case, we will normalize in the range (0,5).

Xnorm =
X− Xmin

Xmax − Xmin
(2)
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4.2. Customer Churn Prediction

Once the above steps are completed, some of the pre-model, data visualization, and
exploration techniques are applied to explore, interpret, and gain initial insight into the
dataset and thus predict churn or non-churn. The application of these techniques will help
to identify the key features of the model and, being model-independent, they are applicable
to any dataset and prior to any initial selection of the chosen ML model.

The first technique used is the univariate analysis, through histograms. Secondly, a
multivariate analysis allows us to establish a correlation map between variables [73], as
well as the distribution of outcomes, and thus obtain an initial data analysis.

Once the first approximation and evaluation of the dataset has been made, we can
divide it into training and test, considering that the variable x corresponds to the RFID
criteria (recency, frequency, importance, and duration) and y is the variable to be predicted,
i.e., customer abandonment data (yes/no).

An analysis will be carried out using the algorithms shown in Table 7 to determine
which of them best fits the predictive model.

Each of the models described in Table 7 is evaluated through a cross-validation process
(K-fold), and the receiver operating characteristic (ROC) and area under the curve (AUC)
curves are analyzed, and the accuracy mean [74,75]. The higher the area under the curve,
AUC, the better the model is at predicting 0 classes as 0 and 1 classes as 1. The ROC curve
can be seen in Figure 9, where on the y-axis we have the true positive ratio (TPR), and on
the x-axis we find the false positive ratio (FPR). Accuracy can be obtained as the result of
the quotient of the sum of correct predictions by the total number of predictions.

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 29 
 

 

����� =
� − ���� 

���� − ���� 

 (2) 

4.2. Customer Churn Prediction 

Once the above steps are completed, some of the pre-model, data visualization, and 

exploration techniques are applied to explore, interpret, and gain initial insight into the 

dataset and thus predict churn or non-churn. The application of these techniques will help 

to identify the key features of the model and, being model-independent, they are applica-

ble to any dataset and prior to any initial selection of the chosen ML model. 

The first technique used is the univariate analysis, through histograms. Secondly, a 

multivariate analysis allows us to establish a correlation map between variables [73], as 

well as the distribution of outcomes, and thus obtain an initial data analysis. 

Once the first approximation and evaluation of the dataset has been made, we can 

divide it into training and test, considering that the variable � corresponds to the RFID 

criteria (recency, frequency, importance, and duration) and � is the variable to be pre-

dicted, i.e., customer abandonment data (yes/no). 

An analysis will be carried out using the algorithms shown in Table 7 to determine 

which of them best fits the predictive model. 

Table 7. ML algorithms applied to the model. 

Algorithm 

Logistic Regression 

Random Forest 

Support Vector Machine 

K-nearest neighbors 

Decision Tree Classifier 

Gaussian NB 

XGboost 

Each of the models described in Table 7 is evaluated through a cross-validation pro-

cess (K-fold), and the receiver operating characteristic (ROC) and area under the curve 

(AUC) curves are analyzed, and the accuracy mean [74,75]. The higher the area under the 

curve, AUC, the better the model is at predicting 0 classes as 0 and 1 classes as 1. The ROC 

curve can be seen in Figure 9, where on the y-axis we have the true positive ratio (TPR), 

and on the x-axis we find the false positive ratio (FPR). Accuracy can be obtained as the 

result of the quotient of the sum of correct predictions by the total number of predictions. 

 

Figure 9. Example of ROC/AUC curve applied to customer abandonment. Figure 9. Example of ROC/AUC curve applied to customer abandonment.

Other algorithms could also have been used in the predictive process, such as deep
neural networks [76], CatBoost, or LightGBM [77,78]. The objective is not so much to seek
accuracy as to generate an ML model-independent explainability methodology.

Once the different machine learning models have been tested, we will discuss the
explainability of each one of them versus the predictive capacity. We will keep the model
that best meets the predictive expectation, and we will use interpretability in case it
is necessary.
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4.3. ML Interpretability Analysis

Next, this section will analyze the interpretability of the ML models described in
Section 4.2. The methodology designed in this paper is extensible to any case in which we
must predict a variable (classification or regression) based on the rest of the characteristics
(Figure 10).
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We will start by applying the partial dependency plot (PDP), which shows the effect
that one or two features have on the prediction result of an ML model [53]. The diagram
allows us to work with univariate and bivariate graphs, and it will help us to determine
the correlation between variables.

The PDP is an average of the lines of an ICE diagram; in the next step, we work
with the individual conditional expectation curves (ICE) model, offers a local expectation,
focusing on individual data instances [56].

Next, the ELI5 model is used to measure the importance of the features; it helps us
to see when our model can respond to counterintuitive results. ELI5 allows us to fit the
model using the XGboost library, and then analyze the importance of each feature within
the applied model [55].

In the next step, the LIME model is based on approximating the black box model
through explainable models (linear regression, decision tree), to make its predictions
interpretable [52].

Finally, we will apply SHAP, which allows us to know which characteristics were the
most influential for the model to make the correct decision to predict whether the customer
was rated with a low or high possibility of abandonment [54].

In addition to the methods indicated above, the reliability of this study could be
complemented with other methods of measurement by contrast, such as the Gini index,
analysis of variance, Chi-squared test, regression t-test, and variance test.

All these evaluations will give us a global vision of the selected model and will
explain which characteristics are determinant in customer abandonment, and thus guide
the necessary compensatory actions to mitigate it.

5. Proposed Model Applied in an Enterprise Software Company

In this section, we present an example of the application of the methodological guide
developed in Sections 3 and 4 of this paper. We will try to predict whether a partner
(customer) abandons the relationship with the software company, based on the valuation
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of its relationship with the Contact Center. For a total of 200,615 partners, 198,493 remain
after 3 years (2018–2020) and 2122 have left the partner relationship.

In the clustering process (k-means) applied to the above dataset, five clusters of part-
ners are anticipated, Table 8, with the following drop-out rate represented in
Figure 11 below.

Table 8. Results of the k-means algorithm expressed in the 2-tuple model.

Cluster
c

R
vc1

F
vc2

I
vc3

D
vc4

1 (L, −0.041) (L, 0.057) (M, 0.092) (L, 0.077)
2 (H, −0.008) (H, 0.047) (M, −0.006) (H, 0.074)
3 (L, 0.007) (L, 0.109) (M, −0.103) (H, 0.090)
4 (H, −0.091) (H, −0.032) (M, 0.020) (L, 0.077)
5 (H, −0.050) (L, −0.042) (M, 0.019) (M, −0.090)
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Figure 11. Partners per cluster that have churn = “yes” (Type = 1).

Following KDD and CRISP-DM methodology [62], Figure 4, and once the problem
domain has been revised, we add the cancellation request (churn) variable, Type = “Cancel-
lation Request”, Figure 12, to the RFID dataset, thus obtaining the set RFIDT. Next, the
data are cleaned and transformed to a numeric domain between 0 and 5, using the Python
function MinMaxScaler; next, since the data are unbalanced, we will adjust the datasets to
avoid this problem. Then, we will use different ML classification algorithms (Table 7) to
analyze the relationship between accuracy and interpretability, applying interpretability in
the case of higher accuracy and low explanation. Finally, we will apply the global and local
agnostic algorithms described in Sections 3 and 4 of this paper, and obtain and analyze
the conclusions.
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5.1. Data Acquisition, Processing, and Transformation

The data are collected from the CRM platform, once processed, and transformed, we
have the following description of the model (Table 9).

Table 9. RFIDT description.

Recency Frequency Importance Duration Type

count 200,615 200,615 200,615 200,615 200,615
mean 416.21 3.16 0.51 10.85 0.02

std 276.97 3.04 0.05 25.70 0.10
min 0.00 1.00 0.25 0.00 0.00
25% 178.00 1.00 0.50 0.00 0.00
50% 378.00 2.00 0.50 0.00 0.00
75% 621.00 4.00 0.50 3.00 0.00
max 1428.00 15.00 1.00 137.00 1.00

As part of the process described in Sections 3 and 4, we will apply some of the pre-
model, data visualization, and exploration techniques necessary to explore, interpret, and
gain initial knowledge of the dataset. They help us to identify the key features of the model
and, being model-independent, they are applicable to any dataset and prior to any initial
ML model selection.

The following is a univariate analysis (Figure 13).
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Figure 13. Recency and frequency of transactions by partner.

For both cases, the number of partners is represented on the y-axis, and on the x-axis,
there is the time interval in days for recency and the number of interactions in the case
of frequency.

In addition, for duration and importance we obtain (Figure 14):
There is a correlation between recency and frequency, but there is hardly any cor-

relation between criteria and abandonment. Some other metrics can help to measure
the nonlinear relationship of the characteristics, such as distance correlation, mutual
information, and maximum information coefficient. For the case study, we will use
Pearson’s correlation.

Next, in the Table 10, we perform a transformation to a range [0,5] through of the
function MinMaxScaler.
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The following step displays the correlation matrix (Figure 15).
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Table 10. RFIDT, MinMaxScaler (0,5).

Recency Frequency Importance Duration Type

count 200,615 200,615 200,615 200,615 200,615
mean 1457 0.77 1.70 0.39 0.011

std 0.97 1.08 0.30 0.93 0.10
min 0.00 0.00 0.00 0.00 0.00
25% 0.62 0.00 1.67 0.00 0.00
50% 1.32 0.36 1.67 0.00 0.00
75% 2.17 1.07 1.67 0.11 0.00
max 5.00 5.00 5.00 5.00 1.00

5.2. ML Algorithms Evaluation

Next, to analyze whether to apply the set of interpretability algorithms described in
Section 3, a set of pre-model techniques will be applied to obtain the first knowledge of
the dataset. Subsequently, each of the models described in Table 7 is evaluated through a
cross-validation process (K-fold), and the receiver operating characteristic (ROC) and area
under the curve (AUC), and accuracy mean are analyzed, to obtain the optimal algorithm
for the case study.

The results obtained can be analyzed in Table 11,



Mathematics 2022, 10, 3896 18 of 29

Table 11. Evaluation of applied predictive algorithms.

Algorithm ROC AUC
Mean

ROC AUC
STD

Accuracy
Mean

Accuracy
STD

6 XGboost 70.40 1.24 98.75 0.08
5 Gaussian NB 67.25 1.78 98.83 0.09
0 Logistic Regression 67.14 1.76 61.02 0.44
1 Random Forest 60.40 1.34 98.80 0.08
3 KNN 55.27 0.85 98.93 0.07

4 Decision Tree
Classifier 52.32 1.41 98.43 0.10

2 SVM 52.16 4.77 98.94 0.07

The model selected according to the procedure described is XGboost, a black box
model, and responds to the need to use interpretability.

XGBoost is used in supervised learning problems, and the objective is to predict a
target variable yi from a set of variables xi. A common example of supervised learning is
linear regression, where the prediction of a variable yi is obtained as, yi = ∑k(βkxik), and
the characteristics making up the input are weighted by weights βk.

When we talk about training a model, we are talking about adjusting parameters β,
for which we need to define the objective function that best fits the training data xi, and
produce as a response the best fitted value to yi. A notable feature of the objective functions
is that they consist of two parts, the training loss, and the regularization term:

Goal(β) = L(β) + Ω(β) (3)

where L is the training loss function and Ω is the degree of complexity of explainability of
the model. In this case, the model is defined as follows [79]:

ŷi =
K

∑
k=1

fk(xi), fk ∈ F (4)

where K is the total number of trees and fk is a function in the function space F.
The objective is to mix classification trees to measure which of the combinations is the

best for our model.

5.3. Data Unbalancing

Our churn class has very few samples in relation to the majority class (no churn = partner).
This causes an imbalance of data, and therefore the training of the model will be deficient,
responding in an unbalanced way to the detection of the dropout pattern to be predicted.

In the first analysis performed using XGBoost, the model gave us the following results
(Figure 16).
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As can be seen, the model presents an extraordinary result, with almost 99% prediction,
but based on an accuracy of 100% in the majority class (no churn = 0) and 0% in the minority
class (churn = 1). It is therefore essential to perform a data unbalancing process, and we
must try to increase the degree of prediction of the minority class.

To deal with the possible problem of data imbalance in the dropout class, we have
resorted to modifying the XGBoost training algorithm by introducing a value to the hy-
perparameter scale_pos_weight, which is designed to adjust the behavior of the algorithm
in unbalanced classification problems. A suitable value for this parameter is found in
estimating a correction corresponding to the inverse of the class distribution. For example,
in a dataset where the ratio between the minority and majority class is 1 to 100, it is correct
to apply a value of scale_pos_weight = 100 [80].

In addition, scale_pos_weight has been combined with the Smote-Tomek process [81],
which consists of simultaneously applying a subsampling and oversampling algorithm to
the dataset. This obtains in one of the different model trainings the following best result
(Figures 17 and 18).
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In exchange for losing precision in the majority class, we gain it in the minority class.
The next step, because it is XGBoost of a black box algorithm, consists of developing

the interpretability process described in Sections 3 and 4 of this paper.

5.4. Interpretability Techniques Application

Next, the interpretability model detailed in Sections 3 and 4.3 of this paper is applied,
and a study of the results obtained will be carried out.

5.4.1. Partial Dependency Diagram (PDP)

When we consider more than a certain number of variables, it is necessary to analyze
the partial dependence of one or two variables in relation to the prediction of the response
variable. Through the PDP diagram, we can perform this type of analysis, and the shaded
area represents the confidence interval [53]. As can be seen in the graphs, normalization
has been carried out between 0 and 5.

The diagrams in Figures 19–21 show the influence of recency, frequency, and duration
on the prediction of abandonment, and the diagram in Figure 22 shows the degree of
correlation between recency and frequency. In the graphs presented, importance has not
been considered, since the value is biased towards the mean value (M).
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Finally, we include in this section the ICE plots, which are similar to the PD plots but
offer a more detailed view on the behavior of nearly similar clusters around the mean curve
of the PD plot. The ICE algorithm provides insight into the various variants of conditional
relationships estimated by the black box (Figure 23).
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5.4.2. Feature Importance (ELI5)

The concept of the importance of characteristics is simple: it is a matter of assessing
the importance of a given characteristic by calculating the increase in prediction error after
making a permutation of this characteristic [82].

To make random tree predictions more interpretable, each model prediction can be
presented as a sum of feature contributions (plus bias), showing how the features lead to a
particular prediction. ELI5 does this by showing the weights of each feature, indicating
their influence on the final prediction decision across all trees. This is a good step in the
direction of agnostic interpretation of the model, but not fully agnostic, as we will see later,
using LIME. The results obtained are shown below in Table 12.

Table 12. Feature importance (ELI5).

Weight Feature

0.3610 Importance
0.2542 Frequency
0.1998 Duration
0.1849 Recency

According to the results obtained, the criterion importance has the greatest weight
in the evaluation of the characteristics, followed by frequency, duration, and recency.
However, as we have seen, the importance is biased towards the mean values within the
whole sample.

5.4.3. Local Substitute (LIME)

LIME is a local model and works by checking what happens to the predictions when
variations in the input data are introduced [52]. For this purpose, LIME generates new
datasets with these variations, thus obtaining sets of predictions. The results applied to the
model under study can be seen below.

In the first case, Figure 24, a record has been chosen in which there is a 99.64% success
rate in the prediction of non-abandonment. In Figure 25, the prediction of abandonment is
75.49%, which corresponds to a partner who has left the partner channel.
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5.4.4. SHAP Values

The objective of the SHAP interpretability model is to be able to provide an explanation
for an instance x based on the contribution of each of the characteristics to the prediction
(Figure 26) [54].
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As for the importance of the characteristics, the model is a priori more reliable than
ELI5, since the importance measure is not a significant parameter for the model we are
studying, remembering that the default value is 0.5 in most of the samples.

Figures 27 and 28 show the prediction of SHAP values for the partner represented,
respectively, in Figures 24 and 25 by the LIME mode.
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It is significant to note that, in the segmentation study, for the partner represented
in Figures 25 and 27, it would be identified with cluster #1 and, therefore, it is a recently
incorporated partner that needs to take its first steps to start and, with a high risk of
abandonment, and in fact, it abandoned. On the contrary, the partner represented in
Figures 24 and 28, would be identified with cluster #4. The profile corresponds to a partner
with a large installed base of partners that uses the Contact Center to solve specific problems,
therefore, with a low risk of abandonment.

5.4.5. Skater

Because of its interest in the use case under study, we have introduced Skater, since it
allows both global and local interpretation; for global explanations, it is based on the use of
PDP, and for local explanations it is based on LIME. It corresponds to a unified framework
recently introduced and under development [83].

The results obtained are shown below.
In the graph in Figure 29, the forecasts obtained with Skater fit with those of the

SHAP model in Figure 26. Analyzing in more detail, we obtain the dependence graphs,
Figure 30, where the relationship between the classification variable with respect to each of
the characteristics can be seen.
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The graphs in Figure 30 confirm the trend seen in the PDP model. The tendency to
abandon is centered on those partners with medium and low recency values (L, M), low
frequency values (L), and with low, medium, and high duration of incidents (L, M, H).
As mentioned above, they correspond to partners who have recently entered the channel
and have not managed to mature sufficiently to be able to market and implement the
software’s solutions.

6. Discussion

The objective of this study is to complete a working methodology for the analysis of
the interpretability in ML models, using agnostic models (global and local) that have been
used for the analysis of the explainability of partner churn in a B2B environment.

Applying the methodological procedure designed in the RFID model, in a typical
B2C environment, it is possible to achieve high levels of interpretability in the customer
churn rate, since there is a direct dependence between the frequency, recency, duration,
and importance of incidents and the churn rate. In the B2B model that has been proposed,
as mentioned above, the relationship between the partner (distributor = customer) and
the software company is very close. That is to say, the partner has had to develop a whole
line of business and investment in its relationship with the software company, which
translates into:

• Adaptation to the business plans established by the software company: number of
people trained, sales commitment, and annual turnover.

• Highly demanding training process for each partner’s technical, commercial, and
pre-sales personnel.

• As the company grows, it becomes necessary to hire specialized personnel, with the
consequent related economic cost.

Therefore, as the partner grows in sales, the relationship with the software company
is closer and, consequently, the abandonment rate of that partner is lower (see Figure 11,
Table 8). On the other hand, we find recently incorporated partners that do not reach
the maturation process described above tend to abandon before their investment in the
business model proposed by the software company is greater. Because of the above,
and for the business case in question, the more interactions that take place between the
partner and Contact Center, the lower the probability of abandonment (high frequency
and recency). Logically, the partner who is more established in the channel has a greater
number of customers to serve and, therefore, the greater the number of interactions with the
software company.

Regarding the working methodology applied to solve the problem of interpretability
in ML models, an in-depth study of agnostic interpretability models has been carried out
and applied to the context of the problem to be addressed. This methodology helps us to
interpret the decisions made by black box algorithms, and uses agnostic interpretability
models, not dependent on the ML model, and therefore its flexibility and applicability to
any type of learning model is guaranteed.

The innovation of this paper is based on three differentiating factors:

• Use of a customer assessment based on the RFID model, and on the set of interactions
between the customer and the brand through the Contact Center.

• Application of ML models oriented to customer churn rate prediction in B2B envi-
ronments. According to the literature review, in Section 2, there is not much research
production in B2B environments.

• Application of a working methodology that provides an agnostic interpretability proce-
dure, extensible to any predictive model in B2B or B2C environments in which we must
predict a variable (classification or regression) based on the rest of the characteristics.

7. Conclusions and Future Work

In conclusion, the present work develops a completely new line of evaluation of the
prediction of customer abandonment, from the point of view of the customer’s interactions
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with the Contact Center. Based on the RFID model, it is possible to determine the brand’s
evaluation of the customer through these interactions and, consequently, to analyze each
of the characteristics that make up the model and their weight in the final evaluation of
the binary target variable abandonment. An additional novelty is the application of the
model to a B2B environment, for which the literature is scarce, in models that determine the
prediction of abandonment, and consequently in the application of interpretability (XAI).

As an example, we have applied the implemented model to a dataset from a software
manufacturing company with a large network of partners (customers) distributed around
the world. A set of predictive models has been applied on unbalanced data; the churn
rate represents 1.06% of the total sample. Therefore, data balancing techniques had to be
applied, adjusting the behavior of the algorithm in unbalanced classification problems,
in addition to simultaneously applying subsampling and oversampling algorithms to
the dataset.

Then, the described working procedure has been applied, consisting of the application
of successive interpretability techniques. The results obtained through the implemented
interpretability methodology reveal that the conclusions are aligned with the clustering
implemented with the RFID model. The more the partners interact with the Contact Center,
the less propensity they have to abandon the relationship with the software company.
The clustering (k-means) developed through the RFID model classifies partners into five
groupings, and the abandonment prediction fits perfectly with the clusters in which the
partner has a lower rating on the recency and frequency variables.

As future work, we propose the following:

• One metric of concern for Contact Centers is the employee attrition rate; turnover in
the Contact Center is very high, mainly due to work and emotional demands [84].
Using the procedure designed in this paper to analyze, predict, and interpret Contact
Center staff attrition rates would be a major challenge.

• Extend the model to any industry and any B2B and B2C environment, with a focus on
retail, insurance, banking, and service delivery.

• Finally, consolidate the model with what customers think, i.e., contrast the model
with the customer satisfaction score (NPS), the customer’s assessment of the brand or
of each of the customer satisfaction score (CSAT) interactions, or the customer effort
score (CES) [13]. In addition to adding other factors such as the metrics introduced
in the customer engagement value model, the following metrics can also be added
(CEV) [85].

• In certain fields, such as decision making in image detection processes, it will be
necessary to adapt the interpretability model described by incorporating the use of
artificial neural networks [76,86,87]; in future works, an extension of the XAI model
will be proposed by adapting these improvements.
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