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Abstract: Bearing fault diagnosis has been a challenge in rotating machinery and has gained consid-
erable attention. In order to correctly classify faults, the conventional fault diagnosis methods are
mostly based on vibration signals. However, features extracted from a single view of vibration signals
may leave out useful information, which can cause the incompleteness of intrinsic information and
increase the risk of the performance degradation of fault classifications. In this paper, a novel bearing
fault diagnosis method, discriminant analysis using multi-view learning (DAML), is proposed to
tackle this issue. Multi-view datasets referring to vibration and acoustic signals are obtained by
carrying out a fast Fourier transform (FFT). Then, multi-view feature (MVF) representation, including
view-invariant and category discriminative information in a common subspace, is achieved based
on canonical correlation analysis (CCA) and uncorrelated linear discriminant analysis (ULDA). Ul-
timately, with the help of the K-nearest neighbor (KNN) classifier built on the multi-view features,
bearing faults are identified. The extensive experimental results show that DAML can identify the
bearing fault accurately and outperforms other competitive approaches.

Keywords: fault diagnosis; vibration signal; acoustic signal; discriminant analysis; multi-view
learning

MSC: 94A12

1. Introduction

As indispensable mechanical components, bearings play an exceptionally vital role
in almost all kinds of rotating machinery [1,2]. Owing to harsh operating conditions,
bearings are prone to faults, which can lead to unscheduled downtime and unpredicted
productivity losses for production facilities or even catastrophic consequence for mission-
critical equipment or human casualties [3–5]. Therefore, it is essential to diagnose the
bearings, aiming to prevent the occurrence of accidents, an issue that has gained increasing
and considerable attention.

Due to the rotating nature of the measured signals from defective bearings, the periodic
or quasi-periodic transient components often reflect important physical information related
to the bearing fault dynamics [6,7]. Since the rich fault information of the equipment
status is carried by the vibration signals, the use of vibration signals for fault detection is a
reasonable choice and a set of features are extracted in order to classify the faults [8,9]. These
features could be in the time domain, frequency domain, or time-frequency domain [10,11],
such as the peak amplitude, skewness, kurtosis, Fourier spectrum, envelope spectrum,
spectral kurtosis, and so on [11–13]. Samanta et al. [14] utilized time-domain features to
characterize the bearing conditions and employed ANNs and SVM to diagnose bearing
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faults. Li et al. [15] extracted features from noise-contaminated vibration signals based on
local mean decomposition and a multi-scale permutation entropy, and then realized fault
identification via an improved support vector machine-based binary tree. In addition to
vibration signals, the use of information concealed within acoustic signals has gained more
and more attention in order to guarantee the safe operation of bearings [16,17]. With regard
to feature extraction, Al-Ghamd et al. [18] reported that acoustic signals achieved early fault
detection and provided an indication of the size of the artificially made defect. Ref. [19]
compared the use of vibration on a bearing run at 1440 rpm, and it was clear that the acoustic
signal peak amplitude performed a more reliable detection of the bearing defect than the
RMS of the vibration signal. In another study [20], the acoustic signal was more sensitive
in tracking the progression of the defect than the vibration-based method. With regard to
fault classification, Zhang et al. [21] applied a deep graph convolutional network based on
graph theory for the acoustic-based fault diagnosis of roller bearings, which improved the
fault classification accuracy.

Although many of the aforementioned works achieved successful applications in
machine fault diagnosis, the features extracted were rarely described by the specific type of
fault signal such as vibration signals or acoustic signals, which restricted the diagnostic
accuracy and stability [22]. Both the measured vibration and acoustic signals are prone to
being affected by background noise to varying degrees, and the collected vibration signals
often have information loss [23,24]. Of course, feature refining of the vibration or acoustic
signals can be carried out for performance enhancement. However, it is a time-consuming
and unreliable type of human analysis.

As a matter of fact, the vibration and acoustic signals of the equipment are comple-
mentary and mutually enhanced [25]. In order to improve fault diagnosis performance,
we could effectively utilize the information relevant to the equipment status stemming
from the vibration and acoustic signals and enhance robustness. Some studies have been
conducted that investigated the use of information fusion for fault diagnosis. In [26],
a novel fault identification method using a correlation coefficient and Hurst exponent was
proposed for depicting the actual fault mode from the decomposed signals, and the fault
characteristics of rolling bearings were extracted. Shi et al. [25] proposed a two-stage sound-
vibration signal-fusion algorithm, which enriched the fault characteristics’ information and
improved signal-to-noise ratios significantly. Fei et al. [22] constructed the multi-feature
entropy distance with vibration and acoustic signals, which reflected the process feature
of rolling bearing faults with the change in the rotating speed, and the method had high
diagnostic precision and strong robustness. However, these methods require extensive
domain expertise, which is time-consuming and expensive. To automatically identify faults,
methods based on machine learning have been developed for bearing feature analysis
and fault diagnosis. In [27], a bearing fault diagnosis method based on a convolutional
neural network using vibration and acoustic signals was presented and it could diagnose
computer numerical control machine faults early. Wang et al. [28] proposed 1D-CNN-based
networks for fusing vibration signals and acoustic signals, and the fault characteristics
extracted from it could realize the accurate diagnosis of bearings. In another study [29],
a deep random forest fusion technique using vibration and acoustic signals was used to
improve fault diagnosis performance. However, these methods often need a large number
of training samples to build models for fault diagnosis. In real-world scenarios, training
samples are difficult to obtain and require extensive manual effort to label.

Recently, there has been a growing interest in multi-view learning as one type of
research of information fusion, which aims to learn one function to model each view
and jointly optimizes all the functions to improve the generalization performance and in
addition, it provides the possibility of solving the above problem [30–32]. In [33], a dis-
criminant common space was obtained by jointly learning multiple view-specific linear
transforms for robust image recognition from multiple views. Yang et al. [34] proposed
a novel discriminative regression-based framework that mapped the multi-view data to
a unified low-dimensional discriminative subspace, which was further enhanced to be
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more discriminative for image classification. For image recognition under the condition
of incomplete views, Zhang et al. [35] designed a cross-partial multi-view network that
could fully and flexibly take advantage of multiple partial views and achieve competitive
performance, especially under the condition of missing views. Wang et al. [36] designed
and built a generative partial multi-view clustering model with adaptive fusion and cycle
consistency to solve the incomplete multi-view problem by explicitly generating the data of
missing views. Although many successes have been achieved in the classification of images,
they have seldom been applied to fault detection and the diagnosis of rotating machinery
components in industrial applications and they cannot be used without considering the
characteristics of the signals. Furthermore, the extracted features can contain redundant or
irrelevant information, which can reduce the fault diagnosis accuracy. Therefore, there is
still broad room for improvement to realize an effective and high-accuracy fault diagnosis
for actual scenarios.

In this paper, a novel bearing fault diagnosis method is proposed based on discrim-
inant analysis using multi-view learning (DAML). First, multi-view datasets of normal
bearings and faulty bearings from vibration and acoustic signals are obtained using a fast
Fourier transform (FFT). Then, in order to achieve the robust feature representation for
the different views, view-invariant and category discriminative multi-view features (MVF)
are extracted by jointly seeking the most relevant relationships and optimal discriminant
features with minimum redundancy in a common subspace based on canonical correlation
analysis (CCA) and uncorrelated linear discriminant analysis (ULDA). Finally, with the help
of a K-nearest neighbor (KNN) classifier built into the MVF, bearing faults are accurately
identified. The main contribution of this work is the construction of view-invariant and
category discriminative features via max-relevance and min-redundancy, and the features
extracted from a small number of training samples can be successfully used for diagnosis.

The rest of this paper is organized as follows. Section 2 discusses the previous works
and preliminaries including canonical correlation analysis and uncorrelated linear discrim-
inant analysis. Section 3 introduces the fault diagnosis method based on discriminant
analysis using multi-view learning, including multi-view feature dataset construction
and multi-view feature extraction and diagnosis. Section 4 presents the experimental
evaluations. The conclusions are given in Section 5.

2. Previous Works and Preliminaries
2.1. Canonical Correlation Analysis

Canonical correlation analysis (CCA) is an approach used for finding the common space in
which the low dimensional embedding of features from two views are most correlated [33,37].
In other words, CCA learns a pair of transformations, one for each feature view, to, re-
spectively, project the features to a common space. Both transformations were obtained
by maximizing the cross correlation between the two feature views. To be specific, let
XV = [xv1 , xv2 , · · · , xvn ] ∈ Rp×n and XA = [xa1 , xa2 , · · · , xan ] ∈ Rq×n be the training sam-
ples from the vibration and acoustic signals, respectively, where xvi ∈ Rp×1, i = 1, 2, · · · , n
denotes the sample from the vibration signals and xai ∈ Rq×1, i = 1, 2, · · · , n denotes the
sample from the acoustic signals. The two projection vectors, wv and wa, can be described
by the following problem:

arg max
wv ,wa

wT
v Σvawa√

(wT
v Σvvwv)(wT

a Σaawa)
(1)

where Σva, Σvv, and Σaa are the covariance matrices, which are calculated as
Σva = XV HXT

A

Σvv = XV HXT
V

Σaa = XAHXT
A

(2)
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where H = I− 1
n llT and I is considered as l as the one vector. Since the objective is invariant

to the scaling of wv and wa, the projections are constrained to have unit variance and the
above circumstance is equivalent to the following optimization problem:

arg max
wv ,wa

wT
v Σvawa subject to wT

v Σvvwv = 1, wT
a Σaawa = 1 (3)

2.2. Uncorrelated Linear Discriminant Analysis

Uncorrelated linear discriminant analysis (ULDA) is an extension of linear discrimi-
nant analysis (LDA) and is an effective supervised feature extraction technique for maxi-
mum class separation and original class information maintenance in a single-view [38,39].
LDA seeks an orientation w to map the data into a subspace so that the ratio of the between-
class distance to the within-class distance is maximized. Considering a multi-class pattern
classification problem, we use X = [X1, X2, · · · , Xc], which is partitioned into c classes,
where Xi ∈ Rp×ni and ni represent the size of the i-th class. Then, criteria are used to
formulate the class separability in LDA, that is, the within-class scatter matrix Sw and the
between-class scatter matrix Sb, which are defined as

Sw =
c

∑
i=1

∑
xj∈Xi

(xj − µi)(xj − µi)
T (4)

Sb =
c

∑
i=1

ni(µi − µ)(µi − µ)T (5)

where µi denotes the mean of the samples in class i and µ denotes the mean of all samples.
The optimal projection can be obtained by maximizing the Fisher criterion function, which
is defined as

F(w) =
wTSbw
wTStw

(6)

In order to obtain the uncorrelated discriminant features, the jth direction wj is sub-
jected to the following conjugated orthogonality constraints:

wT
j Stwi (7)

where wi(i = 1, 2, · · · , j− 1) are the Fisher’s vectors and St = Sw + Sb denotes the total
scatter matrix. Then, the optimization problem can be transformed into the following form:

max
wj

wT
j Sbwj

subject to wT
j Stwj = 1,

wT
j Stwi = 0, (i = 1, 2, · · · , j− 1)

(8)

Finally, wj of ULDA can be found successively via solving the following generalized
eigenvalue problem [40]:

PjSbwj = λjSwwj (9)

where
P1 = Ip

Pj = Ip − StDT
j (DjStS−w 1StDT

j )
−1DjStS−w 1 (j > 1)

Dj = [w1, w2, · · · , wj−1]
T (j > 1)

Ip = diag(1, 1, · · · , 1) ∈ Rp×p

(10)
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3. Fault Diagnosis Method Based on Discriminant Analysis Using
Multi-View Learning

As mentioned in Section 1, learning from a single view may be non-robust and can
lead to some uncertainty and incompleteness in the field of fault diagnosis. In order to solve
this issue, we need to effectively utilize the information stemming from the multi-view
datasets and capture more robust features for the training and test data. In this section,
we present a novel bearing fault diagnosis method based on discriminant analysis using
multi-view learning. The framework for this procedure is illustrated in Figure 1. The details
of each part are elaborated in the following subsections.

j

i

i
j

T

vr tv vkw S w

T

ar ta ak
w S w

T T

vr tv vr ar ta arw S w w S w

Figure 1. The framework of the proposed DAML method.

3.1. Multi-View Feature Dataset Construction

If a bearing has a localized fault on the outer race, inner race, or a rolling element, dur-
ing a constant speed operation, the fault point strikes the mating components and generates
periodical impacts, which can be contained in the vibration and acoustic signals and, in
general, these pieces of fault information can be identified in the frequency domain [3].
Hence, the impulsive features in the frequency domains of these two kinds of signals are
the ideal candidates for monitoring and diagnosing.

In our work, raw time series signals and acoustic signals were acquired simultaneously
and FFT amplitudes were caught, respectively, from them in the same time period, which
guaranteed that the running state of the bearing could be represented from different views
at the same time. Thus, the number of samples obtained from the vibration signals was
equal to the number of samples obtained from the acoustic signals. The main steps of the
multi-view dataset generation were as follows:

• Step 1: Catch the fixed-point FFT amplitudes from the raw time-series vibration
and acoustic signals as samples Dv ∈ Rp×nv and Da ∈ Rq×na , where Dv denotes the
vibration dataset and Da denotes the acoustic dataset. nv and na represent the number
of samples and p and q mean the dimensionality of the samples. In our work, p is
equal to q.

• Step 2: Draw Xvtr ∈ Rp×nvtr with label Yvtr ∈ R1×nvtr from Dv as the vibration train-
ing dataset randomly, where nvtr denotes the number of vibration training datasets.
The remaining samples from Dv are the vibration test dataset Xvte ∈ Rp×nvte .

• Step 3: Select Xatr ∈ Rq×natr with label Yatr ∈ R1×natr from Da as the acoustic train-
ing dataset randomly, where natr denotes the number of acoustic training datasets.
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The remaining samples from Da are the acoustic test dataset Xate ∈ Rq×nate . Then,
Xmtr = [Xvtr, Xatr], Ymtr = [Yvtr, Yatr] and Xmte = [Xvte, Xate] constitutes the multi-
view feature dataset, referring to the vibration and acoustic views.

3.2. Multi-View Feature Extraction and Diagnosis

Although the view-invariant properties of the vibration and acoustic signals could be
obtained in the common feature space using CCA, the discriminant information referring
to the class structure properties was not explicitly taken into account, which created
a risk of confusion in the classification. Thus, discriminant analysis was embedded for
preserving the category discriminative properties in the process of further feature extraction.
Accordingly, CCA and ULDA were applied for simultaneous view-invariant and category
discriminative embedding. Therefore, the optimization problem of the multi-view feature
extraction in this paper comprised Equations (3) and (8):

max
wvr ,war

(1− k)wT
vrSbvwvr + kwT

arSbawar + 2γwT
vrΣvawar

subject to wT
vrStvwvr + σwT

arStawar = 1,

wT
vrStvwvj = wT

arStawaj = 0, (j = 1, 2, · · · , r− 1)

(11)

where wvr and war represent the rth discriminant projection of Xvtr and Xatr, respectively. k
and γ refer to the view-invariance and category discrimination. Σva denotes the covariance
matrix, which can be acquired by

Σva = Xvtr HXT
atr (12)

σ = tr(Stv)/tr(Sta) guarantees that the optimization problem obtains a closed-form so-
lution, where tr(·) denotes the trace of a matrix. Sbv and Sba represent the between-class
scatter matrix of the vibration training dataset Xvtr and the acoustic training dataset Xatr,
respectively. Stv and Sta represent the total scatter matrix of the vibration training dataset
Xvtr and the acoustic training dataset Xatr, respectively. Sbv and Sba are computed as

Sbv =
c

∑
i=1

nvi(µvi − µv)(µvi − µv)
T (13)

Sba =
c

∑
i=1

nai(µai − µa)(µai − µa)
T (14)

where nvi and nai denote the mean of the samples in class i from Xvtr and Xatr, respectively.
µv and µa denote the mean of the samples from Xvtr and Xatr, respectively. Stv and Sta are
obtained as follows:

Stv = Swv + Sbv (15)

Sta = Swa + Sba (16)

where Swv and Swa denote the within-class scatter matrix of the vibration training dataset
Xvtr and the acoustic training dataset Xatr, respectively, and can be calculated as

Swv =
c

∑
i=1

∑
xvtrj∈Xi

vtr

(xvtrj − µvi)(xvtrj − µvi)
T (17)

Swa =
c

∑
i=1

∑
xatrj∈Xi

atr

(xatrj − µai)(xatrj − µai)
T (18)
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where c denotes the number of classes. The goal of multi-view feature extraction is to find a
pair of projection wvr and war. According to the constrained optimization theory, we derive
the Lagrange function for Equation (11) so that λ, αj, and β j are the Lagrange multipliers.

(1− k)wT
vrSbvwvr + kwT

arSbawar + 2γwT
vrΣvawar

− λ(wT
vrStvwvr + σwT

arStawar − 1)

−
j=r−1

∑
j=1

2αjwT
vrStvwvj

−
j=r−1

∑
j=1

2β jwT
arStawaj

(19)

Considering ∂L(wvr, war)/∂wvr = 0 and ∂L(wvr, war)/∂war = 0, respectively, and the
theorems in [38,40], the generalized eiqen decomposition is as follows:[

(Pv − kI)Sbv −PvγΣva
PaγΣav kPaSba

][
wvr
war

]
= λ

[
Stv 0
0 σSta

][
wvr
war

]
(20)

where Pv and Pa are calculated as follows:

Pv = I − StvDT
v (DvStvDT

v )
−1Dv

Pa = I − StaDT
a (DaStaDT

a )
−1Da

(21)

where Dv and Da are defined as follows:

Dv = [wv1, wv2, · · · , wv(r−1)]
T

Da = [wa1, wa2, · · · , wa(r−1)]
T

(22)

Finally, the multi-view feature subspaces WV = [wv1, wv2, · · · , wvd] ∈ Rp×d and
WA = [wa1, wa2, · · · , wad] ∈ Rq×d are constructed and based on the multi-view feature
projection pairs (wvr,war) acquired after d iterations from solving Equation (19). The MVF
are obtained according to the following form:

A =

[
WV 0

0 WA

]T[ Xvtr
Xatr

]
(23)

With the help of the KNN classifier built on the MVF, bearing faults were accurately
identified. The procedure of DAML can be described in detail as follows:

• Step 1: Label the multi-view training dataset Xmtr = [Xvtr, Xatr] with Ymtr = [Yvtr, Yatr]
and the unlabeled multi-view test dataset with Xmte = [Xvte, Xate] in the process of the
multi-view feature dataset generation.

• Step 2: Construct the matrices Σva, Sbv, Sba, Stv, and Sta using Equation (12),
Equation (13), Equation (14), Equation (15), Equation (16), Equation (17), and
Equation (18), respectively.

• Step 3: Obtain σ = tr(Stv)/tr(Sta), and initialize Dv and Da using empty matrices.
• Step 4: Construct the matrices Pv and Pa as in Equation (21).
• Step 5: Achieve the rth multi-view projection pair (wvr, war) by solving Equation (20).
• Step 6: Update Dv = [Dv, wvr] and Da = [Da, war], and then jump to Step 4 until the

iteration termination condition that r is equal to d is satisfied.
• Step 7: Construct WV = Dv and WA = Da, and then the MVF are extracted using

Equation (23). Finally, the multi-view test dataset labels Ymte determined by the KNN
classifier are achieved.
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4. Experimental Evaluations

To verify the effectiveness of the proposed fault diagnosis approach, a fault simulation
testbed of the belt conveyor idler for data collection and diagnosis was used. The proposed
approach, DAML, was compared with the baseline approaches and several successful methods.

a. Baseline1: Frequency amplitudes of vibration signals without dimensionality
reduction are used for diagnosis based on a KNN classifier.

b. Baseline 2: Frequency amplitudes of acoustic signals without dimensionality
reduction are used for diagnosis based on a KNN classifier.

c. PCA VVN: Frequency amplitudes of vibration signals are extracted by applying
principal component analysis (PCA), and then a KNN classifier is used for diagnosis.

d. PCA VAC: Frequency amplitudes of acoustic signals are extracted by applying PCA,
and then a KNN classifier is used for diagnosis.

e. PCA VVA: Frequency amplitudes from vibration and acoustic signals are extracted
via PCA, and then features from different views are concatenated along the dimensions [41].
Finally, a KNN classifier is used for diagnosis.

f. CCA VVA: Frequency amplitudes from multi-view datasets are extracted by CCA,
and then a KNN classifier is used for diagnosis.

In order to make the experimental results more persuasive, the diagnoses of the
referred methods are all obtained based on KNN classifiers. Baseline methods a and b do
not use projection or multiple-view techniques, which are widely used in the field of fault
diagnosis. Baseline methods c and d are classical methods and do not use multiple-view
techniques, which has achieved success in many fault diagnosis applications. Baseline
methods e and f are novel and efficient approaches to multiple-view domains.

4.1. Experimental Setup and Dataset Preparation

In this section, the experiments were implemented on a fault-simulation testbed of
the belt conveyor idler [3]. The testbed shown in Figure 2 mainly consisted of an electric
motor for driving, a transducer, a belt, an idler, a tachometer, eight accelerometers, a voice
recorder, an acquisition instrument, and a computer. The driving motor was controlled
by a transducer with a fixed load and synchronized with a belt, and the idler was driven
through the intermediate belt. The defective bearing located in the bearing housing in the
idler was further away from the motor, and the other bearing without defects was closer to
the motor. Since it was not possible to directly measure the displacement on the bearings,
accelerometers were mounted on the bearing housing. In order to acquire the bearing multi-
view dataset, a voice recorder was placed around the bearing housing. Finally, the bearing
multi-view dataset of the belt conveyor idler, including the raw vibration and acoustic
signals, were used to diagnose faults.

In order to develop the proposed fault diagnosis method, inner-race faults (IF), outer-
race faults (OF), and ball faults (BF) were manufactured with the help of electrostatic
discharge machining. The vibration and acoustic signals were collected simultaneously with
a sampling frequency of 20 kHz and 48 kHz, respectively, as illustrated in Figure 2, and each
fault type contained four kinds of working conditions, i.e., L0 = 300 rpm, L1 = 600 rpm,
L2 = 900 rpm, and L3 = 1080 rpm. In addition, the vibration and acoustic signals of normal
bearings (NO) under different working conditions were also considered. The type of
bearing utilized was 6204, and its main parameters are displayed in Table 1.

Table 1. Main parameters of the 6204 ball bearing.

Type Inner Race Outer Race Number Bearing Balls
Diameter (mm) Diameter (mm) of Balls Width (mm) Diameter (mm)

6204 20 47 8 14 7.9
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Figure 2. Bearing test platform of the belt conveyor idler.

In this experiment, the vibration signals collected by the accelerometer constitute the
vibration signal views and the acoustic signals collected by the voice recorder constituted
the acoustic signal view. There were eight vibration signal views named V1 to V8 and
an acoustic signal view named A. Furthermore, the vibration and acoustic signals were
sampled from four kinds of working conditions including L0, L1, L2, and L3, and the
vibration signal views under certain working conditions and acoustic signal view under
certain working conditions constituted the bearing multi-view dataset of the belt conveyor
idler; then, the multi-view datasets including 36 views were constructed in this work. Each
sample from each view contained 2049 data points generated by implementing FFT. There
were four kinds of health conditions for each view, and each bearing health condition
contained 200 samples, that is, each view was composed of 800 samples. In our work,
we fixed γ = 1, and the KNN classifier with K was set to 5. In the selection of the
parameters of DAML, an empirical search of the parameter space was applied to find the
optimal parameter settings. Finally, k = 0.19 for the feature extraction and fault diagnosis.
According to [40], the optimal dimensionality of a feature space is c− 1 for c class problems.
In addition, it is believed that the accuracy of statistical pattern classifiers increases as the
number of features increases [42]. Taken together, the dimensionality of the feature space
was set to c = 4.

To demonstrate the effectiveness of DAML, the methods of a-f were compared simul-
taneously. The scenario settings of all experiments were trained by the labeled samples
randomly collected from a multi-view dataset to classify the remaining unlabeled test
samples in this multi-view dataset. Three levels that proportion pr of random selection
were considered in each multi-view fault diagnosis test. In all, 384 multi-view fault diag-
nosis tests were carried out under different sample size conditions, and the details of the
experimental scenario are described in Table 2.
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Table 2. Description of the experimental setup.

Vibration Signal Acoustic Signal Working Health Random Selections
View View Conditions Conditions pr (%)

V1 A L0, L1 NO, IF 10, 30, 70L2, L3 OF, BF

V2 A L0, L1 NO, IF 10, 30, 70L2, L3 OF, BF

V3 A L0, L1 NO, IF 10, 30, 70L2, L3 OF, BF

V4 A L0, L1 NO, IF 10, 30, 70L2, L3 OF, BF

V5 A L0, L1 NO, IF 10, 30, 70L2, L3 OF, BF

V6 A L0, L1 NO, IF 10, 30, 70L2, L3 OF, BF

V7 A L0, L1 NO, IF 10, 30, 70L2, L3 OF, BF

V8 A L0, L1 NO, IF 10, 30, 70L2, L3 OF, BF

4.2. Diagnosis Results of the Proposed Method

The diagnostic results under the different sample size conditions are shown in
Figures 3–5. Each figure is composed of eight subfigures involving various combinations
from different views. In each figure, the left side of the “-” symbol represents the view
from the vibration signals, and the right side represents the view from the acoustic signals.
In each subfigure, the left side of the “-” symbol represents the dataset from the vibration
signals under certain working conditions, and the right side represents the dataset from
the acoustic signals under the other working conditions. Specifically, a multi-view fault
diagnosis test L0-L0 was taken as an example in Figure 3a; the vibration signals from L0
and acoustic signals from L0 were randomly selected according to the preset proportions
for building a multi-view dataset and training diagnosis model, and the rest were used for
the fault classification. Detection precision, including the average classification accuracy
and the stability of detection involving the variances in the classification accuracies, are
described in Figures 6 and 7, respectively.

From the results of the multi-view fault diagnosis tests shown in Figures 3–5, it is
clear that fault diagnosis accuracy increased with the increase in the sample size for the
mentioned methods, and this trend is more pronounced in Figure 6. To be specific, Baseline 1
was better than Baseline 2 and this phenomenon was reasonable because the acoustic signal
was more likely to be contaminated than the vibration signal. For Baseline1, the results
generated by the combination of the different views had certain differences, particularly
under small sample size conditions. For example, the diagnostic results from (b), (d), (f),
and (h) are obviously different to those from (a), (c), (e), and (g) in Figure 3, and performance
of Baseline 1 only reached about 80% in “L0-L2” in Figure 3d,h. As far as Baseline 2 is
concerned, no matter the conditions, there were large fluctuations in terms of the diagnostic
results. PCA VVN was superior to PCA VAC and this was the same with Baselines 1 and 2.
Though dimensionality reduction by PCA can preserve the intrinsic information of bearings,
the fault feature is always submerged and distorted by relatively strong background noise.
In this experiment, Baseline 1 was better than PCA VVN and Baseline 2 was slightly better
than PCA VAC. In multi-view diagnostic technology applications, CCA VVA had obvious
fluctuations and its stability in detection was the worst. PCA VVA had obvious advantages
over CCA VVA, especially when the sample size was large, as shown in Figures 4 and 5.
Although PCA VVA was also superior to Baseline 2, PCA VVN, and PCA VAC overall,
which can be seen in Figure 6, and its stabilities of detection also had certain advantages,
which can be seen in Figure 7, PCA VVA had no advantage over Baseline 1.
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Figure 3. Diagnostic results under the condition of a 10% training sample size, (a) V1-A, (b) V2-A,
(c) V3-A, (d) V4-A, (e) V5-A, (f) V6-A, (g) V7-A and (h) V8-A.

Figure 4. Diagnostic results under the condition of a 30% training sample size, (a) V1-A, (b) V2-A,
(c) V3-A, (d) V4-A, (e) V5-A, (f) V6-A, (g) V7-A and (h) V8-A.
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Figure 5. Diagnostic results under the condition of a 70% training sample size, (a) V1-A, (b) V2-A,
(c) V3-A, (d) V4-A, (e) V5-A, (f) V6-A, (g) V7-A and (h) V8-A.

Figure 6. Average classification accuracies under different training sample size conditions.

To our surprise, DAML clearly outperformed the others. In Figures 4 and 5, it can
be seen that the diagnostic accuracies of DAML exceeded 97% in the different multi-
view tests, and the vast majority of performances were almost 100% or even achieved
100%. Under the conditions of a 30% training sample size and a 70% training sample
size, the average accuracies of DAML reached 99.12% and 99.58%, respectively, which can
be seen in Figure 6. As far as the stabilities of detection are concerned, the fluctuations
in DAML were only 0.9942 and 0.7064, respectively, which are shown in Figure 7. It is
worth noting that DAML could always accurately detect faults no matter what kinds of
multi-views were under the condition of a 10% training sample size. More specifically,
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the average accuracy of DAML under the above conditions was up to 98.77% and the
corresponding fluctuation was just 1.3986.

Figure 7. Stabilities of detection under different training sample size conditions.

4.3. Discussion

The key to effective fault diagnosis is the construction of view-invariant and category
discriminative features from different views. In order to illustrate the superiority of DAML
and explain why DAML works, we followed the t-SNE technique [43] to visualize the
high-dimensional features of the aforementioned methods in our experiment in a two-
dimensional map. For all of the aforementioned cases, a multi-view test “L0-L3”, as seen in
Figure 3b, was used as an example in Figure 8 for our discussion and the feature properties
from the different views were analyzed under a small sample condition. From the data
in Figure 8, it can be seen that there were feature pattern confusions of various degrees
when the features were extracted from a single view. Although PCA VVA and CCA VVA
extracted features from different views, the above problem was not solved. Theoretically,
by benefiting from jointly seeking the most relevant relationships and optimal discriminant
features with minimum redundancy in a common subspace, DAML is view-invariant and
category discriminative. From the results in Figure 8, it is observable that the multi-view
features of DAML were strong clustering and of sufficiently good discrimination.

To further demonstrate the superiority of the view-invariant and category discrimi-
native features extracted from the vibration and acoustic signals, two other classification
methods, including random forest and support vector machine, were added for contrast.
For illustration, we used the multi-view fault diagnosis tests with different training sample
sizes as examples, as seen in Figures 9 and 10, for the discussion.

In Figure 9, the symbols “tr0.1”, “tr0.3”, and “tr0.7” represent the 10% training sample
size, 30% training sample size, and 70% training sample size, respectively. DAML-RF and
DAML-SVM mean that the extracted features based on DAML were classified with random
forest and support vector machine, respectively. From Figure 9, it is clear that DAML,
DAML-RF, and DAML-SVM all achieved higher competitive performances than the above-
mentioned compared methods. It is worth mentioning here that the extracted features
using DAML, DAML-RF, and DAML-SVM were still diagnosed accurately even under the
condition of a 10% training sample size. In Figure 10, although it can be seen that there
were slight differences in the diagnostic performances, DAML, DAML-RF, and DAML-
SVM all showed obvious superiority. It was remarkable that unlike deep learning-based
methods that depend on lots of training samples and are time-consuming, the proposed
method automatically diagnosed faults accurately based on view-invariant and category
discriminative features via max-relevance and min-redundancy, even under the condition
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of a small training sample size. These results verify that DAML is a promising approach to
improving the performance of bearing fault diagnosis.
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Figure 8. Feature visualization via t−SNE [43] of a multi-view fault diagnosis task, (a) Baseline 1,
(b) Baseline 2, (c) PCA VVN, (d) PCA VAC, (e) PCA VVA, (f) CCA VVA and (g) DAML.

Figure 9. Diagnosis results of DAML with different classification methods, (a) V1-A, (b) V2-A,
(c) V3-A, (d) V4-A, (e) V5-A, (f) V6-A, (g) V7-A and (h) V8-A.
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(a) (b)

Figure 10. (a) Average classification accuracies of DAML with different classification methods;
(b) Stabilities of DAML with different classification methods.

5. Conclusions

In this paper, discriminant analysis using multi-view learning for bearing fault diag-
nosis has been proposed. Multi-view feature representation, including view-invariant and
category discriminative information, was constructed by jointly seeking the most relevant
relationships and optimal discriminant features with minimum redundancy in a common
subspace, and the features extracted from a small amount of training samples were success-
fully used for diagnosis. The proposed method provides a novel perspective for solving
the performance degradation problem of a fault classification caused by a single view.
Different multi-view fault diagnosis tests demonstrated the effectiveness and feasibility of
the proposed method.

Future research will include extending the proposed method to data fusion from more
views involving motor currents, torques, and strain gauges. In addition, bearing or gear
compound fault diagnoses based on multi-view learning will also be further studied.
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