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Abstract: An original innovative two-dimensional (2D) multi-layer model based on the Maxwell–
Fourier method for the diagnosis of a polymer exchange membrane (PEM) fuel cell (FC) stack is
presented. It is possible to determine the magnetic field distribution generated around the PEMFC
stack from the (non-)homogenous current density distribution inside the PEMFC stack. Analysis
of the magnetic field distribution can indicate whether the FC is healthy or faulty. In this way, an
explicit, accurate and fast analytical model can allow the health state of an FC to be studied. To
evaluate the capacity and the efficiency of the 2D analytical model, the distribution of local quantities
(i.e., magnetic vector potential and magnetic field) in a PEMFC stack has been validated with those
obtained by the 2D finite-element analysis (FEA). The comparisons demonstrate excellent results
both in terms of amplitude and waveform. The validation of this 2D analytical model is essential for
the subsequent generation of an inverse model useful for the diagnosis of a PEMFC.

Keywords: diagnosis; fuel cell; magneto-tomography; Maxwell–Fourier method; multi-layer model;
finite-element analysis
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1. Introduction
1.1. Context of the Paper

Currently, the fuel cell (FC) system presents the advantage of combining high-energy
efficiency (e.g., FC efficiency about 50% and heat engine efficiency about 32%) and environ-
mental friendliness compared to other more conventional technologies [1]. This presents an
interesting combination for conventional power generation systems, especially in stationary
and portable FC applications [2–4]. Furthermore, a polymer exchange membrane fuel cell
(PEMFC), which is the most commonly used FC in transport applications, is an interesting
alternative to the internal combustion engine [5].

In order to transform fuel cells in to a mass-market technology, many challenges
must be overcome. For that, it is necessary to estimate and comprehend the possible
performance of PEMFC in automotive applications as analyzed in [6]. Hydrogen is a
promising energy resource. In order to obtain an overview, various studies are based
on economics and storage, while recommendations [7] or a critical view can be given on
technologies, applications, trends and challenges [8].

The main application of FCs is in the automotive industry. A comprehensive review
and research on FC electrical vehicles are presented in [9]. Many topics such as topologies,
power electronic converters, energy management methods, technical challenges, marketing
and future aspects are discussed.

Some research studies are conducted on the degradation mechanism and impacts on
FC degradation with a focus in hybrid transport applications [10]. Similarly, FC diagnosis
methods for embedded automotive applications are detailed in [11].
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Many factors such as temperature, reactant humidity, partial pressures of feed gases,
obstruction of gas diffusion layers, degradation of the membrane electrode assembly
(MEA), flow field structure in combination with MEA, etc., could affect the current density
distribution and consequently the PEMFC performance [12]. In order to diagnose the
PEMFC, an abundance of methods have been developed from physical models [13–15] or
experimental data information [16]. These can be divided into two categories [17], viz.,
intrusive and non-intrusive methods. Often, in order to study the (non-)homogeneous
current density distribution inside a PEMFC reflecting an FC failure or a healthy FC,
intrusive and inflexible methods are applied. Furthermore, the feedback effect of these
methods on the measured current density distribution is uncertain. Therefore, a non-
destructive control method for the diagnosis, at reasonable costs, will help in PEMFC
deployment [18]. Magneto-tomography is one of the most efficient and easiest non-intrusive
methods that comprises the mapping of an external magnetic field produced by any
electrical device. This measurement technique allows researchers to deduce the current
density distribution inside the device [19] by solving an inverse problem [20,21]. In [12],
magneto-tomography is for the first time applied to the analysis and diagnosis of a PEMFC
stack. The current density distribution can be evaluated by the Biot–Savart law [12,21–31],
the varying-network electric circuit [30,31] or the heuristic search method [32,33] where the
external magnetic field is determined by

• numerical method [e.g., finite-element analysis (FEA), volume finite method, etc.], viz.,
(i) two-dimensional (2D) [27,28], or (ii) three-dimensional (3D) [25–28,32,33];

• and, experimental data from magnetic sensors, viz., (i) uniaxial [22,23,25,26,30,31,33],
or (ii) triaxial [12,24,34].

Experimental validations have been realized on

• FC emulator/simulator [25,30,32,35,36];
• single cell [12,22–24,27];
• and, real FC stack [24–26,30,31,33,34].

Moreover, studies were performed on the external magnetic field determination by
imposing the (non-)homogeneous current density distribution inside a PEMFC with 3D
numerical [35–37] and experimental [35] validations. It is interesting to note that a ferro-
magnetic circuit placed around a PEMFC emulator permits concentration of the external
magnetic field and, consequently, the detection amplification of an FC failure [35]. The
actual methods to determine the current density distribution can be globally described as
redundant, time-consuming and have variable accuracy.

1.2. Objective of the Paper

In the literature, to the best of the authors’ knowledge, there is no 2D multi-layer
model based on the Maxwell–Fourier method for the diagnosis of a PEMFC stack. This
method is based on the formal resolution of Maxwell’s magnetostatic equations in Carte-
sian coordinates (x, y) by using the separation of variables method, the Fourier’s series
and the superposition principle. This purely analytical multi-layer model could give a
perfect theoretical study of the magnetic field distribution with a rapid computation time.
Moreover, this model could present more precision than the usual methods. Here, the
magneto-tomography study is realized on a real bipolar plate of a PEMFC stack (without
ferromagnetic circuit placed around the PEMFC stack) in order to diagnose the health state
of this one, viz., (i) healthy FC, and (ii) FC failure. As reported in [35–37], the developed
analytical model will allow the magnetic field distribution generated around the PEMFC
to be determined by imposing the (non-)homogeneous current density distribution inside
the FC. The reverse study, which is the second step of this scientific work, could then be
easily performed on the 2D multi-layer model. However, this is beyond the scope of this
paper. To evaluate the efficiency of the proposed analytical model, the distribution of
local quantities (i.e., magnetic vector potential and magnetic field) for a healthy FC and an
FC failure has been validated with those obtained by the 2D FEA [38]. The comparisons
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demonstrate excellent results both in terms of amplitude and waveform. The validation of
this 2D analytical model is essential for the subsequent generation of an inverse model. This
kind of model, which has never been previously developed for FC diagnosis application,
must first be validated (e.g., by numerical validation) in order to finally obtain a powerful
diagnostic tool of the FC operating mode.

2. Mathematical Development of 2D Multi-Layer Model
2.1. Problem Description
2.1.1. Bipolar Plate of a PEMFC Stack

Usually, a PEMFC stack (of dimension w f c× h f c× L f c), with a related constant current
of I f c, consists of elements in parallel, i.e., compression of two end-plates, two current
collectors and several unit cells. Each unit cell is composed of two bipolar plates with
an inactive zone (seal) and an electrochemical active cell (of dimension wa × ha), two gas
diffusion layers and MEA. In electrochemical active cells, at the MEA level, the current
density J = {0; 0; Jz}, which is perpendicular to the cells with a constant value along the
z-axis, is directly related to the flow of hydrogen protons travelling through the electrolyte
membrane. Outside of the electrochemical active cell, J is neglected. An FC failure is
characterized by a non-homogeneous distribution of J [12]. The considered bipolar plate for
the diagnosis of a PEMFC stack, with the geometrical and physical parameters, is illustrated
in Figure 1a. This system is surrounded by a vacuum via an infinite box (of dimension
w× h).
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Figure 1. (a) Bipolar plate and (b) Electrochemical active cell modeled by Ny × Nx conductive
segments for the diagnosis of a PEMFC stack (see Table 1 for the various parameters).

Table 1. Geometrical and physical parameters of a PEMFC stack.

Symbol Quantity Values

S f c = w f c × h f c FC surface 14 × 14 = 196 cm2

S = w × h Infinite box surface 42 × 42 = 1764 cm2

Sa = wa × ha Electrochemical active cell surface 10 × 10 = 100 cm2

Ny× Nx Number of conductive segments 25 × 20 = 500
Scs = wcs × hcs Conductive segment surface 5 × 4 = 20 mm2

L f c FC depth 10 cm
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2.1.2. Normal and Faulty Conductive Segments

To simulate (non-)homogeneous distribution of J, this electrochemical active cell of
bipolar plates can be decomposed into Ny×Nx regular conductive segments (of dimension
Scs = wcs × hcs with wcs = wa/Nx and hcs = ha/Nx), as shown in Figure 1b, where
Ny ∈ N∗ and Nx ∈ N∗ are the segmentation number in the y- and x-axis, respectively. In
Cartesian coordinates (x, y), the starting and ending points of conductive segments in both
axes can be defined by

xs
j =

(w− wa)

2
+ (j− 1)·wcs and xe

j = xs
j + wcs, (1a)

ys
i =

(h + ha)

2
− (i− 1)·hcs and ye

i = ys
i − hcs, (1b)

with j ∈ {N∗, Nx} and i ∈ {N∗, Ny}.
Any conductive segments (i, j) may be faulty (not supplied) or normal (supplied). For

a non-homogeneous distribution of J reflecting an FC failure, some conductive segments
are not supplied (i.e., the current are assumed to be null in the conductive segment). For a
homogenous distribution of J reflecting a healthy FC, all conductive segments are supplied
by direct current Ics symbolized by ⊗ equal to

Ics =
I f c

Nn
cs

, (2)

with Nn
cs the number of conductive segments in a normal condition defined by

Nn
cs = ∑

i,j
Mcs

i,j, (3)

where Mcs
i,j represents the element (i, j) of the power supply matrix of the conductive

segments Mcs (of dimension Ny× Nx), viz.,

Mcs
i,j =

{
0 if faulty condition,
1 if normal condition.

(4)

2.1.3. Modeling of Spatial Current Density Distribution in any Conductive Segments (i, j)
Figure 2 illustrates the waveform of the spatial distribution of Jzij in any conductive

segments (i, j), which can be expressed as a Fourier’s series with x ∈ [0, w]:

Jzij = ∑
k

Jcs
i,j,k· sin(βk·x), (5a)

Jcs
i,j,k =

2·Jcs
max

βk·w
·Fcs

i,j,k, (5b)

with
Fcs

i,j,k = Mcs
i,j·
[
cos
(

βk·xs
j

)
− cos

(
βk·xe

j

)]
(5c)

where Jcs
max = Ics/Scs is the maximum current density in each conductive segment, βk = kπ/w

is the spatial frequency (or periodicity) of Jzij with k ∈ {N∗, Kmax} the spatial harmonic
orders in which Kmax is the finite number of spatial harmonics terms.
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2.2. List of Assumptions

The 2D magnetic field distribution generated around the PEMFC stack has been
studied from multi-layer model by solving Maxwell’s magnetostatic equations in Cartesian
coordinates (x, y). In this analysis, the simplifying assumptions of the analytical model are:

• the end-effects are neglected (i.e., the magnetic variables are independent of z);
• the magnetic vector potential and current density have only one component along the

z-axis, i.e., A = {0; 0; Az} and J = {0; 0; Jz};
• the skin depth effect is not considered;
• many industrial PEMFC stacks use graphite bipolar plates and non-magnetic stainless

steels for rods and other mechanical parts [35]. Thus, the absolute magnetic perme-
ability µ of all components used in bipolar plates of PEMFC stack are very close to the
vacuum magnetic permeability µv = µ0 = 4π × 10−7 H/m.

2.3. Problem Discretization in Regions

As shown in Figure 3, the bipolar plate for the diagnosis of a PEMFC stack is divided
into three regions ∀x ∈ [0, w], viz.,

• Vacuum above the electrochemical active cell: Region 1 (R1) for y ∈
[
ys

1, h
]

with
µ1 = µv = µ0;

• The electrochemical active cell: Region 2 (R2) for y ∈
[
ye

Ny, ys
1

]
, which is divided in

the y-axis into sub-regions i (R2i) for y ∈
[
ye

i , ys
i
]
, with µ2 = µv = µ0;

• Vacuum below the electrochemical active cell: Region 3 (R3) for y ∈
[
0, ye

Ny

]
with

µ3 = µv = µ0.
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2.4. Governing Partial Differential Equations (PDEs) in Cartesian Coordinates

In quasi-stationary, the magnetostatic Maxwell’s equations are represented by Maxwell–
Ampère [39]

∇×H = J (with J = 0 for the no− load operation), (6)

Maxwell–Thomson

∇·B = 0 (Magnetic flux conservation), (7a)

B = ∇×A with ∇·A = 0
(
Coulomb′s gauge

)
, (7b)

and the magnetic material equation

B = µ·H + µ0·Mr (8)

where B, H and Mr are the magnetic flux density, the magnetic field and the remanent
(or residual) magnetization vector (with Mr = 0 for other materials or Mr 6= 0 for the
magnets), respectively.

Using (6)~(8) with the general assumptions of the study, in Cartesian coordinates
(x, y), the general PDEs of magnetostatic in terms of A = {0; 0; Az} inside an isotropic
and uniform material (i.e., µ = Cste) can be expressed by the Laplace’s equation in (R1)

∆Az1 =
∂2 Az1

∂x2 +
∂2 Az1

∂y2 = 0, (9a)

and in (R3)

∆Az3 =
∂2 Az3

∂x2 +
∂2 Az3

∂y2 = 0, (9b)

and the Poisson’s equation in (R2i)

∆Az2i =
∂2 Az2i

∂x2 +
∂2 Az2i

∂y2 = −µ0·Jz2i (9c)

where Jz2i is the spatial distribution of J along the x-axis for each i, i.e., in (R2i), which is
defined by

Jz2i = ∑
j

Jzij = ∑
k

Jcs
i,k· sin(βk·x), (10a)

Jcs
i,k = ∑

j
Jcs
i,j,k =

2·Jcs
max

βk·w
·∑

j
Fcs

i,j,k. (10b)

For example, with Ny× Nx = 2× 10 conductive segments, Figure 4 illustrates the
waveforms of Jz2i for each i in (R2i) obtained by (10) and for

Mcs =

[
1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 0 0 1 0 1

]
. (11)
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Using (7b), the components of B =
{

Bx; By; 0
}

whatever the region can be deduced
from Az by

Bx =
∂Az

∂y
and By = −∂Az

∂x
. (12)

From (8), and according to the materials assumptions, the components of H =
{

Hx; Hy; 0
}

are defined by H = B/µ0.

2.5. Boundary Conditions (BCs)

In electromagnetic field problems, the general solutions of regions depend on bound-
ary conditions (BCs) at the interface between two surfaces, which are defined by the
continuity of parallel magnetic field H‖ and A [40]. On the infinite box [see Figure 1], Az
satisfies the Dirichlet’s BC, viz., Az = 0. Figure 5 represents the respective BCs at the
interface between the various regions.
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Figure 5. Boundary conditions at interface between (R1), (R2i) and (R3).

2.6. General Solution of Magnetic Field in Each Region

Using the separation of variables method, the 2D general solution of A in each region
can be defined by Fourier’s series. The unknown coefficients (or integration constants) of
series are determined analytically from a linear matrix system satisfying the BCs of Figure 5.
To simplify the formal resolution of the Cramer’s system, the superposition principle on
each sub-region i (R2i) has been applied.

In (R1) for y ∈
[
ys

1, h
]

and ∀x ∈ [0, w], the magnetic vector potential Az1, which is a
solution of (9a) satisfying the various BCs, is defined by

Az1 = ∑
i,k

µ0·
Jcs
i,k

βk
2 ·D1i,k· f 1i,k(y)· sin(βk·x) (13)
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and the components of H1 (i.e., Hx1 and Hy1) by

Hx1 = −∑
i,k

Jcs
i,k

βk
·D1i,k·g1i,k(y)· sin(βk·x), (14a)

Hy1 = −∑
i,k

Jcs
i,k

βk
·D1i,k· f 1i,k(y)· cos(βk·x), (14b)

where
f 1i,k(y) = sh[βk·(h− y)]/sh[βk·(h− ys

i )], (15)

g1i,k(y) = ch[βk·(h− y)]/sh[βk·(h− ys
i )], (16)

D1i,k = NumD1i,k/Deni,k, (17)

with
Deni,k = a1k·(a3i,k − a4i,k) + a3i,k·a4i,k·

(
a1k

2 + a2k
2
)
− 1, (18)

NumD1i,k = −(a2k + a1k·a4i,k + 1), (19)

in which
a1k = −sh(βk·hcs)/ch(βk·hcs), (20)

a2k = −1/ch(βk·hcs), (21)

a3i,k = ch[βk·(h− ys
i )]/sh[βk·(h− ys

i )], (22)

a4i,k = −sh(βk·ye
i )/ch(βk·ye

i ). (23)

In (R3) for y ∈
[
0, ye

Ny

]
and ∀x ∈ [0, w], the magnetic vector potential Az3, which is a

solution of (9b) satisfying the various BCs, is defined by

Az3 = ∑
i,k

µ0·
Jcs
i,k

βk
2 ·D3i,k· f 3i,k(y)· sin(βk·x) (24)

and the components of H3 (i.e., Hx3 and Hy3) by

Hx3 = ∑
i,k

Jcs
i,k

βk
·D3i,k·g3i,k(y)· sin(βk·x), (25a)

Hy3 = −∑
i,k

Jcs
i,k

βk
·D3i,k· f 3i,k(y)· cos(βk·x), (25b)

where
f 3i,k(y) = sh(βk·y)/ch(βk·ye

i ), (26)

g3i,k(y) = ch(βk·y)/ch(βk·ye
i ), (27)

D3i,k = NumD3i,k/Deni,k, (28)

with
NumD3i,k = −

[
a3i,k·

(
a1k

2 + a2k
2
)
+ a3i,k·a2k − a1k

]
. (29)

In (R2i) for y ∈
[
ye

i , ys
i
]

and ∀x ∈ [0, w], the magnetic vector potential Az2i , which is a
solution of (9c) satisfying the various BCs, is defined by

Az2i = ∑
k

 i−1

∑
n=1

µ0·
Jcs
n,k

βk
2 ·D3n,k· f 3n,k(y) + µ0·

Jcs
i,k

βk
2 ·

 C2i,k· f 2ci,k(y)
· · ·+ D2i,k· f 2di,k(y)
· · ·+ 1

+
Ny

∑
v=i+1

µ0·
Jcs
v,k

βk
2 ·D1v,k· f 1v,k(y)

· sin(βk·x) (30)

and the components of H2i (i.e., Hx2i and Hy2i ) by
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Hx2i = ∑
k

{
i−1

∑
n=1

Jcs
n,k

βk
·D3n,k·g3n,k(y) +

Jcs
i,k

βk
·
[

C2i,k·g2ci,k(y)
· · · − D2i,k·g2di,k(y)

]
−

Ny

∑
v=i+1

Jcs
v,k

βk
·D1v,k·g1v,k(y)

}
· sin(βk·x), (31a)

Hy2i = −∑
k

 i−1

∑
n=1

Jcs
n,k

βk
·D3n,k· f 3n,k(y)−

Jcs
i,k

βk
·

 C2i,k· f 2ci,k(y)
· · ·+ D2i,k· f 2di,k(y)
· · ·+ 1

+
Ny

∑
v=i+1

Jcs
v,k

βk
·D1v,k· f 1v,k(y)

· cos(βk·x), (31b)

where
f 2ci,k(y) = sh[βk·(y− ye

i )]/ch(βk·hcs), (32)

f 2di,k(y) = ch[βk·(ys
i − y)]/ch(βk·hcs), (33)

g2ci,k(y) = ch[βk·(y− ye
i )]/ch(βk·hcs), (34)

g2di,k(y) = sh[βk·(ys
i − y)]/ch(βk·hcs), (35)

C2i,k = NumC2i,k/Deni,k, (36)

D2i,k = NumD2i,k/Deni,k, (37)

with
NumC2i,k = a3i,k·(a2k + a1k·a4i,k + 1), (38)

NumD2i,k = (a2k·a3i,k·a4i,k − a1k·a3i,k + 1). (39)

3. Comparison of Analytical and Numerical Calculations
3.1. Problem Description

The real bipolar plate of a PEMFC stack is illustrated in Figure 6. The electrochemical
active cell is presented with the oxygen/hydrogen channels and surrounded by an inactive
zone (seal). The geometrical and physical parameters of the PEMFC stack are reported in
Table 1.
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Figure 6. Real bipolar plate of a PEMFC stack.

To simulate the (non-)homogeneous distribution of J, this electrochemical active cell is
decomposed into Ny× Nx regular conductive segments. For example, the discretization
with Ny× Nx = 25× 20 = 500 conductive segments is considered. This discretization of
the electrochemical active cell to study health of the FC is illustrated in Figure 7.
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Figure 7. FC representation with a discretization of Ny× Nx = 25× 20 = 500 conductive segments
for: (a) a healthy FC, and (b) an FC failure.

Such an important discretization is necessary due to the channels’ size (viz., ~0.8 mm)
as shown in Figure 6. The total current flowing through the PEMFC stack (of surface
S f c = 196 cm2) is considered constant and equal to I f c = 70 A. With an electrochemical
active cell surface of Sa = 100 cm2, for a healthy FC [see Figure 7a], this corresponds to
Jcs
max = 0.7 A/cm2. An example of an FC failure, which can be a consequence of different

operating problems, is exposed in Figure 7b. Considering 500 initial conductive segments,
144 segments are faulty (i.e., Jcs

max = 0 A/cm2), so 356 conductive segments present a current
density of Jcs

max = 0.983 A/cm2.
To evaluate the capacity and the efficacy of the 2D analytical model, the two operating

conditions (i.e., normal and faulty condition) are simulated and compared to 2D FEA. The
geometrical and physical parameters described previously are simulated on FEMM soft-
ware [38]. The FE calculations are performed with the same assumptions as the analytical
model [see Section 2.2]. The infinite box surface has been imposed to S = 3·S f c = 1764 cm2

(viz., w = 3·w f c and h = 3·h f c) so that the equipotential lines of Az would not be perturbed
by the Dirichlet’s CB imposed on the edges. Figure 8 presents the mesh of the system (viz.,
107,385 nodes) and different paths with their dimensions added around the PEMFC stack
(in red, rated from A to D) in order to evaluate the magnetic field distribution. In this
comparison, the analytical solution of A and H in each region have been computed with
Kmax = 100.
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3.2. Analysis of Equipotential Lines
3.2.1. Healthy FC

The 2D multi-layer model is implemented in order to obtain values of Az in the
bipolar plate for the diagnosis of a PEMFC stack. Figure 9 presents the equipotential lines
(≈30 lines) of Az (or vector plot of H) for a healthy FC with the 2D analytical model and 2D
FEA. As can be seen, a perfect accuracy between analytical and numerical results allows a
first validation of the multi-layer model based on the Maxwell–Fourier method. Due to
the homogenous distribution of J, and for a square FC, the field lines are symmetrical and
circular along the centre of the bipolar plate.
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Figure 11 represents the distribution of the components of { }H x yH ; H ;0=  for a 
healthy FC computed by the 2D multi-layer model and verified by the 2D FEA on the 
various paths. Highly accurate results are achieved between the analytical and numerical 
model, regardless of the paths and the components of { }H x yH ; H ;0=  in the different re-
gions. It is interesting to note that the waveform and the amplitude of magnetic field com-
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the axis. 

Figure 9. Equipotential lines of Az for a healthy FC obtained by (a) 2D multi-layer model and
(b) 2D FEA.

3.2.2. FC Failure

With a non-homogeneous distribution of J reflecting an FC failure, the generated
magnetic field is impacted. In Figure 10, the deformation of the equipotential lines of Az is
clearly observed. It is also correctly predicted analytically. On the left, a distortion of the
field lines (i.e., asymmetry of field lines) is widely visible due to the presence of a major
defect on the right [see Figure 7b].
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3.3. Analysis of Magnetic Field Distributions
3.3.1. Healthy FC

Figure 11 represents the distribution of the components of H =
{

Hx; Hy; 0
}

for a
healthy FC computed by the 2D multi-layer model and verified by the 2D FEA on the
various paths. Highly accurate results are achieved between the analytical and numerical
model, regardless of the paths and the components of H =

{
Hx; Hy; 0

}
in the different

regions. It is interesting to note that the waveform and the amplitude of magnetic field
components are exactly the same in the four paths (i.e., A to D in Figure 8) independently
of the axis.
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3.3.2. FC Failure

As for the case of a healthy FC, Figure 12 shows the distribution of the components of
H =

{
Hx; Hy; 0

}
for an FC failure obtained analytically and numerically on the different

paths. Irrespective of the paths and regions, similar and accurate magnetic field results also
permit validation of the 2D analytical model. A magnetic field variation reflects a failure in
the FC. Around the most damaged part, the greatest decrease in magnetic field is observed
(viz., on the path B and C), as shown in Figure 12b,c. As the overall current value I f c is
maintained, the current density Jcs

max increases in the rest of the FC [see Figure 7]. Thus, the
magnetic field variation is less observable for small surface defaults.
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4. Conclusions

In this paper, an original innovative 2D multi-layer model, based on the Maxwell–
Fourier method, has been developed analytically and validated numerically to estimate
the health state of FC. Using magneto-tomography, knowledge of the magnetic field
distribution generated around the PEMFC stack allowed for the expression of the (non-)
homogeneous current density distribution inside the PEMFC stack and its operation mode.
Through FEA validation, the accuracy and efficiency of the analytical model are undeniable.

This 2D analytical model represents the first step towards a comprehensive FC diag-
nostic tool. For this, the inverse problem of the presented analytical model will have to be
solved. From the magnetic field measured around the FC, the inverse model will allow
us to know the current density distribution inside the FC. It will then be quick and easy
to check the health state of an FC with the advantage of being able to accurately locate a
potential fault.
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