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Abstract: In the present era of digital communication, secure data transfer is a challenging task
in the case of open networks. Low-key-strength encryption techniques incur enormous security
threats. Therefore, efficient cryptosystems are highly necessary for the fast and secure transmission
of multimedia data. In this article, cryptanalysis is performed on an existing encryption scheme
designed using elliptic curve cryptography (ECC) and a Hill cipher. The work shows that the scheme
is vulnerable to brute force attacks and lacks both Shannon’s primitive operations of cryptogra-
phy and Kerckchoff’s principle. To circumvent these limitations, an efficient modification to the
existing scheme is proposed using an affine Hill cipher in combination with ECC and a 3D chaotic
map. The efficiency of the modified scheme is demonstrated through experimental results and
numerical simulations.

Keywords: affine Hill cipher; brute force attack; cryptanalysis; elliptic curve; Kerckchoff’s principle;
3D Arnold transform

MSC: 68P25; 94A60

1. Introduction

Modern day technology is highly interlinked with digital communication over the
internet, however, the privacy of data during transmission is a highly important issue.
For instance, when using multimedia for e-business, military organization, medical pur-
poses, education, meteorology, space organization, etc., privacy and security are of the
utmost interest [1]. Thus, due to the immense threat posed by hackers and hacking tools,
there is an ongoing need for efficient cryptographic techniques to protect sensitive in-
formation provided over open network channels. In response to this need, a number of
symmetric and asymmetric cryptographic techniques are in use to safeguard sensitive
information. ECC is one of the newest and most popular asymmetric approaches used to
support encryption techniques. The primary advantage of ECC lies in the fact that it is hard
to solve the underlying elliptic curve discrete logarithm problem (ECDLP). Furthermore,
owing to its shorter key length, ECC systems are more demanding and widely applicable. It
is imperative to mention that the RSA system provides security with a 1024–3072 bit-length
key, whereas ECC provides the same security with only a 160–256 bit-length key [2]. ECC
has gained a respectable status among cryptographic researchers due to its low memory
use, bandwidth savings, and lower power consumption in hardware implementations [3–5].
Digital images need to be securely transferred over communication channels while consid-
ering a reliable encryption scheme. Despite several advantages of ECC in image encryption,
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several issues must be considered before designing a cryptosystem, viz. key size, key
space, and the chosen elliptic curve. The primary focus of encryption schemes is to en-
hance key strength in order to resist an exhaustive key search attack. If proper attention is
paid when choosing elliptic curves, then the best known attacks are considerably weaker
against solving ECDLP compared to the best algorithms for solving the discrete logarithm
problem [6].

Recently, Dawahdeh et al. [7] proposed an encryption scheme combining the elliptic
curve and Hill cipher techniques. This scheme is mainly intended to protect image data
while ensuring fast transmission of highly correlated multimedia data. The idea underlying
the said scheme is to change the Hill cipher technique from symmetric to asymmetric using
the generated parameters of ECC to develop the secret key. However, there is a serious
loophole in the existing scheme in the form of secret keys, which makes it vulnerable to
brute force attacks.

The use of ECC in combination with other symmetric techniques has been widely
used in image and text encryption schemes [2,8–13]. In [8], the authors presented an
efficient cryptosystem using an elliptic curve over finite rings in combination with S-boxes.
The scheme in [12] proposed text encryption that could encrypt any script with defined
ASCII values by making use of elliptic curves. Moreover, in [9] the authors made use of
elliptic curves to simultaneously encrypt and compress multimedia data. On the other
side, for instance, in Khoirom et al. [14], used cryptanalysis against the scheme in [9] to
expose the secret key from the public key. Furthermore, Abd El-Latif et al. [10] presented
an algorithm using a chaotic map and the elliptic curve which, while it seemed difficult to
hack due to the complex structure of key generators, was broken through cryptanalysis by
Hong et al. [15]. In this paper, cryptanalysis of the scheme proposed in [7] is carried out,
revealing that the strength of the secret key can be easily broken through an exhaustive key
search. Due to the linearity of the Hill cipher, it is vulnerable against smaller key spaces.
Furthermore, the same weaker secret key is used to generated the self-invertible matrix,
and is used for both encryption and decryption.

In this work, we examine the security of the scheme in [7] and develop a corresponding
efficient and improved version for greater security of image data. Keeping in mind that
ECC and affine Hill ciphers are popular encryption techniques that can provide better
performance and higher levels of security, we revamp the existing scheme by replacing the
Hill cipher by an affine Hill cipher in the key domain of SLm(Fp) and Mm(Fp). Furthermore,
the confusion and diffusion architecture of the scheme is covered via a 3D Arnold map
using ECC and bit-wise XOR operations. In addition, the chaotic behavior of this novel
scheme makes it more efficient, unpredictable, and strong in resisting illicit hackers [16,17].
Thus, systems modified with chaotic maps shows more efficacy than the normal symmetric
and asymmetric systems. It is appropriate to mention that higher-dimensional chaotic maps
are known for their high quality of encryption. In this direction, a combination of a private
and a public technique is used to design a secure algorithm for image encryption in the
presence of higher-dimensional chaotic maps [18]. The numerical outcomes demonstrate
the efficiency and stalwartness of the proposed scheme. Furthermore, detailed comparisons
with existing schemes [7,9,10,13,19,20] serve to validate the higher efficiency and security
of the proposed scheme.

The outline of the article is as follows: Section 2 presents the basic mathematical
theories involved; Section 3 highlights the encryption scheme of the cryptosystem [7];
in Section 4, the cryptanalysis of the scheme [7] and its improvement are explained; and
Section 5 presents a demonstration of the improved version. Finally, experimental analysis
is carried out in Section 6, detailed numerical simulations are presented in Section 7, and
the conclusions of the work are presented in Section 8.
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2. Basic Theories
2.1. Mathematical Concept Of Elliptical Curves

Let q > 3 be a prime number, and let Fq be a field of integers modulo q. The elliptic
curve E is an algebraic curve defined as the set of all pairs (x, y) ∈ Fq × Fq satisfying
Equation (1), defined as follows:

E : y2 = x3 + ax + b, (1)

with an imaginary point at infinity denoted by O, where, a, b ∈ Fq such that 4a3 + 27b2 6≡ 0
(mod q). The discriminant condition indicates that the curve is non-singular, that is, it has
no self-intersections or vertices. The set of all the points on the curve forms a finite Abelian
group with O as an identity element. The elliptic curve over some finite field Fq is denoted
by Eq(a, b) and is a special type of polynomial equation [2,6]. Elliptic curve operations
such as point addition, point doubling, and point multiplication are discussed in [7], and
examples of elliptic curves over R are shown in Figure 1.

Elliptic Curve Diffie–Hellman Key Exchange (ECDH) is an advanced analogy to Diffie–
Hellman Key Exchange. In the modified proposed algorithm, the secret keys of a 3D Arnold
map are shared through an ECDH scheme. The representation of key exchange can be
performed similarly to the Diffie–Hellman protocol, and it is a relatively difficult task to
find a suitable elliptical curve. The curve should satisfy certain conditions, as discussed
above, in order achieve good security. The exchange of the key parameters between user A
and user B can be achieved using the following steps ((i)–(v)):

(i) Public element: Select an elliptic curve Eq(a, b) with the parameters a, b ∈ Fq,
with q a large prime of at least 160-bit length and a generator point G of order r,
i.e., rG = O on the elliptic curve.

(ii) User A Generate: Select a random private key ηA ∈ [1, q − 1] and calculate
PA = ηAG

(iii) User B Generate: Select a random private key ηB ∈ [1, q − 1] and calculate
PB = ηBG

(iv) User A calculate secret key: K = ηA × PB
(v) User B calculate secret key: K = ηB × PA

(a) (b)

Figure 1. Elliptic curves over R. (a): Elliptic curve for y2 = x3 − 3x + 3 over R, and (b): Elliptic curve
for y2 = x3 − x over R.

2.2. Affine Hill Cipher

An affine Hill cipher is a classical symmetric cipher suitable for encryption schemes,
and is defined as follows: AX + B, here A ∈ SLm(Fp) and B ∈Mm(Fp), are the secret key
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parameters of the same size as the generated blocks of X. The key elements of an affine
Hill cipher are chosen from SLm(Fp), called a special linear group of matrices over some
finite field Fp, while Mm(Fp) is called a group of matrices over some finite field Fp of order
m, and is used to provide a larger key space. Mathematically, SLm(Fp) is a subgroup of a
general linear group of matrices GLm(Fp), and is defined in Equation (2):

SLm(Fp) = {A ∈ GLm(Fp) | det(A) = 1}. (2)

with cardinality equal to

|SLm(Fp)| = 1
p−1 ∏m−1

i=0 (pm − pi).

Furthermore, the group of matrices over some finite field Fp is defined in Equation (3):

Mm(Fp) = {A ∈ [ai,j]m×m | ai,j ∈ Fp}, (3)

with cardinality equal to
|Mm(Fp)| = pm2

.

The affine Hill cipher for block matrices of order m×m is defined in Equation (4):

Em×m = Sm×mBm×m + Mm×m (mod 256), (4)

where, Sm×m ∈ SLm(Fp) and Mm×m ∈ Mm(Fp) are the two key parameters, Bm×m is the
original data block, and Em×m is the encrypted block.

The 3-D Arnold Map

The chaos 3D Arnold transform defined in Equation (5) is used by extending the
classical 2D Arnold transform defined in Equation (6) [21]:( x′

y′

z′

)
=

( 1 a1 0
a2 a1a2 + 1 0
a3 a4 1

)( x
y
z

)
mod (n), (5)

(
x′

y′

)
=

(
1 a1
a2 a1a2 + 1

)(
x
y

)
, (6)

where, (x′, y′, z′) are modified values and the parameters a1, a2, a3 and a4 are chosen from
the curve Ep(a, b). The 3D Arnold map is chaotic in nature, and is one of the finest members
of the higher-dimensional chaotic maps used for the scrambling process [22].

In this approach, dual encryption by Arnold transform is achieved by permutation
and substitution. The transform is simplified, as defined in Equation (7):(

x′

y′

)
=

(
1 a1
a2 a1a2 + 1

)(
x
y

)
mod (n),

z′ = a3x + a4y + z mod (m),

(7)

where, n is the image size, m represents the gray levels, and z′ is a one-dimensional array
of length n used to further enhance the diffusion using bit-wise XOR operation.

3. Scheme Proposed by Dawahdeh et al. [7]

The scheme in [7] presents a cryptosystem designed through the ECC and Hill cipher
technique. The secret key for a Hill cipher is obtained from ECC, and later an involuturay
matrix is generated from the shared key to be used for both encryption and decryption [23].
Before encryption, both parties should agree on the elliptic curve parameters {q, a, b, G},
where, G is one of the generating points of the curve. The sender and receiver choose their
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private keys ηA, ηB from the domain [1, q− 1], and can generate their corresponding public
keys PA = ηAG and PB = ηBG over Eq(a, b), respectively. The encryption scheme in [7] is
described through Algorithms 1 and 2.

Algorithm 1: Elliptic curve key generation over some Eq(a, b).

. Input:{ηA, q, a, b, PB, G} . Output:(a1, a2, a3, a4)
1. Compute (x, y)← ηAPB; // Elliptic curve operation
2. Compute (a1, a2)← xG = (x1, y1); // Elliptic curve operation
3. Compute (a3, a4)← yG = (x2, y2); // Elliptic curve operation

4. Generate K =

[
a1 a2
a3 a4

]
;

Algorithm 2: Encryption algorithm of the scheme [7].
. Input: Pi,j (plain image of size m× n), K (key obtained from algorithm 1). .
Output: Ci,j (cipher image)

1. Compute Km =

[
K I − K

I + K −K

]
4×4

; // Km stores a key matrix of order 4

2. for i = 1:length( mn
4 ) do

Pi
4×1 ← Gen_blocks(Pi,j); // Split image into blocks of size 4× 1

3. for i = 1:length( mn
4 ) do

Ci
4×1 ← Compute(Km × Pi

4×1)(mod 256); // Use of Hill cipher

4. for i = 1:length( mn
4 ) do

Ci,j ← Gen_cipher(Ci
4×1); // Concatenate the image blocks to original size

4. Cryptanalysis and Improvement

Cryptanalysis is the breakdown of codes through different cryptanalytic attacks.
The hardness of ECC lies in ECDLP, as solving such an algorithm is computationally
infeasible. The authors convert the Hill cipher technique from symmetric to asymmetric
in order to operate the scheme using a shared secret key. The scheme in [7] suggests
large primes for higher security of the shared key (x, y) over Eq(a, b). The ordered pairs
xG = (x1, y1) and yG = (x2, y2) are generated over Eq(a, b) to form the key matrix Km,
which is vulnerable and could be collapsed by a brute force attack.

4.1. Brute Force Attack on the Scheme in [7]

A brute force attack is a classical cryptanalysis approach which tests all the possible
sets of keys by treating the encryption method as a black box [6]. The security of the
scheme in [7] lies in xG and yG. Because Equation (8) reveals the same results for large
primes q,

[Km(mod q)Pi](mod 256) ≡ KmPi(mod 256). (8)

As Km is generated from K and Pi is the plain text block, this implies that it is only nec-
essary to to find xi, yi; i = 1, 2 under modulo 256. Because each parameter is eight bits,
a total possible choice to find through exhaustive key search is of length 232, i.e., only
4,294,967,296 matrices of order 2, which is vulnerable to brute force attacks through modern
high-speed technology. To resist such a brute force attack, the key space of the image
encryption scheme should be larger than 2128 [24,25]. Thus, the brute force attack can
successfully estimate 56–64 bit length within a few hours or a day [6]. Even the COPA-
COBANA (Cost-Optimized Parallel Code Breaker) machine can break such an algorithm
in less than a day, and its computational power is up to 64 bits [26]. Jack, in [27], breaks
down the Hill cipher for n = 2 with an IBM 650 machine, and finds it impractical and
highly complex for higher values of n. The same is the case here; the only unknowns
are xi, yi; i = 1, 2 under modulo 256 of bit length 232, and no confusion of pixel values
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is present, thus, such a system can possibly hacked or collapsed through contemporary
high-speed technology.

4.2. Improvement

The limitations of the scheme are that it lacks the confusion property and smaller key
space. Thus, the scheme can be upgraded to include the confusion and diffusion properties
with an enlarged key space in order to fill the accessible gap of the extant scheme [7].

A modified and improved version of the existing scheme is presented using ECC and
an affine Hill cipher in a chaotic environment to adjust the major limitations of the scheme
in [7]. To extend the key space, a group of involuntary matrices are replaced by a SLm(Fp)
and Mm(Fp) domain over some finite field Fp to achieve a higher level of diffusion in the
scheme. Furthermore, a chaos map is employed in the scheme to scramble all the positions
of the image by choosing the key parameters from the public domain Eq(a, b).

5. Proposed Methodology of the Improved Scheme

An improved encryption scheme is proposed to secure communication of images
over public channels. In this scheme, 4× 4 blocks are generated from the original image
matrix and then diffused by an affine Hill cipher using the key matrices chosen from
SLm(Fp) and Mm(Fp), where, m = 4 and p are a prime number of at least 8 bits in length.
Furthermore, the key parameters for the chaotic map are generated from the chosen elliptic
curve Eq(a, b) over some finite field Fq to scramble the position of pixels, and over the
scrambled values a bit-wise XOR operation is performed with the generated Arnold map
sequence, as discussed in Algorithm 3.

Algorithm 3: PROPOSED ENCRYPTION SCHEME

I Input : Iij (plain image), k1 ∈ SL4(Fp), k2 ∈M4(Fp) and ηA, q, a, b, PB, G.
I Output: Cij (cipher image)
1. After segregation of color planes {Ir, Ig, Ib} from plain image.
2. Ii

r,g,b ← Split(Ir, Ig, Ib, 4); // Split each image into 4× 4 blocks
3. for i← 1:length(i) do

Bj
M ←Mul_block(Ii

r,g,b,k1); // Multiplication of each block with key k1

end
4. for i← 1:length(i) do

Bi
A ← Add_block(Bj

M, k2); // Addition of each block with key k2
end

5. Bj ←Merge_block(Bi
A) // Concatenate the image blocks back to original size

6. K ← Key_generation(ηA, q, a, b, PB, G); // Generate key K by using algorithm 1
7. Bj ← Scramble_Ard(Bj, a1, a2); // Shuffling of pixels using chaotic map
8. for i← 1:length(Bj) do

Xi ← generate_seq_Ard(a3, a4); // Sequence generation for Xor operation
end

9. Xi ← Reshape(Xi); // Shaping generated sequence into a matrix
10. for i← 1 : length(Bj) do

Cj ← Bit_xor(Bj, Xi);// Xor operation
end

11. Cij ← Concat(Bj); // Concatenate R, G, B image planes Output : Cij(cipher image).

6. Experimental Results

The results described in this section were obtained in Matlab 2020a with a Core-i3
supporting environment with 4 GB RAM on a Windows 7 system. The images were chosen
from USC-SIPI databases. The experimental results are shown in Figures 2–4.
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(a) (b) (c) (d) (e) (f)

Figure 2. Original images on which the proposed algorithm was tested: (a) Jet, (b) Home, (c) Barbara,
(d) Baboon, (e) Pepper, (f) Lady.

(a) (b) (c) (d) (e) (f)

Figure 3. Respective encrypted images of the image set shown in Figure 2. (a) Jet, (b) Home,
(c) Barbara, (d) Baboon, (e) Pepper, (f) Lady.

(a) (b) (c) (d) (e) (f)

Figure 4. Respective decrypted images of the corresponding encrypted images shown in Figure 3.
(a) Jet, (b) Home, (c) Barbara, (d) Baboon, (e) Pepper, (f) Lady.

7. Security Analysis
7.1. Key Space Analysis

The key space is the set of all possible choices that can be used to encrypt an image.
Thus, schemes with a larger key space support greater robustness against exhaustive key
search attacks. In the proposed scheme, factors supporting the key space are the elements
of SLm(Fp), Mm(Fp), and the parameters of the Arnold map shared through ECC. The total
for the key space is summarized below:

• The choices for SLm(Fp) during the encryption process are defined as follows:

|SLm(Fp)| =
1

p− 1

m−1

∏
i=0

(pm − pi). (9)

• Mm(Fp) works as an additive key element in the affine Hill cipher, with possible
choices pm2

.
• The publicly shared parameters for the Arnold map through ECC can be reduced up

to 2564 choices.

Thus, the size of generalised key space is defined by Equation (10):

|SLm(Fp)||Mm(Fp)|(2564) =

(
1

p−1 ∏m−1
i=0 (pm − pi)

)
(pm2

)(2564). (10)

The keyspace defined in Equation (10) is strong enough against brute force attacks.
For experimental results, we have chosen m = 4 and p = 223, for an approximate key space
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of 1082 = 2272, which is large enough to resist brute force attacks. Thus, the scheme is be
appropriate for secure communication purposes.

7.2. Key Sensitivity

After achieving confusion and diffusion in a scheme, the sensitivity of keys is necessary
to check the security of an algorithm. In this scheme, the sensitivity of an algorithm is
checked in the worst-case scenario when parameters are 99% known with a bit change in
key parameters. The sensitivity results for different cases of the algorithm are shown in
Figures 5 and 6, and are sufficient to support the sensitivity of the algorithm. The change in
3D Arnold key parameters at both stages of confusion through shuffling and the diffusion
through XOR operation are shown in Figures 5c,d and 6c,d. Furthermore, a marginal
change in multiplicative parameters are shown in Figures 5e and 6e and the additive
parameters of the affine Hill cipher are shown in Figures 5f and 6f.

(a) (b) (c) (d) (e) (f)

Figure 5. Sensitivity analysis of the image in Figure 2d: (a) original image, (b) cipher image,
(c–f) decrypted images with a bit change in the secret key parameters.

(a) (b) (c) (d) (e) (f)

Figure 6. Sensitivity analysis of the image in Figure 2f: (a) original image, (b) cipher image,
(c–f) decrypted images with a bit change in the secret key parameters.

7.3. Histogram Analysis

A histogram analysis is a graphical representation between pixel values and the
intensity values of the data to present the frequency distribution information. A secure
and good encryption scheme produces the evenly distributed data of the cipher images.
The results of the test images are shown in Figures 7–11. The distribution plot of the cipher
images shows a uniform distribution, implying that the encrypted data are secure and that
such an algorithm cannot leak information to outsiders.

Now, the uniformity of the data through the chi-square test can be ensured using
Equation (11):

χ2 =
2n−1

∑
k=0

(Ok − Ek)
2

Ek
, (11)

where, Ok and Ek =
mn
256 are the observed and expected frequency, respectively, of an image

with size mn. At significance level α = 1% and α = 5% with 255 degrees of freedom, the
critical chi-square values to pass the hypothesis uniformity are χ2

(0.01,255) = 310.4574 and

χ2
(0.05,255) = 293.2478, respectively. Table 1 shows the chi-square values on a set of images

at significance levels of 1% and 5%.
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Table 1. χ2-values of the scheme.

Cipher Image
χ2 Values

H0
R G B Average

Jet 284.2314 218.6172 232.1876 245.0120 accept
House 223.2356 286.2349 267.2496 258.9067 accept
Barbara 262.1451 258.2149 287.2350 269.1983 accept
Baboon 289.2571 267.8561 300.2225 285.7785 accept
Pepper 279.1311 297.2389 299.2314 291.8671 accept
Lady 252.1421 289.1563 301.4568 280.9184 accept

(a) (b)

0 100 200 300
0

1000

2000

3000

4000

5000

(c) (d)

0 100 200 300
0

50

100

150

200

250

300

Figure 7. Histogram analysis of grayscale image: (a) input image, (b) histogram of input image,
(c) encrypted images, (d) histogram of encrypted image.

(a) (b)

0 100 200
0

1000

2000

3000
(c) (d)

0 100 200
0

100

200

300

Figure 8. Histogram analysis of the image in Figure 2a: (a) the original image, (b) histogram of the
original image, (c) encrypted image, (d) histogram of the encrypted image.
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(a) (b)

0 100 200
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4000

6000
(c) (d)

0 100 200
0

100

200

300

Figure 9. Histogram analysis of the image in Figure 2b: (a) the original image, (b) histogram of the
original image, (c) encrypted image, (d) histogram of the encrypted image.

(a) (b)

0 100 200
0

200

400

600
(c) (d)

0 100 200
0

100

200
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Figure 10. Histogram analysis of the image in Figure 2d: (a) the original image, (b) histogram of the
original image, (c) encrypted image, (d) histogram of the encrypted image.

(a) (b)

0 100 200
0

1000

2000
(c) (d)

0 100 200
0

100

200

300

Figure 11. Histogram analysis of the image in Figure 2f: (a) the original image, (b) histogram of the
original image, (c) encrypted image, (d) histogram of the encrypted image.

7.4. Correlation Analysis

Correlation refers to the relationship between adjacent pixels. Thus, in plain images a
strong correlation among the pixels is found with a dense correlation graph, while in cipher
images a low correlation among the adjacent pixels with an evenly distributed graph is
found. The correlation for input and cipher images in the horizontal (H), vertical (V) and
diagonal (D) directions is presented in Figure 12.

Furthermore, the correlation graphs of the images and their corresponding cipher
images in different directions are shown in Figure 12. From Figure 12, it can be seen that the
correlation graph of cipher images is uniformly distributed throughout the domain, with an
ideal value of correlation coefficient in all directions shown in Tables 2 and 3. The equation
used to calculate the correlation coefficient value is taken as given in Equation (12).

rxy =
cov(x, y)

1
N

√
∑N

i=1[xi − E(x)]2 ∑N
i=1[yi − E(y)]2

, (12)

where,

cov(x, y) =
1
N

N

∑
i=1

[xi − E(x)][(yi − E(y)], (13)

and

E(x) =
1
N

N

∑
i=1

xi, (14)
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where, N is number of pixels, E(x) is the expectation, and D(x) is the variance.
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Figure 12. Correlation analysis of grayscale images: (a–c) shows the correlation of the input image
jet.jpeg, (d–f) shows the correlation of the cipher image of jet.jpeg, (g–i) shows the correlation of the
input image baboon.jpeg, (j–l) shows the correlation of the cipher image of baboon.jpeg. All images
include the horizontal, vertical, and diagonal directions.
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Table 2. Correlation results for the input and cipher images.

Images
Input Cipher

H V D H V D

Jet 0.9231 0.9568 0.9425 0.0002 −0.0024 0.0026
House 0.9654 0.9452 0.9624 −0.0019 0.0001 0.0029
Barbara 0.9568 0.9214 0.8745 0.0017 −0.0020 0.0047
Baboon 0.8469 0.8456 0.8989 0.0021 0.0011 0.0011
pepper 0.8548 0.8791 0.9399 0.0004 0.0019 0.0003
Lady 0.9269 0.9765 0.9578 0.0023 0.0041 0.0014

Table 3. Comparison results of the correlation coefficient with existing techniques.

Methods
Input Cipher

H V D H V D

Proposed 0.9123 0.9207 0.9293 0.0008 0.0004 0.0021
Ref. [10] 0.9473 0.9544 0.9122 0.0010 0.0017 0.0125
Ref. [13] 0.9326 0.9624 0.9097 0.0035 −0.0040 −0.0410
Ref. [19] 0.9487 0.8994 0.8734 0.0000 0.0004 −0.0009
Ref. [20] 0.9677 0.9829 0.9532 0.0719 −0.3188 −0.0017

7.5. Quality Measure

The parameters used to measure the quality between plain images and cipher images
are as follows [19].

7.5.1. Mean Square Error (MSE)

The MSE is calculated between the input and the output image using Equation (15).
The results shown in Table 4 support the robustness of the proposed algorithm:

MSE =
1

NM

N

∑
i

M

∑
j
(Ip(i, j)− Ic(i, j)), (15)

where, Ip and Ic are the input and output image, respectively, of size NM.

7.5.2. Peak Signal to Noise Ratio (PSNR)

PSNR is a quality measure between input and output images using Equation (16).
A good level of encryption is identified when PSNR is less than 10 db. The calculated test
values of PSNR are demonstrated in Table 4:

PSNR = 10 log10

(
2n − 1
MSE

)
, (16)

where, n is the bits per pixel and MSE is as defined in Equation (15).

7.5.3. Structural Similarity Index (SSIM)

The SSIM is a measure of the input and output image that checks the quality of the
encryption algorithm. The SSIM values should be approximate to zero for the output
images for a secure algorithm, and can be calculated using Equation (17), defined below:

SSIM(p,c) =
(2µpµc + c)(2σpc + c′)

(µ2
p + µ2

c + c)(σ2
p + σ2

c + c′)
), (17)

where, σpc, (µp, µc), and (σp, σc) are the covariance, mean, and standard deviation of the
plain and cipher images, respectively. Moreover, c and c′ are the variables to be stabilized.
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The experimental values are provided in Table 4, and are close to the ideal value
of zero.

Table 4. Quality measures between input images and output images.

Images
MSE PSNR SSIM

R G B R G B R G B

Jet 4.192× 104 7.180× 104 8.993× 103 8.145 7.547 7.128 0.002 0.005 0.005
House 9.941× 103 6.120× 104 8.973× 103 8.254 8.548 8.489 0.001 0.000 0.001
Barbara 1.257× 104 9.180× 103 7.257× 104 8.189 9.512 8.178 0.009 0.006 0.008
Baboon 9.256× 103 8.595× 103 8.980× 104 6.235 7.249 6.954 0.006 0.001 0.003
Pepper 8.120× 104 1.235× 104 4.985× 103 9.517 8.865 8.562 0.002 0.000 0.002
Baboon 9.456× 103 8.156× 103 9.562× 103 7.214 9.121 8.128 0.001 0.002 0.001

7.6. Differential Attack Analysis

A differential attack is a type of cryptanalysis used to analyze secret keys through
different cipher images. In this approach, a small modification is carried out on the
pixel intensity values of the original images to attempt to find the difference between the
corresponding cipher images in order to observe the relationship between the plain and
cipher images. The differential measurements used to find the resilience of the system
through the number of the pixel change rate (NPCR) and unified average changing intensity
(UACI) are defined in Equations (18) and (19):

NPCR =
∑i,j D(i, j)

T
× 100%, (18)

UACI =
1
T ∑

i,j

(
C1(i, j)− C2(i, j)

255

)
× 100%, (19)

where, T is the total size of the image, C1 and C2 are cipher images differing by a single
pixel value, and D(i, j) is defined as

D(i, j) =
{

1, i f C1(i, j) 6= C2(i, j),
0, elsewere,

For analysis, the computed results are provided in Table 5 and compared in Table 6.
The test values approximate the ideal values of NPCR (99.6094%) and UACI (33.4635%),
demonstrating that the improved algorithm is robust against such attacks.

Table 5. NPCR and UACI results for the color plane the of cipher image.

Images
NPCR UACI

R Layer G
Layer B Layer Average R

Layer
G

Layer B Layer Average

Jet 99.5832 99.6321 99.6154 99.6102 33.4425 33.3901 33.3956 33.4049
House 99.6039 99.6412 99.6423 99.6294 33.4213 33.3452 33.2845 33.3503
Barbara 99.6234 99.6481 99.6321 99.6345 33.3425 33.3614 33.3329 33.3456
Baboon 99.6231 99.5931 99.6548 99.6236 33.2956 33.2814 33.3621 33.3130
Pepper 99.6513 99.6059 99.6623 99.6398 33.2956 33.3521 33.3089 33.3188
Lady 99.5956 99.5759 99.5973 99.5896 33.4732 33.4623 33.3993 33.4449
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Table 6. Comparison of NPCR and UACI results.

Methods Image NPCR UACI

Proposed Barbara 99.6345 33.3456
Ref. [7] (256× 256) – 30.4814
Ref. [9] (256× 256) 99.2996 33.5844
Ref. [19] (256× 256) 99.6220 33.5268
Ref. [10] (256× 256) 99.5 33.3

7.7. Shannon’s Entropy Analysis

The Shannon’s entropy is proportional to the measure of uncertainty. The ideal
entropy value of random data is 8 [28]. Thus, an efficient encryption scheme has an entropy
value that approximates the ideal value and is uniform with the gray values of the image.
In Table 7, entropy values are shown for different images as calculated by Equation (20):

Entropy =
2n−1

∑
i=0

p(mi) log2

(
1

p(mi)

)
, (20)

where, p(mi) is the probability of source mi.
Table 7 and Figure 13 show the calculated entropy values of the input and output

images; the values approximate the ideal value, which is a strong indication of the random-
ness and security of the data. Thus, the improved version of the scheme achieves a perfect
level of permutation to secure the secret information. Furthermore, Tables 8 and 9 compare
the entropy results with existing several schemes, and the results justify the security of the
proposed scheme against entropy attacks.

1 2 3 4 5 6 7 8 9 10

Number of images

6.8

7

7.2

7.4

7.6

7.8

8

E
nt

ro
py

Entropy graph

Cipher image
Plain image

Figure 13. Entropy graph of input images and their cipher images.

Table 7. Entropy value of cipher images.

Images
Entropy

Average
R G B

Jet 7.9978 7.9979 7.9978 7.9978
Home 7.9979 7.9977 7.9979 7.9978
Barbara 7.9979 7.9979 7.9979 7.9979
Baboon 7.9979 7.9978 7.9978 7.9978
Pepper 7.9976 7.9975 7.9977 7.9976
Lady 7.9975 7.9978 7.9975 7.9976
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Table 8. Comparison of entropy results.

Method Image Entropy

Ref. [7] (256× 256) 7.9970
Ref. [9] (256× 256) 7.9969

Ref. [10] (512× 512) 7.9973
Ref. [19] (256× 256) 7.9974
Ref. [20] (512× 512) 5.3390

Proposed Barbara (256 × 256) 7.9979

Table 9. Statistical measures of grayscale cipher images.

Images (256×256) Entropy PSNR UACI

Home 7.9982 7.4523 33.1245
Barbara 7.9979 7.1133 33.2814
Baboon 7.9979 6.1576 33.7852
Pepper 7.9983 7.4121 33.3089
Average 7.9983 7.4121 33.3089
Ref. [7] 7.9970 8.5777 30.4817
Ref. [11] – 7.6568 34.0998

7.8. Noise Attacks

Due to effects from the transmission channels, the data may be affected by noise
signals.

To check the effect of noise on the sensitivity of information, different noise effects
on the data can be used to check the resistance of the algorithm against noise attacks.
A number of noise techniques are available to check this, such as salt and pepper and
Gaussian noise in different proportions. Thus, Figures 14 and 15 show the noise-affected
images by salt and pepper and Gaussian noise in a visible form, respectively. It can be seen
in Table 10 and Figure 15 that maximum information can be retrieved, which is a good
indication of the scheme’s performance.

(a) (b) (c) (d)

Figure 14. Resistance against salt and pepper on the image in Figure 2d: (a–d) images obtained by salt
and pepper noise with levels of intensity 0.01, 0.02, 0.10, and 0.20, respectively.

(a) (b) (c) (d)

Figure 15. Resistance against Gaussian noise on the image in Figure 2f: (a–d) images obtained by
Gaussian noise with mean = 0 and variance of 0.001, 0.002, 0.01, and 0.02, respectively.
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7.9. Occlusion Attack

The durability of the system was checked against data loss through malicious destruc-
tion or deliberate attempts to damage image integrity. Occlusion attack analysis checks
the recovery rate of damaged data. Thus, the encrypted baboon.jpeg image was subjected
to different portions of data loss to check the data recovery rate . Figures 16a–d show the
cropped images, and Figures 16e–h show the recovered images used to check the data
integrity. From the recovered images, it can be seen they are visually acceptable.

The quality measures for checking the recovery rate of the affected images are provided
in Table 10 and Figure 17. The results indicate that the images can be visualized, and are
able to be successfully recovered against such attacks.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 16. Occlusion attacks: (a) 10% occluded image, (b) 20% occluded image, (c) 25% occluded
image, (d) 50% occluded image, (e–h) show the corresponding decrypted images.
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Figure 17. PSNR results of affected decrypted images.
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Table 10. Quality measure of affected decrypted images.

Attacks Image PSNR SSIM

Salt & pepper
Intensity = 0.01 Baboon 24.2459 0.8756
Intensity = 0.02 – 21.2134 0.7245
Intensity = 0.01 Lady 22.5689 0.7423
Intensity = 0.02 – 17.6542 0.6359

Gaussian
Variance = 0.001 Baboon 17.1245 0.6235
Variance = 0.002 – 15.5478 0.5932
Variance = 0.001 Lady 14.5687 0.4851
Variance = 0.002 – 12.5645 0.4315

Occlusion attack
Occlude = 9% Lena 28.1214 0.8932
Occlude = 20% – 22.2547 0.7532
Occlude = 18% – 23.3265 0.7589
Occlude = 25% – 18.6549 0.6489

8. Conclusions

In the present paper, a serious loophole in the grayscale image encryption scheme
proposed in [7] based on ECC and a Hill cipher is highlighted. The performed analysis
demonstrates that the existing scheme is vulnerable and can be collapsed by a brute force
attack. The competence of the scheme is in its 32-bit key length, which can be hacked
using contemporary technology. To circumvent these limitations, a modified and improved
version of the scheme is proposed using the classical affine Hill cipher in combination with
ECC and a chaotic map for color images. The numerical and statistical results presented in
Tables 5–9, the uniformity of the histogram in Figure 9, and the uniform distribution of the
adjacent pixels in Figure 12 in the cipher images are enough to infer the reliability of the
newly proposed method. Nevertheless, the present article lays the foundations for future
work on mapping the pixel values onto Eq(a, b) to remove the maximum use limitation of
ECDLP, and the scheme could potentially be optimized for text encryption.
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