
Citation: Shahani, N.M.; Ullah, B.;

Shah, K.S.; Hassan, F.U.; Ali, R.;

Elkotb, M.A.; Ghoneim, M.E.;

Tag-Eldin, E.M. Predicting Angle of

Internal Friction and Cohesion of

Rocks Based on Machine Learning

Algorithms. Mathematics 2022, 10,

3875. https://doi.org/10.3390/

math10203875

Academic Editor: Ripon

Kumar Chakrabortty

Received: 13 August 2022

Accepted: 14 October 2022

Published: 19 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Predicting Angle of Internal Friction and Cohesion of Rocks
Based on Machine Learning Algorithms
Niaz Muhammad Shahani 1,2,*, Barkat Ullah 3,* , Kausar Sultan Shah 4, Fawad Ul Hassan 1,5, Rashid Ali 6,
Mohamed Abdelghany Elkotb 7,8 , Mohamed E. Ghoneim 9,10 and Elsayed M. Tag-Eldin 11

1 School of Mines, China University of Mining and Technology, Xuzhou 221116, China
2 The State Key Laboratory for Geo Mechanics and Deep Underground Engineering, China University of

Mining & Technology, Xuzhou 221116, China
3 School of Resources and Safety Engineering, Central South University, Changsha 410083, China
4 Department of Mining Engineering, Karakoram International University, Gilgit 15100, Pakistan
5 Department of Mining Engineering, Baluchistan University of Information Technology, Engineering and

Management Sciences, Quetta 87300, Pakistan
6 School of Mathematics and Statistics, Central South University, Changsha 410083, China
7 Mechanical Engineering Department, College of Engineering, King Khalid University,

Abha 61421, Saudi Arabia
8 Mechanical Engineering Department, College of Engineering, Kafrelsheikh University,

Kafrelsheikh 33516, Egypt
9 Department of Mathematical Sciences, Faculty of Applied Science, Umm Al-Qura University,

Makkah 21955, Saudi Arabia
10 Faculty of Computers and Artificial Intelligence, Damietta University, Damietta 34517, Egypt
11 Center of Research and Faculty of Engineering and Technology, Future University in Egypt,

New Cairo 11835, Egypt
* Correspondence: shahani.niaz@cumt.edu.cn (N.M.S.); barkat_ullah@csu.edu.cn (B.U.)

Abstract: The safe and sustainable design of rock slopes, open-pit mines, tunnels, foundations,
and underground excavations requires appropriate and reliable estimation of rock strength and
deformation characteristics. Cohesion (c) and angle of internal friction (ϕ) are the two key parameters
widely used to characterize the shear strength of materials. Thus, the prediction of these parameters is
essential to evaluate the deformation and stability of any rock formation. In this study, four advanced
machine learning (ML)-based intelligent prediction models, namely Lasso regression (LR), ridge
regression (RR), decision tree (DT), and support vector machine (SVM), were developed to predict c
in (MPa) and ϕ in (◦), with P-wave velocity in (m/s), density in (gm/cc), UCS in (MPa), and tensile
strength in (MPa) as input parameters. The actual dataset having 199 data points with no missing
data was allocated identically for each model with 70% for training and 30% for testing purposes. To
enhance the performance of the developed models, an iterative 5-fold cross-validation method was
used. The coefficient of determination (R2), mean absolute error (MAE), mean square error (MSE),
root mean square error (RMSE), and a10-index were used as performance metrics to evaluate the
optimal prediction model. The results revealed the SVM to be a more efficient model in predicting
c (R2 = 0.977) and ϕ (R2 = 0.916) than LR (c: R2 = 0.928 and ϕ: R2 = 0.606), RR (c: R2 = 0.961 and ϕ:
R2 = 0.822), and DT (c: R2 = 0.934 and ϕ: R2 = 0.607) on the testing data. Furthermore, to check the
level of accuracy of the SVM model, a sensitivity analysis was performed on the testing data. The
results showed that UCS and tensile strength were the most influential parameters in predicting c
and ϕ. The findings of this study contribute to long-term stability and deformation evaluation of rock
masses in surface and subsurface rock excavations.

Keywords: angle of internal friction; cohesion; geotechnical parameters; support vector machine;
intelligent prediction
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1. Introduction

The safe and sustainable design of rock slopes, open-pit mines, tunnels, foundations,
and underground excavations needs a proper and reliable estimation of rock strength and
deformation characteristics. Cohesion (c) and angle of internal friction (ϕ) are two widely
used key mechanical strength parameters to characterize a material’s shear strength [1,2].
Thus, the prediction and estimation of these parameters are essential to evaluate the
deformation and stability of any rock formation [3]. The strength parameters c and ϕ can be
obtained directly from laboratory tests (triaxial tests), which are destructive, laborious, and
expensive. In addition, samples of the required quality are difficult to collect, especially in
highly jointed and fragile rocks [2,4]. In rock mechanics and geotechnical engineering, it is
imperative to analyze rock’s performance and estimate its related mechanical properties [5–
7]. Therefore, it is worthwhile to adapt the intelligent approaches for determining c and
ϕ.

One of the earliest adopted failure criterion for determining c and ϕ was the Mohr–
Coulomb (MC) failure criterion.

Due to its mathematical convenience, simplicity, and conventional use in the field of
rock mechanics, the MC criterion is still widely used [1,8–10]. The MC criterion includes
two parameters, c and ϕ. The parameter c is used to identify the bond between rock
particles and the parameter ϕ is related to the internal friction generated along the shear
surface [11]. Before the practical application of the MC criterion, the parameters c and ϕ
need to be estimated [12,13]. In order to evaluate the MC parameters of c and ϕ, triaxial
tests are performed at different confining pressures. However, considering the factors
of time and high cost associated with triaxial tests, there is a dire need for alternative
methods to obtain MC parameters, especially at the preliminary stages of any project,
where triaxial tests results are limited [14–16]. For this reason, efforts have been devoted
to the development of fast and inexpensive methods for indirect estimation. Tests such as
point load test [17], the Schmidt hammer test [18], sound velocity [19], impact strength [20],
or the Los Angeles abrasion test [21] have been used to estimate uniaxial compressive
strength (UCS) indirectly. Some researchers have investigated the applicability of UCS and
uniaxial tensile strength (UTS) for estimating the c and ϕ of rocks in the absence of triaxial
test data [16,22–24]. Additionally, some indirect estimation models have been introduced
for the prediction of c and ϕ. Weingarten and Perkins found a correlation between ϕ and
porosity [25] of sandstone. Plumb [26] determined the correlation between ϕ and neutron
porosity, which was improved by Asquith et al. [27] and Jaeger et al. [28]. Moreover,
Edlmann et al. [29] determined a linear relationship between ϕ and lab-measured core
porosity. Abbas et al. evaluated the correlation of ϕ with compressional waves and gamma
rays using wireline logging data [30,31]. In all cases, c was found to be dependent on ϕ and
UCS, as revealed by Almalikee and Strength [32]. Though the results of these methods have
significant application in estimating c and ϕ, they are not enough for long-term stability
and deformation evaluation of rocks. Therefore, there is still a need to investigate c and ϕ
of rocks using indirect estimation methods (i.e., intelligent approaches).

Recently, intelligent approaches have been widely used in the field of geotechnical
engineering and rock mechanics [24,33–43]. Numerous researchers have used intelligent
techniques, i.e., machine learning (ML) methods, to extend their knowledge for predicting
c and ϕ. Shen et al. applied genetic programming (GP) to predict the c and ϕ of sandstone
rocks. The proposed model provided adequate predictive performance in the absence of
triaxial data [16]. Mahmoodzadeh et al. employed Gaussian process regression (GPR),
support vector regression (SVR), decision trees (DT), and long short-term memory (LSTM)
to predict c and ϕ of intact rocks using three input parameters, i.e., UCS, UTS, and confining
stress (σ3) [24]. Khandelwal et al. implemented different approaches, namely simple and
multiple regression, artificial neural network (ANN), and genetic algorithm (GA)-ANN, to
predict the cohesion of limestone. For this purpose, P-wave velocity, UCS, and Brazilian
tensile strength (BTS) were chosen as inputs [43]. Hiba et al. aimed to construct a predictive
model using actual well-logging data. The study was carried out using two ML techniques,
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namely DT and random forest (RF). Bulk density (ROHB), neutron porosity (NPHI), and
compression time (DTC) were used as input parameters to predict c and ϕ [44]. Kainthola
et al. used an adaptive neuro-fuzzy inference system (ANFIS) and simple linear regression
(SLR) to develop correlations between some basic physico-mechanical properties, including
UCS, UTS, c, ϕ, and P-wave velocity [45]. Based on the above literature, it can be inferred
that some useful, but not fully sufficient, insights have been provided in predicting c and ϕ.
The use of a particular procedure can be appropriate in certain circumstances, but not in
others. More precisely, it has been noted in the literature that only a small amount of work
has been carried out to predict c and ϕ, especially using various types of rocks. Therefore,
there is a need for novel ML-based intelligent methods to provide an accurate predictive
model for predicting rock c and ϕ in order to safely install underground engineering
projects.

In this study, P-wave velocity, density, UCS, and tensile strength are used as input
parameters to predict c (MPa) and ϕ (◦). In addition, four advanced ML-based prediction
models, namely Lasso regression (LR), ridge regression (RR), decision tree (DT), and
support vector machine (SVM), are developed to achieve the desired goals. To enhance
the performance of the developed models, an iterative 5-fold cross-validation method is
used. At present, the use of ML-based intelligent methods in predicting the mechanical and
physical properties of rocks is gaining attention and providing an important contribution
to rock excavation in different geotechnical and mining engineering projects [46–53]. The
performance of the developed models is checked by some analytical metrics such as
coefficient of determination (R2), mean absolute error (MAE), mean square error (MSE),
root mean square error (RMSE), and a10-index. The findings of this study could be helpful
for long-standing stability and deformation evaluation of rock masses in surface and
subsurface rock excavations. Figure 1 depicts the flowchart of the ML-based intelligent
approach in this study.
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2. Data Curation

In this study, c (MPa) and ϕ (◦), including P-wave velocity in m/s, density in gm/cc,
UCS in MPa, and tensile strength in MPa as input parameters, were predicted by LR,
RR, DT, and SVM from the reported literature [45] for various rocks, namely limestone,
quartzite, slate, and quartz mica schist.

The actual dataset having 199 data points with no missing data was split into 70%
for training purposes and 30% for testing purposes. To enhance the performance of the
developed models, an iterative 5-fold cross-validation method is used. Figure 2 exhibits
the test equipment for rock strength parameter measurement: (A) uniaxial testing machine,
(B) tensile strength test, (C) P-wave velocity, and (D) triaxial test [45]. Figure 2 shows the
histogram representation of the statistical distribution of the input parameters and output
parameters of the actual dataset used in this study. Table 1 shows the lithology-based
minimum and maximum, mean, and standard deviation (STD) values of the dataset.
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Figure 2. The statistical description of the inputs and output parameters of the actual dataset.
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Table 1. Lithology-based minimum and maximum, mean, and standard deviation (STD) values of
the dataset in this study.

Items P-Wave (m/s) Density
(gm/cc) UCS (MPa) Tensile

Strength (MPa) c (MPa) ϕ (◦)

Limestone
No. of sample 147 147 147 147 147 147

Max 4899.10 2.79 139 17.45 21.60 38.12
Min 3590.70 2.55 95.10 11.7 16.40 27.55

Mean 4092.73 2.65 111.26 13.88 18.99 33.47
STD 429.83 0.06 14.03 1.76 1.73 2.99

Quartzite
No. of sample 150 150 150 150 150 150

Max 6328.14 2.77 237.76 29.85 32.11 42.34
Min 5105.3 2.41 135.24 16.8 19 28.75

Mean 5675.90 2.58 198.52 24.89 25.80 35.95
STD 373.94 0.10 30.36 3.82 3.62 4.00
Slate

No. of sample 150 150 150 150 150 150
Max 5960.12 2.89 186.46 22.96 23.88 38.99
Min 4038.1 2.55 99.1 14.00 14.85 24.57

Mean 4690.12 2.68 141.53 17.85 19.12 31.53
STD 623.37 0.10 24.52 2.68 2.63 4.68

Quartz mica schist
No. of sample 150 150 1150 150 150 150

Max 4000.68 2.85 80.89 9.50 16.78 43.35
Min 2209.34 2.63 40.97 5.20 9.96 28.05

Mean 2938.11 2.72 58.14 7.18 13.13 35.88
STD 464.84 0.05 10.11 1.09 1.59 4.26

3. Developing ML-Based Intelligent Prediction Models
3.1. Lasso Regression

Lasso regression (LR) was proposed in 1986 and 1996 as a biased estimator in the
field of geophysics [54]. Unlike ridge regression (RR), LR has the ability to perform both
feature selection and penalty regularization to improve prediction accuracy. It combats
multicollinearity by selecting the most important predictor from any set of highly correlated
independent variables and removing all other variables. LR uses an L1-norm penalty
term to shrink regression coefficients, some to zero, thus assuring the choice of the most
important explanatory variables [52]. LR has an additional advantage that if a dataset of
size n is fitted to a regression model with p parameters and p > n, the LR model can choose
only n parameters [55]. To obtain estimates of the regression, the following loss function is
minimized with Equation (1) [52]:

β̃ = argminβ‖y− Xβ‖2
2 + λ|β|1, (|β|1 =

p

∑
j=1
|β|1) (1)

The parameter λ can be selected using cross-validation. Though the LR and RR as
given in Equations (1) and (2) bear a resemblance to each other, the results β̃ ridge and
β̃ lasso show significant differences. In the process of shrinking the coefficients, the LR
demonstrates the ability to set some of the coefficients to exactly zero. RR shrinks the
coefficients, but never sets any of them to zero. LR performs variable selection by setting
some coefficients to zero and retaining the coefficients that have a significant impact on
output. Identifying these variables can improve the interpretability of the resulting model,
especially when there is a large number of predictors [51].



Mathematics 2022, 10, 3875 6 of 17

3.2. Ridge Regression

Ridge regression (RR), also known as penalized least squares, provides a reduction in
the variance of the estimated regression coefficients. RR shrinks the coefficients to zero and
makes the estimates more stable than ordinary least squares (OLS) estimates [51]. RR was
presented by Hoerl et al. [56] to enhance the prediction accuracy of the regression model by
minimizing the following loss function Equation (2) [52]:

β̃ = argminβ‖y− Xβ‖2
2 + λ‖β‖2

2, (‖β‖2
2 =

p

∑
j=1
β2

j ) (2)

If λ is equal to 0, the obtained estimates are the OLS of multilinear regression (MLR).
The parameter λ can be selected by using cross-validation. In RR, the L2-norm penalty term
is used to shrink the regression coefficient to a non-zero value to prevent overfitting, but it
does not play the role of feature selection.

3.3. Decision Tree

The decision tree (DT) is a supervised learning hierarchical model in which local
regions are recognized in fewer steps through a series of iterative splits. Internal decision
nodes and terminal leaves form the decision tree. Both classification and regression can be
performed with this method. The regression tree is built in a similar way to a classification
tree, with the exception that the impurity measure used for classification is substituted with
a measure used for regression. Let us state that Xm is the subset of X that reaches node m,
i.e., the set of all x ε X that satisfy the conditions of all decision nodes on the path from the
root to node m. We specify:

bm(x) =
{

1, i f x ε Xm : x reaches node m
0, otherwise

(3)

The mean square error from the estimated value determines a good tree split. In the
regression, let gm be the anticipated value in node m.

Em =
1

Nm
∑t

(
rt − gm

)2bm
(
xt) (4)

Nm = |Xm|∑t bm
(
xt)

The variance at m is associated to Em. In a node, the mean of the desired outputs of
the samples arriving at the node is employed.

gm =
∑t bm

(
xt)rt

∑t bm(xt)
(5)

If a node’s error is satisfactory (Em < θr), a leaf node is generated, and the gm value is
stored. Specifically, a piecewise constant approximation with discontinuities is generated
at the boundary of the leaf. If the error is unacceptable, the data arriving at node m will be
split again so that the sum of the errors in each branch is as small as possible [57,58].

3.4. Support Vector Machine

Support vector machine (SVM) is a supervised learning tool that was originally pro-
posed by Vapnik [59]. SVM is widely used in classification and regression analysis using
hyperplane classifiers. The optimal hyperplane maximizes the boundary between the two
classes in which the support vector is located [50]. It uses a high-dimensional feature space
to construct prediction functions by introducing kernel function and Vapnik’s ε-insensitive
loss function [46]. For a dataset P = {(x1, y2), (x2, y2) . . . (xn, yn)}, where xi ∈ Rn is the input
and yi ∈ Rn is the output, the SVM uses a kernel function to map the nonlinear input data
in a high-dimensional feature space and tries to find the optimal hyperplane to separate
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them. This allows relating the original input to the output through a linear regression
function [60,61], defined as follows:

f (x) = Mv.ϕ(x) + lb (6)

where ϕ(x) is the kernel function, and Mv and lb denote the weight vector and the bias term,
respectively. To obtain Mv and lb, the cost function proposed by Cortes and Vapnik [62]
needs to be minimized as follows:

cos t function = 1
2 M2

v + C
k
∑

i=1

(
ξ−i + ξ+i

)
Subject to :


yi − (Mv.ϕ(x1) + lb) ≤ ε0 + ξ+i
(Mv.ϕ(x1) + lb)− yi ≤ ε0 + ξ−i

ξ−i , ξ+i ≥ 0, i = 1, 2, . . . ., n

(7)

Equation (4) can be minimized when transformed into dual space using the Lagrange
multiplier method, giving the following solution:

f (x) =
n

∑
i=1

(
∞i −∞′i

)
ϕ
(
xi, xj

)
+ lb (8)

where ∞i and ∞′i are Lagrange multipliers with 0 ≤ ∞i and ∞′i ≤ C, and ϕ
(
xi, xj

)
is the

kernel function. The choice of the latter is significant to the success of SVR. A large number
of kernel functions was examined in SVM, such as linear, polynomial, sigmoid, Gaussian,
radial basis, and exponential radial basis [63]. Figure 3 shows the basic structure of the
SVM model.
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3.5. Hyperparameters

An ML algorithm needs to have optimized hyperparameters for better performance.
These hyperparameters should be calibrated to the data as opposed to being defined
manually. To minimalize the bias related to the random partition of the training and
validation data, k-fold cross-validation was implemented in this paper, where k represents
the number of folds. By using cross-validation, the validity and accuracy of ML models
can be evaluated by partitioning a dataset into different subsets and assessing the accuracy
of the ML model on each subset [64]. The detail of optimized hyperparameters of RR, LR,
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DT, and SVR models is presented Table 2. The λ values for the RR model were randomly
selected in the range of 0.0–1.0, while the λ values for the LR model were kept at 1.0 and
0.01 for c (MPa) and ϕ (◦), respectively. The random_state and capacity constant (C) for
SVM were kept by default in the Python module for c (MPa) and ϕ (◦). Moreover, three
different functions, namely radial basis function (rbf), linear function, and polynomial
function, were checked, and the performance of the rbf function was determined to be the
best.

Table 2. Optimized hyperparameters.

Models Parameters

c (MPa)

Ridge Alpha = 0.0–1.0, n_splits = 5, n_repeats = 3, random_states = 42
Lasso Alpha = 1.0, n_splits = 5, n_repeats = 3, random_states = 42

DT n_splits = 5, n_repeats = 5, random_states = 42, max_depth = 3
SVR n_splits = 5, n_repeats = 5, random_states = 1, C = 1, function = SVR(kernel = ‘rbf’)

ϕ (◦)

Ridge Alpha = 0.0–1.0, n_splits = 5, n_repeats = 3, random_states = 42
Lasso Alpha = 0.01, n_splits = 5, n_repeats = 3, random_states = 42

DT n_splits = 5, n_repeats = 5, random_states = 42, max_depth = 3
SVR n_splits = 5, n_repeats = 5, random_states = 1, C = 1 function = SVR(kernel = ‘rbf’)

4. Model Evaluation

The performance indices play a key role in the assessment of model evaluation. The
most suitable model is one with the highest R2 [65]; the smallest MAE, MSE [66], and
RMSE [65]; and a suitable a10-index [66]. The model evaluation of each investigated model
is evaluated by Equations (9)–(13), as follows.

R2 =
∑n

i=1
(
So − So

)(
Sp − Sp

)√
∑n

i=1
(
So − So

)2
(
(
Sp − Sp

)2 (9)

MAE =
1
N

n

∑
i=1
|So − Sp| (10)

MSE =
∑n

i=1
(
So − Sp

)2

N
(11)

RMSE =

√
∑n

i=1
(
So − Sp

)2

N
(12)

a10− index =
m10

N
(13)

where So and Sp are the mean values of the actual and predicted values of the angle of
internal friction and cohesion; So and Sp are the actual and predicted values of the angle of
internal friction and cohesion, respectively; m10 signifies the datasets with a value of rate
actual/predicted values between 0.90 and 1.10; and N is the number of datasets.

5. Results and Discussion

We aimed to investigate the ability of developed ML-based intelligent models such
as LR, RR, DT, and SVM to predict rock shear strength parameters, namely ϕ (◦) and c
(MPa), using Python programming. In order to introduce the most suitable prediction
model for predicting targeted output, the selection of appropriate input parameters can be
considered as one of the most essential jobs. In this study, P-wave velocity (m/s), density
(gm/cc), UCS (MPa), and tensile strength (MPa) were chosen as the input parameters for
all developed models. Then, the actual and output values were arranged and plotted in
such a way to examine the performance and correlations of each model. Based on the
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final prediction results, the performance and evaluation of the developed models were
investigated employing different analytical indices such as R2, MAE, MSE, RMSE, and
a10-index. The actual dataset of 199 datapoints was split into 70% for training purposes
and 30% for testing purposes.

Figure 4 shows a comparison of scatter plots and performance plots between the actual
and predicted values of the ϕ (◦) at the test level for the LR, RR, DT, and SVM models.
Based on the test prediction, the R2 of each model is computed. The R2 values of LR, RR,
DT, and SVM models for the ϕ (◦) are 0.606, 0.607, 0.822, and 0.916, respectively.
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Figure 4. Performance plots of LR, RR, DT, and SVM models for the ϕ (◦) at the testing level.

In the same manner, Figure 5 shows a comparison of scatter plots and performance
plots between the actual and predicted values of the c (MPa) at the test level for the LR, RR,
DT, and SVM models. Based on the test prediction, the R2 of each model is computed. The
R2 values of LR, RR, DT, and SVM models for the c (MPa) are 0.928, 0.934, 0.961, and 0.977,
respectively.

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 18 
 

 

  

  
Figure 4. Performance plots of LR, RR, DT, and SVM models for the 휑 (°) at the testing level. 

In the same manner, Figure 5 shows a comparison of scatter plots and performance 
plots between the actual and predicted values of the c (MPa) at the test level for the LR, 
RR, DT, and SVM models. Based on the test prediction, the R2 of each model is computed. 
The R2 values of LR, RR, DT, and SVM models for the c (MPa) are 0.928, 0.934, 0.961, and 
0.977, respectively. 

  

24 26 28 30 32 34 36 38 40 42 44
26

28

30

32

34

36

38

40

42
 SVM-Test (R2 = 0.916)

Pr
ed

ic
te

d 
j 

(˚
)

Actual j (˚)

 SVM-Test (R2 = 0.916)
 Linear fit

0 10 20 30 40 50 60

24

28

32

36

40

44

48

j 
(˚)

Dataset number

 Actual
 SVM-Test 

10 15 20 25 30

12

14

16

18

20

22

24

26

28

 LR-Test (R2 = 0.928)
 Linear fit

Pr
ed

ic
te

d 
c 

(M
Pa

)

Actual c (MPa)

0 10 20 30 40 50 60

9

12

15

18

21

24

27

30

33

36

c 
(M

Pa
)

Dataset number

 Actual
 LR-Test

Figure 5. Cont.



Mathematics 2022, 10, 3875 11 of 17Mathematics 2022, 10, x FOR PEER REVIEW 12 of 18 
 

 

  

  

  
Figure 5. Performance plots of LR, RR, DT, and SVM models for the c (MPa) at the testing level. 

The data were split into two parts by DT, as shown in Figures 6 and 7. By averaging 
the two closest leaves, the similarity score and gain were computed, and the residuals 
were then transferred to the leaf with the maximum score and gain. The learning rate and 
maximum depth were set to 1.0 and 3.0, respectively, to prevent model complexity. Once 
the prediction results (residuals) were obtained, all data points were run through the 
model to produce h(x) and F(x) predictions. 

8 12 16 20 24 28 32

10

12

14

16

18

20

22

24

26

28

30

 RR-Test (R2 = 0.934)
 Linear fit

Pr
ed

ic
te

d 
c 

(M
Pa

)

Actual c (MPa)
0 10 20 30 40 50 60

8

12

16

20

24

28

32

36

c 
(M

Pa
)

Dataset number

 Actual
 RR-Test

8 12 16 20 24 28 32
10

12

14

16

18

20

22

24

26

28

30

 SVM-Test (R2 = 0.977)
 Linear fit

Pr
ed

ic
te

d 
c 

(M
Pa

)

Actual c (MPa)
0 10 20 30 40 50 60

8

12

16

20

24

28

32

36

c 
(M

Pa
)

Dataset number

 Actual
 SVM-Test

Figure 5. Performance plots of LR, RR, DT, and SVM models for the c (MPa) at the testing level.

The data were split into two parts by DT, as shown in Figures 6 and 7. By averaging
the two closest leaves, the similarity score and gain were computed, and the residuals
were then transferred to the leaf with the maximum score and gain. The learning rate and
maximum depth were set to 1.0 and 3.0, respectively, to prevent model complexity. Once
the prediction results (residuals) were obtained, all data points were run through the model
to produce h(x) and F(x) predictions.
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Table 3 shows the performance indices of the developed LR, RR, DT, and SVM models
calculated by Equations (6)–(10). In this work, based on the developed LR, RR, DT, and SVM
models, SVM outpaced other models at the testing level with R2 = 0.916, MAE = 0.9094,
MSE = 1.6656, RMSE = 1.2906, and a10-index = 1.00 for the ϕ (◦) prediction and R2 = 0.977,
MAE = 0.5577, MSE = 0.6811, RMSE = 0.8253, and a10-index = 1.00 for the c (MPa) prediction.
Therefore, SVM is an applicable ML-based intelligent approach that can be applied to
accurately predict the ϕ (◦) and c (MPa), as shown in Figure 8.

Table 3. Performance indices of ML-based developed models in this study.

Model
Training Testing

R2 MAE MSE RMSE a10-Index R2 MAE MSE RMSE a10-Index

LR
ϕ (◦) 0.648 2.1653 6.9105 2.6288 1.00 0.606 2.3064 7.4286 2.7255 1.01

c (MPa) 0.941 1.2416 2.6128 1.6164 1.02 0.928 1.1454 2.2188 1.4896 1.02

RR
ϕ (◦) 0.65 2.1298 6.8575 2.6187 1.01 0.607 2.3003 7.4289 2.7256 1.00

c (MPa) 0.946 0.9756 1.5001 1.2248 1.00 0.934 1.0335 1.5405 1.2412 0.99

DT
ϕ (◦) 0.787 1.4562 3.5475 1.8835 1.00 0.822 1.7655 5.2730 2.2963 1.00

c (MPa) 0.976 0.6138 0.6088 0.7803 1.00 0.961 0.8389 1.1151 1.0560 0.99

SVM
ϕ (◦) 0.912 1.0021 1.7958 1.3401 1.00 0.916 0.9094 1.6656 1.2906 1.00

c (MPa) 0.978 0.6957 1.2308 1.1094 1.00 0.977 0.5577 0.6811 0.8253 1.00
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The dataset used in this study was extracted from published literature [42] where the
authors used an ANFIS and SLR to develop correlations between UCS, tensile strength,
c (MPa), ϕ (◦), and P-wave velocity. For further comprehensive comparison between
intelligent approaches, we used the robust SVM model and predicted c (MPa) and ϕ (◦),
achieving the best results. Recently, few studies have used ML techniques to predict the
c (MPa), ϕ (◦); however, their results are limited to a single type of rock. Moreover, the
authors neglected to evaluate the performance of robust ML approaches for different types
of rocks [16,24,43,44].

6. Sensitivity Analysis

It is crucial to accurately analyze the most important parameters that have a consid-
erable influence on the rock ϕ (◦) and c (MPa), which can be problematic in the design of
the rock structure. Therefore, the cosine amplitude method [67,68] is used for the relative
influence of the input parameters on the output in this study.
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Because of the high accuracy of the SVM model in predicting the ϕ (◦) and c (MPa),
only a sensitivity analysis was performed at the testing level. Figure 9 show the relationship
between each input parameter of the developed model and output. All parameters are
positively correlated, while UCS and tensile strength are the most influential parameters
in predicting the ϕ (◦) and c (MPa). Contrarily, the P-wave velocity and density are less
influential parameters in predicting the ϕ (◦) and c (MPa). The feature importance of each
input parameter is given as P-wave velocity = 0.067, density = 0.066, UCS = 0.068, and
tensile strength = 0.069 for the ϕ (◦). P-wave velocity = 0.067, density = 0.067, UCS = 0.068,
and tensile strength = 0.069 for c (MPa).
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7. Limitations and Future Work

The performance of the SVM ML-based intelligent approach in predicting ϕ (◦) and c
(MPa) is consistent. Thus, for large-scale rock engineering projects, this work presents a
sufficient basis to overcome the constraints. In order to carry out other projects, the model
proposed in this study should be considered as a foundation and its results should be
reanalyzed, reevaluated, and even reprocessed.

8. Conclusions

In this study, four ML-based intelligent models, i.e., LR, RR, DT, and SVM, were
developed in order to introduce the most accurate prediction model for predicting the ϕ (◦)
and c (MPa). An identical 5-fold iterative cross-validation method was used to improve
the efficiency of each model. The P-wave velocity (m/s), density (gm/cc), UCS (MPa), and
tensile strength (MPa) were the selected input parameters for all developed models. Finally,
the performance of each model was evaluated by R2, MAE, MSE, RMSE, and a10-index
values. The important conclusions drawn from this study are as follows:

1. Based on the estimated results of the developed LR, RR, DT, and SVM models, SVM
outpaced other developed models at the testing level with R2 = 0.916, MAE = 0.9094,
MSE = 1.6656, RMSE = 1.2906, and a10-index = 1.00 for the ϕ (◦) prediction and R2

= 0.977, MAE = 0.5577, MSE = 0.6811, RMSE = 0.8253, and a10-index = 1.00 for the c
(MPa) prediction.

2. According to the sensitivity analysis, UCS and tensile strength were the most influen-
tial parameters for predicting the ϕ (◦) and c (MPa), with coefficient values of 0.068
and 0.069, respectively.
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3. The findings of LR, RR, and DT are also applicable for predicting the ϕ (◦) and c (MPa);
these models can be used conditionally.

Therefore, SVM is an applicable ML-based intelligent approach that can be applied to
accurately predict ϕ (◦) and c (MPa).
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