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Abstract: The rise in online transactions for purchasing goods and services can benefit the parties
involved. However, it also creates uncertainty and the possibility of fraud-related threats. This work
aims to explore and extract knowledge of auction fraud by using an innovative evolving fuzzy neural
network model based on logic neurons. This model uses a fuzzification technique based on empirical
data analysis operators in an evolving way for stream samples. In order to evaluate the applied
model, state-of-the-art neuro-fuzzy models were used to compare a public dataset on the topic and,
simultaneously, validate the interpretability results based on a common criterion to identify the
correct patterns present in the dataset. The fuzzy rules and the interpretability criteria demonstrate
the model’s ability to extract knowledge. The results of the model proposed in this paper are superior
to the other models evaluated (close to 98.50% accuracy) in the test.

Keywords: evolving fuzzy neural network; or-neuron; auction fraud; knowledge extraction

MSC: 68T35

1. Introduction

Intelligent machine-learning-based models have assumed a prominent role in solving
complex problems common in modern society. Intelligent methods can dynamically solve
problems and optimize industry processes, disease diagnoses, or actions related to Internet
transactions [1].

With the advent of the Internet in people’s lives, and the popularization of e-commerce,
a current problem is online shopping fraud. Some websites promote user interaction based
on bids placed on a product or service. This online auction encourages users to buy products
through bids that can be made remotely, according to the standards set by the platforms
that offer this service. However, purchases involving high-value goods or rare items often
suffer from fraud attempts. In general, online auction fraud has specific characteristics,
ranging from products of dubious origin, suspicious and repetitive bidding on a particular
item, overvaluation of a product through constant bidding, and users registering on the
platform to cause trouble [2]. These problems can make the experience of buying a product
at an online auction appalling, preventing new users from opting for this form of purchase
and discrediting the platform that offers such services [3]. Considering the actuality of the
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problem, some researchers have built a database of factors that exist in auctions to identify
fraud during transactions to prevent such problems from occurring [4]. These studies
support significant areas of current research, and researchers worldwide are working to
identify corresponding patterns and propose solutions, including approaches that use
clustering and machine learning [5].

Machine-learning-based models can act to assist in the detection of fraud in online
auctions. In particular, a model that can combine the efficiency of training artificial neural
networks and interpreting fuzzy systems can solve this problem and extract knowledge of
auction fraud through linguistic rules about the problem [6]. Fuzzy neural networks can
process input data in fuzzy sets and, using neural network training, provide answers to
problems with a high degree of interpretability, because this model is comprised of a fuzzy
inference system that can represent data in a linguistic and interpretable way using fuzzy
operations [7].

When accompanied by logical interpretability about the functioning of the models
that act in this solution, this problem solving can facilitate humans’ understanding and
acceptance of results. Fuzzy natural logic (FNL) is a formal theory that aims to provide a
mathematical model of natural human reasoning whose typical feature is using natural
language. Its central basis is based on the results of linguistics, artificial intelligence, and
logical analysis of natural language [8].

This paper proposes a new evolving fuzzy neural network architecture based on an
empirical data analysis fuzzification process that applies the concepts of self-organized
direction-aware data partitioning [9]. Logic neurons based on t-conorm (or-neurons)
are in the model’s second layer. The model’s training is founded on Extreme Learning
Machine [10] in the offline phase, and the evolving phase is established on indicator-based
Recursive Weighted Least Squares [11]. The three-layer model has a fuzzy inference system
connected to a neural aggregation network represented in its third (and last) layers. This
combination of factors allows the third layer of the model to provide the network’s output
(defuzzification process) with answers about frauds in online auctions and fuzzy rules that
express the logical and interpretable relations present in the evaluated dataset. The model
also includes sophisticated capabilities for the behavior’s interpretability throughout its
analyses, demonstrating tendencies important to interpretability and information extraction.
In addition, this paper proposes a presentation of knowledge about a dataset of fraud in
auctions with IF–THEN rules, presenting the logical relationships between the dimensions
of the problems and the possible impacts of discovering fraudulent behavior. The behavior
of the weights of each dimension linked to the fuzzy sets generated gives an interpretative
dimension to the issues present in identifying fraud.

The motivation for applying evolving fuzzy neural networks in dynamic behavior
problem areas (such as auction fraud) is connected to the dynamic ability of these types of
approaches to identify new behaviors from data, incorporating new neural structures into
their architecture. Auction fraud problems have an extremely dynamic behavior, as the
types of fraud are constantly changing (either by creating new techniques or when previous
frauds are discovered). This evolution of knowledge on the models’ components helps solve
complex problems that can dynamically change over time. Stream data assessments require
models to obtain assertive and adaptive outputs. Thus, evolving fuzzy neural networks act
this way, with the advantage of demonstrating the evolution of knowledge and identifying
behaviors of the elements of their fuzzy rules (antecedents and consequents).

This paper’s main highlight is connected with an assertive and interpretable approach
to the problem of fraud in auctions. Relations on validating interpretability criteria and
generating fuzzy rules are presented to the reader. Another evolving fuzzy neural network
model has already been used to solve these demands [12]. However, this paper presents
the first neuro-fuzzy model to solve problems and extract advantageous interpretations of
the dataset.

The paper is organized as follows: In Section 2, the literature supplies details about
evolving fuzzy neural networks, interpretability of evolving fuzzy systems, and auction
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fraud. Section 3 presents the model employed in this paper, highlighting its layers, training
method, and interpretability criteria applied in the model’s results. Section 4 presents the
test features, the state-of-the-art model to reveal auction fraud, and the results acquired
with due arguments and interpretation. Finally, Section 6 highlights the paper’s conclusions
and possible future work.

2. Literature Review
2.1. Artificial Neural Network and Applications

Artificial neural networks (ANN) are mathematical models that can learn through
computational means and are based on human networks of biological neurons. These
networks process information using storage and processing structures, with each processor
element representing a neuron. They are fed a set of weighted inputs, and their output is
obtained by applying an activation function to simulate the degree of stimulation of the
biological neuron in order to obtain the responses [13]. According to Fausett and others [14],
ANN is a set of computational procedures that provide a mathematical representation
inspired by the neural composition of intelligent organisms and that gain knowledge
through expertise, allowing tasks typically performed by reasonable beings to be performed
in computational environments.

Neural networks are constructed of many interconnected processing units known as
neurons. This method is based on the nature of the human brain and how learning and
problem solving work. Weighted bonds called synapses connect artificial neurons. Each
neuron receives multiple input signals and generates an output signal [13].

Since the 1980s, studies on neural networks have undergone significant evolution,
and this area of research has become well-known, either because of the promising features
introduced by neural network models or because of the general technological requirement
of implementation that allows the audacious development of applications of architectures
with parallel neural networks in dedicated hardware, thus acquiring excellent fulfillment
of these systems (foremost to conventional methods). Deep neural networks represent the
state of the art in neural network development (or Deep Learning) [15]. Where the behavior
of variables is not purely known, ANNs are frequently employed to solve complicated
issues. Their capacity to learn from examples and generalize the knowledge acquired,
producing a nonlinear model, is one of their key properties, which greatly increases the
effectiveness of their use in spatial analysis [13].

The selection of the optimum architecture is one of the most challenging aspects of
using neural networks since it is experimental and takes a long time to complete. The
procedure must be used in practice to evaluate multiple learning models as well as the
many topology configurations a network might have to address a particular issue [13].

In two different ways, a neural network approximates the human brain: information
is obtained through knowledge stages, and synaptic weights are employed to gather expe-
rience. The existing connection between neurons is referred to as a synapse. Values called
synaptic weights are assigned to the connections. This demonstrates that artificial neural
networks are made up of a succession of artificial (or virtual) neurons that are coupled to
form a system of processing components. Their acknowledgments are determined by how
the model’s underlying structures are linked, and their parameters are predicted [13].

At least one hidden layer is required in ANNs. If the model has multiple hidden
layers, each one is accountable for increasing its capacity. The ANN architecture is capable
of executing activities that aid in producing model outputs. The neurons in the hidden
layers can be activated using activation functions (e.g., Gaussian, triangular, sigmoidal,
sine, and hyperbolic tangent). These activation functions are in charge of introducing
the nonlinear aspect of the model’s activities. Backpropagation or Gradient Descent [16],
Extreme Learning Machine [10], and others are examples of training methods for updating
model parameters. An example of an artificial neural network is shown in Figure 1.
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Figure 1. Artificial neural network with five layers.

2.2. Fuzzy Neural Network

Fuzzy neural networks are based on the theory of fuzzy sets and are trained by learning
algorithms derived from neural networks. Being able to unify in a model the generalization
of parameters and the training capacity provided by artificial neural networks together with
the interpretability characteristics of fuzzy systems [17], fuzzy neural networks can work
to solve problems of different varieties, making it easier to find solutions for a parameter
update in the smart models. By interpreting aspects of the user’s database of the problem,
they identify existing patterns that make up a set of fuzzy rules capable of transforming
numerical information into linguistic contexts that can be interpreted by people who do not
necessarily know the main techniques of artificial intelligence. Incorporating fuzzy logic
into the neural network can alleviate the insufficiency of each technique, approaching them
as more economical, robust, and simple to understand problems.

These models have multilayer architectures, commonly, the three-layer ones stand out,
but there may be differences in their architecture. Fuzzy neural networks have also been
used for the detection of Pulmonary Tuberculosis [18]. They are also present in the detection
of COVID-19 cases from chest X-rays [19]. Most of the models listed above have differences
in their architecture. Each of the functions of these layers incorporates the concepts of
fuzzification–defuzzification systems and artificial neural networks. The first layer is the
one that receives the input data, converting them into fuzzy logic neurons. Fuzzy versions
of c-means, adaptive-network-based fuzzy inference systems, and cloud clustering are
usually implemented [7]. These techniques usually have at least one hidden layer. In the
training algorithms, models based on backpropagation, genetic and evolutionary models,
and Extreme Learning Machines stand out [7]. A model with an optimized structure
determines its architecture from the fuzzy neural network and an output layer, which is
also known as the defuzzification layer.

The architecture of a fuzzy neural network can be expressed in layers, where each one
is responsible for a function in the model. Figure 2 represents a fuzzy neural networks in
layers where one is responsible for the fuzzification process, the other takes the aggregation
of fuzzy neurons, and the last layer is responsible for the model outputs. Recent propos-
als for fuzzy neural networks have addressed time-series forecasting [20,21], harmonic
suppression [22], autonomous vehicles [23], and breast cancer [24].
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Figure 2. Example of a layered fuzzy neural network.

2.3. Fuzzy Natural Logic

Fuzzy natural logic (FNL) is a class of mathematical theories that includes evaluative
expression theory, theory of fuzzy/linguistic IF–THEN rules, and approximate reasoning
based on them. The theory of generalized fuzzy quantifiers and their syllogisms, models
of natural human reasoning, are also highlighted. FNL aims to develop models of human
thought whose most relevant feature is the use of natural language [25].

Many works have been proposed to explore this theory to facilitate the understanding
of the results by its users. We highlight works that addressed the theory of intermediate
quantifiers in FNL [26], forecasting in analogous time series [27], integration of proba-
bilistic uncertainty to fuzzy systems [28], and interpretable rules with medical data [29],
among others.

2.4. Auction Fraud

Online markets present themselves as a very popular way to trade online. E-commerce’s
main feature is to unite the real and virtual market for the online shopping model, being
able to be divided into several sales schemes [30]. The most common business models are
Business to Business, which indicates a company that does business with other companies,
Business to Consumer, which is the trade carried out directly between the producer, seller,
or service provider and the final customer, and Consumer to Consumer, which is based on
the direct relationship between consumer and consumer.

According to the Global Payments 2022 Report (https://worldpay.globalpaymentsrep
ort.com/en (accessed on 12 August 2022)) published by FIS Worldpay that examines current
and future payment trends in 40 countries across five regions, the global e-commerce market
will grow 55% by 2025.

https://worldpay.globalpaymentsreport.com/en
https://worldpay.globalpaymentsreport.com/en
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Among the many user benefits, C2C offers minimal costs while maintaining higher
margins for sellers and lower prices for buyers. There is also the convenience factor, and
customers can list their products online and wait for buyers to come to them. A great
example would be an auction.

Large companies promote online auctions, being the only intermediaries to correspond
to consumers [30]. The most prominent example is eBay, a successful site since its launch
in 1995. Anyone can sign up and start selling or buying. However, fraudsters use it to
take advantage by finding alternatives to take advantage of. The leading illicit practices in
online auctions are [31]:

• Advertising illegal (stolen) or black market goods;
• Fraud that happens during the bidding period, such as Shill Bidding;
• Post-auction fraud, such as the exaggerated collection of fees, insurance, and even the

nondelivery of the purchased goods.

According to the FBI’s 2019 Internet Crime Report (FBI’s Internet Crime Complaint
Center (IC3) in its 2019 Internet Crime Report (available in: https://pdf.ic3.gov/2019_IC3
Report.pdf (accessed on 15 August 2022))), there were 467,361 complaints in 2019—and
more than USD 3.5 billion in losses for individual and commercial victims.

The practice of Shill Bidding, the focus of this paper, is when a seller uses a separate
account, be it themselves, a friend, or a family member, or someone else, and asks them to
bid on their auction to raise the auction price artificially. The item’s price is higher than
if a legitimate buyer placed a bid and purchased the item. Machine learning techniques
have been working on solving fraud identification in auctions. Recent works proposed
in [32–35] stand out.

2.5. Evolving Fuzzy Systems and Interpretability

The evolving fuzzy systems are models capable of working with advanced problem
solving with a certain degree of interpretability. This problem-interpreting capacity comes
from its structure, which can transform data into representations people can read and
interpret. A range of models extracts knowledge through fuzzy rules, where each applies
techniques and has different architectures for this purpose. The most famous examples
of existing evolving fuzzy systems are evolving models based on Takagi–Sugeno, fuzzy
classifiers, and fuzzy neural networks.

They differ in the type of fuzzy rules and possible interpretations of them. Several
works in the evolving fuzzy system literature work on pattern classification, linear regres-
sion, and time-series forecasting (see examples in [36]). In particular, this work deals with
interpretable aspects generated by an evolving fuzzy neural network.

Regarding aspects of evolution over time, several proposals were made to facilitate
the understanding of the behavior of models as they analyze data. Lughofer [37] proposed
criteria that ensure that the fuzzy rules generated can bring certainty to users regarding
their actions during the execution of their activities. One should look for more straightfor-
ward and distinguishable models, that is, models with a smaller number of fuzzy rules
solving the target problems in a coherent and interpretable way, avoiding ambiguities, and
that each structure that composes the model avoids redundancy (overlapping of Gaussians
may be an example of redundancy present in these models). Other criteria deal with
overlapping by evaluating consequents and rule antecedents. The relationship between
these two fuzzy rule components determines whether there are inconsistent rules (which
can confuse evaluators). Moreover, the evaluation of completeness (a criterion that eval-
uates the contribution of rules with a significant distance to the sample) and coverage
is noteworthy, which verifies whether all samples evaluated by the model are covered
by the space of characteristics generated in the fuzzification processes. However, there
are also criteria related to assessing the dimensions of the problems. These criteria for
interpretability facilitate the identification of dimensions relevant to the issue, which can
facilitate understanding a new problem.

https://pdf.ic3.gov/2019_IC3Report.pdf
https://pdf.ic3.gov/2019_IC3Report.pdf
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On the other hand, this evaluation can also identify less irrelevant features that do
not need to be in constructing fuzzy rules as they do not significantly contribute to the
resolution of the situation itself. Finally, the criteria for identifying the importance of rules
(how much a rule contributes or not to the identification of a target class of the problem), the
interpretation of rule consequents (allowing to assess locally and globally the impacts of a
fuzzy rule response for the problem solving), and knowledge expansion (identifying when
the model identified new patterns and expanded its knowledge base) are fundamental to
affirm that a fuzzy neural network model is interpretable. By guaranteeing these criteria,
analyzing the generated fuzzy rules with a more outstanding guarantee that they represent
solid knowledge about the analyzed problem is possible.

3. Evolving Fuzzy Neural Network Based on Self-Organizing Direction-Aware Data
Partitioning (SODA) Approach and Or-Neurons-eFNN-SODA

The development of evolving fuzzy neural networks, models with unprecedented
adaptability and freedom, allows acquiring knowledge through the information presented
in a data set. This approach assists the precise demonstration of how to build a model able
to identify some patterns in a problem analyzed. In this paper, the leading layer of the
model proposes a calculation with data density to foster consistent neurons with Gaussian
membership function through the idea of or-neurons.

These neurons are responsible for extracting knowledge based on fuzzy rules. The
third layer of the model is represented by an artificial neural network model that can process
the defuzzification approach. Its training is based on the concept of weight definition
through an incremental approach based on recursive least squares. The model’s engineering
is visible in Figure 3, which is introduced in the following section.

Figure 3. Architecture of the fuzzy neural network proposed in this paper.

3.1. First Layer

The model fuzzification layer is present in the first layer. It is responsible for fuzzifying
the data set entries through a clustering process across clouds that identifies them through
data density concepts. Therefore, this procedure is responsible for creating Gaussian
neurons representing neurons of the first layer. These neurons have weights in the range
[0,1] that are defined according to the separability criteria of the dimensions of the problem.
For each input variable xij, L neurons are defined Al j, l = 1, . . . L, whose activation functions



Mathematics 2022, 10, 3872 8 of 31

are composed of membership functions in the corresponding neurons. The Gaussian
neurons created in this layer are expressed by:

ajl = µAl , j = 1 . . . n, l = 1 . . . L. (1)

where ajl (µAl ) represents the degree of association related to the inputs submitted to the
model, N is the number of inputs (features), and L represents the number of neurons. For
each input variable xij, L neurons are defined Al j, l = 1, . . . L, whose activation functions are
composed of membership functions in the corresponding neurons [38].

The respective weights of each Gaussian neuron formed by the fuzzification process
are created using feature weight separability criteria developed by [39]. These weights are
expressed by:

wil , i = 1 . . . N, l = 1 . . . L (2)

The fuzzification process used by the model is described below.

3.1.1. Self-Organizing Direction-Aware Data Partitioning

Self-Organizing Direction-Aware Data Partitioning is a data partitioning approach
based on empirical data analysis [40], which can identify peaks/modes of the input fre-
quency and apply them as focal points. Data clouds can be considered a particular variety of
clouds that possess an especially peculiar contrast. They are non-parametric, as they do not
observe a pre-defined data distribution that is commonly unknown. The technique operates
a magnitude component based on a universal distance metric and a directional/angular
component based on the cosine similarity [9]. This approach is suitable for the online
processing of streaming data.

The definitions of the empirical data analysis [41] operators used in the fuzzification
approaches are listed below. SODA, adopted in this paper, acts to update clouds as new
information changes its data density. These modifications develop new cloud formats
and directly impact the model’s formation of the outputs to be acquired. For the SODA
approach, consider:

- x = {x1, x2, . . . , xk } ∈ Rd: Input variables (where the index k indicates the time
instance at which the data point arrives).

- un = {un1, un2, . . . , unΨ} ∈ Rd: Set of unique data point locations.
- f1, f2, . . . , fΨ: Number of times that different data points occupy the same unique locations.
- Kc: The number of data samples {x}c

Kc belonging to the c-th class.
- Unc

K: The number of unique data samples belonging to the c-th class.
- ∑C

c=1 Kc = K and ∑C
c=1 Unc

K = UnK.

Based on un1, un2, . . . , unΨ and f1, f2, . . . , fΨ, it is possible to reconstruct the dataset
x1, x2, . . . , xk exactly if necessary, regardless of the order of arrival of the data points [41].

The first empirical data analysis operator is cumulative proximity. These elements
are defined as the distance between the samples present in the model evaluation. The
following is the definition of cumulative proximity [41]:

πK(xi) = ∑K
j=1 d2(xi, xj

)
; i = 1, 2, . . . , K (3)

where d(xi, xj) denotes the distance between xi and xj, which can be Euclidean or cosine,
among others [42].

The second operator for the determination of data clouds is the unimodal (or local)
density, which in turn is determined by [41]:

DK(xi) =
∑K

l=1 πK(xl)

2KπK(xi)
=

∑K
l=1 ∑K

j=1 d2(xl , xj
)

2K ∑K
j=1 d2

(
xi, xj

) ; i = 1, 2, . . . , K (4)
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where, for Euclidean distance, ∑K
l=1 d2(xi, xl) = ∑K

l=1 ‖ xi − xl ‖2 and ∑K
l=1 ∑K

j=1 d2(xl , xj) =

∑K
l=1 ∑K

j=1 ‖ xl − xj ‖2. It can be simplified using the average of {x}K, ϕK and the average
scalar product, XK, as in [43]:

K

∑
l=1
‖xi − xl‖2 = K

(
‖xi −ϕK‖

2 + XK − ‖ϕK‖
2
)

(5)

K

∑
l=1

K

∑
j=1

∥∥xl − xj
∥∥2

= 2K2
(

XK − ‖ϕK‖
2
)

(6)

Finally, the third empirical data analysis operator is global density (DG
K ). It is necessary

to identify in the data the weighted sum of the local density by a similar occurrence in
f1, f2 . . . , fΨK. It is defined for unique data samples and their corresponding number of
repetitions in the data set/stream. It is expressed in (7).

DG
K (unk) =

fk

∑
ΨK
j=1 f j

DK(unk) =
fk

1+
‖unk−ϕK‖2

XK−‖ϕK‖2
(7)

The essence of an evolving model is to have its parameters evolve as new samples
emerge with new information. The empirical data analysis operators can be updated
recursively. This update can be seen below:

ϕk =
k−1

k ϕk−1 +
1
k xk; ϕ1 = x1; k = 1, 2, . . . , K (8)

Xk =
k− 1

k
Xk−1 +

1
k
‖xk‖2 ; X1 = ‖x1‖2; k = 1, 2, . . . , K (9)

DK(xk) =
1

1 + ‖xk−ϕK‖
2

XK−‖ϕK‖
2

(10)

The considerable typical distance metric used, Euclidean, was adopted in SODA as
the magnitude component and, consequently, can be represented between xi and xj by [9]:

dM(xi) =
∥∥xi − xj

∥∥ =

√
m

∑
k=1

(xik − xjk)2i, j = 1, 2, . . . , n (11)

The angular component that assumed the ideas of cosine similarity and is provided in
the SODA model can be expressed as [9]:

dA(xi) =
√

1− cos (Θxi ,xj)i, j = 1, 2, . . . , n (12)

where cos (Θxi ,xj) =
<xi ,xj>

‖xi‖,‖xj‖ expresses the value of the angle between xi and xj [9].

Simultaneously, one applies the measurement and angular component values mutually.
Considerable problems can be estimated on a 2D plane, called the direction-aware plane [9].
The empirical data analytics operators [40] employed in this approach are the cumulative
proximity (3), local density (4), and global density (7).

The recursive update of these parameters also follows the identical concepts as empir-
ical data analysis operators. Their formulation can be seen in Equations (8) and (9). The
angular component updates similarly, as expressed below [9]:

ϕA
n = n−1

n ϕA
n−1 +

1
n

xn
‖xn‖ ; ϕA

1 = x1
‖x1‖ (13)
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When Euclidean distance is used for Local Density in the SODA approach, it can be
represented as follows [9]:

∑n
j=1 πM

n
(
xj
)
= 2n2

(
XM

n − ‖ϕM
n ‖2

)
(14)

The initial phases of the SODA algorithm regard, firstly, composing different direction-
aware planes of the recognized data samples operating both the magnitude-based and
angular-based densities; secondly, distinguishing focal points; and finally, handling the
focal points to partition the data space into data clouds [9]. The algorithm is executed in
the following steps:

Stage 1—Preparation: Estimate the average values between every pair of data sam-
ples, x1, x2, . . . , xn for both the square Euclidean components, dM and square angular
components, dA [9].

d
2
M =

∑n
i=1 ∑n

j=1 d2
M(xi ,xj)

n2 =
∑n

i=1 ∑n
j=1‖xi−xj‖2

n2 = 2
(

XM
n − ‖ϕM

n ‖2
)

(15)

d
2
A =

∑n
i=1 ∑n

j=1 d2
A(xi ,xj)

n2 =
∑n

i=1 ∑n
j=1

∥∥∥∥∥ xi
‖xi‖
−

xj

‖xj‖

∥∥∥∥∥
2

2n2 = 1−
∥∥ϕA

n
∥∥2 (16)

After computing the global density, SODA reclassifies the problem samples in a
decreasing way and renames them as {Φ̂1, Φ̂2, . . . , Φ̂nun} [9].

Stage 2—Direction-Aware Plane Projection: The direction aware projection process
starts with the unique data sample with the highest global density, namely �−1 . It is initially
set to be the first reference, ϕ1 = Φ̂j, which is also the origin point of the first direction-
aware plane, denoted by P1 (Ψ = 1, and Ψ is the number of existing direction-aware planes
in the data space. The following rule can describe the second step of the algorithm [9]:

Condition 1
IF
(

dM(ϕl ,Φ̂j)
dM

< 1
ϑ

)
AND

(
dA(ϕl ,Φ̂j)

dA
< 1

ϑ

)
THEN

(
Pl = Φ̂j

) (17)

where ϑ assists in the deduction of the granularity of the cloud used. When considerable
direction-aware planes satisfy the Equation (17) criteria at the same time, Φ̂j will be assigned
to the one nearest to them according to the following equation [9]:

i = arg min
l=1,2,...,Ψ

(
dM(ϕl ,Φ̂j)

dM
+

dA(ϕl ,Φ̂j)
dA

)
(18)

In this step, the mean, the support (number of samples of the problem), and the sum
of the global density (ϕi, Spi and Di, respectively) are updated as follows [9]:

ϕi =
Si

Si+1ϕi +
1

Si+1 Φ̂j (19)

Spi = Spi + 1 (20)

Di = Di + DG
n

(
Φ̂j

)
(21)

Nonetheless, if Equation (17) is not fulfilled, the parameters involved in the analysis
will be updated after the creation of a new direction-aware plane (PΨ+1) and new references,
as follows [9]:

Ψ = Ψ + 1 (22)

ϕΨ = Φ̂j (23)

SΨ = 1 (24)
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DΨ = DG
n

(
Φ̂j

)
(25)

This procedure occurs until all problem samples are organized. In this situation,
some data samples may be located on several direction-aware planes simultaneously,
depending on the behavior of the problem. In this sense, the final establishment of these
samples is defined by the distances between them and the points of origin of the following
direction-aware plans [9].

Stage 3—Identifying the Focal Points: For each direction-aware plane, denoted as Pβ,
find the neighboring direction-aware planes ({P}n

β, l = 1, 2, . . . , L, l 6= β). The subsequent
association can define the rule for determining new plans [9]:

Condition 2
IF

(
dM

(
ϕβ ,ϕl

)
dM

≤ 2
ϑ

)
AND

(
dA

(
ϕβ ,ϕl

)
dA

≤ 2
ϑ

)
THEN

(
{P}n

β = {P}n
β ∪ {Pl }

) (26)

The central mode/peak of data density (Pβ) will be selected if the following equation
is attended (assuming the corresponding D of {P}n

β, l = 1, 2, . . . , Ψ, l 6= β is expressed by
{D}n

β [9]):

Condition 3 IF
(

Dβ > max
(
{D}n

β

))
THEN

(
Pβ is a mode/peak o f D

)
(27)

All peaks are found when conditions 2 and 3 perform mutually.
Stage 4—Forming Data Clouds: After all the direction-aware planes encountering the

modes/peaks of the data density are appointed, it reflects their origin points, represented
by ϕo, as the focal points and uses them to form data clouds according to a Voronoi
tessellation [44]. The term that represents the data cloud is suggested as follows [9]:

Condition 4
IF

(
3= arg min

j=1,2,...,ξ

(
dM

(
xl ,ϕo

j

)
dM

+
dA

(
xl ,ϕo

j

)
dA

))
THEN(xl is assigned to the ♦th data cloud)

(28)

where ξ is seen as the number of focal points. The concept of clouds is equivalent to clusters.
Regardless, there are distinctions because they are non-parametric, do not have a typical
shape, and can express any real data distributions following local density criteria [45].

This approach can also perform with the evolution of their clouds due to the ability
to update their parameters recursively. For the evolving strategy used in SODA, some
actions are essential for new samples to influence changes in the data clouds. Therefore,
the following steps, which are related to the steps listed previously, help in describing the
update of the SODA fuzzification method [9]:

Stage 5—Update Problem Parameters: For each new sample introduced to training
(xn+1, ϕM

n , ϕA
n , and XM

n ), they are updated by Equations (9), (13), and (14). Likewise,
the Euclidean components and the angular components between the new sample and
the established centers of the direction-aware planes are also updated for each new sam-
ple employing Equations (11) and (12) and are currently described by dM(xn+1,ϕl) and
dA(xn+1,ϕl) for l = 1, 2, . . . , Ψ, sequentially.

At this point in the procedure, the direction-aware plane projection stage is trig-
gered, letting a joint analysis of Condition 1 and Equation (18) determine whether the
new sample belongs to an actual data set (model parameters are updated based on
Equations (19) and (20), or, if it is a new sample with different behavior, consequently
forming the demand to produce a new direction-aware plane (and hence the parameters
will be updated based on Equations (22), (23) and (24)) [9].
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Stage 6—The Fusion of Overlapping Direction-Aware Planes: After the realization of
Stage 5, a new requirement is examined on the fuzzification approach, recognizing strongly
overlapping direction-aware planes [9]:

Condition 5
IF

(
dM

(
ϕi ,ϕj

)
dM

< 1
2ϑ

)
AND

(
dA

(
ϕi ,ϕj

)
dA

< 1
2ϑ

)
THEN(Pi and Pj are strongly overlapping)

(29)

This situation is not advisable, so these circumstances are solved by assembling a new
direction-aware plane on Pj by combining the analyzed direction-aware plane. This merger
criterion is described by [9]:

Ψ = Ψ− 1 (30)

ϕj =
Spj

Spj+Spi
ϕj +

Si
Sj+Si

ϕi (31)

Spj = Spj + Spi (32)

The procedure occurs until all the direction-aware planes are not highly overlapping.
This technique occurs by eliminating the parameters of Pi and returning to Stage 5. This
flow occurs until the conditions reported in Condition 5 are not satisfied, thus flowing to
the final stage of the evolving fuzzification process [9]. This situation is essential for using
the SODA technique, it is a benchmark for certifying the interpretability of the results.

Stage 7—Forming Data Clouds: Once all samples are examined, SODA defines all
the focal points of the existent centers in the direction-aware planes resulting from Stage 6.
The subsequent steps are correlated to the global density estimation of the centers of the
direction-aware plane through Equation (7), operating the supports of each direction-aware
plane as the number of repetitions to be performed. Therefore, it obtains the global density,
which is called DG

n (ϕl) [9]. Second, each direction-aware plane is examined using Condition
2 to find its neighboring direction-aware plane. In this circumstance, Condition 3 is used in
order to confirm whether the DG

n (ϕe) underneath investigation is one of the local maxima
of (DG

n (ϕl)), so that eventually all the identified maximum DG
n (ϕl) zones and the centers

of the corresponding direction-aware planes, together with Condition 4, will act in the
establishment of a focal point, and hence in the data clouds [9].

It is meaningful that at the first moment of the model’s training, the SODA algorithm’s
demeanor will be similar to the offline behavior of the algorithm (Stages 1–4). From the
subsequent data presented to the model, SODA will act in its evolving state, primarily
concentrating on the stages 5–7 of the SODA algorithm [9].

Figure 4 presents an example of the construction of clouds and identification of the
centers that guide the construction of the structures resulting from the fuzzification process.

3.1.2. Incremental Feature Weights Learning

This paper addresses a different creation in the definition of weights when compared
with various models of evolving fuzzy neural networks that define them randomly. Here,
the weights are defined by an online and incremental criterion for evaluating the relevance
of the problem features when determining the best separation of the target classes. This
proposal increases the reducibility of fuzzy rules, as irrelevant weights can be discarded
from a visual and operational evaluation and, at the same time, bring more interpretability
to the Gaussian neurons of the first layer of the model. It should be noted that this procedure
has already been successfully applied in evolving fuzzy neural networks, as in [11,46].
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Figure 4. Example of the SODA approach with 17 clouds.

The approach proposed in [39] uses the Dy–Brodley separability criterion [47] for the
classes analyzed in the problem. Either compute as a single feature (using each feature (and
only one of them)) or discard each feature from the complete set to identify the feature in
question that best defines the separation of the classes analyzed. This procedure sets values
closer to 1 to features that are more satisfactory in separate classes [11]. On the other hand,
dimensions that are ineffective at identifying labels correctly are assigned values close to
zero. Accordingly, if a dimension is nonessential to the model, it can be excluded from the
model to reduce interpretation complexity.

The class separability criterion can be represented as an extension of Fisher’s separa-
bility criterion [11]:

J = δ(S−1
w Sb) (33)

where δ(S−1
w Sb) is the sum of the diagonal elements of the matrix S−1

w Sb. Sb means the
dispersion matrix between classes that estimate the class’s dispersion averages to the total
average, and Sw denotes the within scattering matrix (that measures the samples’ dispersion
in their class averages) [11].

This paper uses the leave-one-feature-out approach. It works by discarding each
feature from the complete set and then calculates Equation (33) for each obtained subset→
again obtaining J1, . . . , JN for N features in the data set. It can be expressed by [39]:

wj = 1−
Jj −mini=1,...,N Ji

maxi=1,...,N Ji
(34)

The lower the value of Ji becomes, the more important feature i is, because feature i
was discarded. Hence, and seeking comparable importance among all features (relative to
the most noteworthy feature, which should acquire a weight of 1), the feature weights are
assigned by [39]:

In particular, Sb can be updated by updating class-wise and the overall mean through
an incremental mean formula. Recursive covariance update formulas update the covariance
matrices per class with rank-1 change for more powerful and faster convergence to the
batch calculation [48]. For all formulas and details, check [39].
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3.2. Second Layer

The second layer comprises fuzzy logic neurons that use fuzzy operators [49]. The
most well-known is the t-norm, (T : [0, 1]2 → [0, 1]), which represents the intersection of
fuzzy sets, and the t-conorm (S : [0, 1]2 → [0.1]), capable of the union of fuzzy sets. In this
paper, these operations are represented by [49]:

t(x, y) = x× y (35)

s(x, y) = x + y− x× y (36)

Neurons that use t-norm and t-conorm are extremely common in constructing evolving
fuzzy neural networks; and-neuron and or-neuron stand out. These fuzzy neural structures,
proposed first by Hirota and Pedrycz [50], can aggregate the model inputs (in the case of
this paper, the Gaussian neurons of the first layer) with their respective weights. They
are considered operational units capable of nonlinear multivariate operations in unit
hypercubes ([0,1] → [0, 1]n) with fuzzy inputs and weights. This process generates a
unique value that allows the construction of fuzzy rules in the IF–THEN format. Their
interpretability is directly related to the operators applied in the procedures of these fuzzy
neuronal structures.

In these neurons with two levels, the first one executes aggregate operations, and
the last completes the procedures with fuzzy operators. This operation simplifies the
aggregation of the fuzzy input with its respective weight, creating interpretable connectivity
between the antecedent connectives [51]. In the case of or-neurons (the neuron structure
used in this paper), all or-type connectors are present in the connection of all antecedents
of a fuzzy rule generated by this structure [50]. It can be exemplified by:

z = orneuron(w;a) = Sn
i=1(wi t ai) (37)

where S is a t-conorms and t is t-norms, a = [a1, a2, ..., a3, ...aN ] is the neuron’s inputs (values of
fuzzy relevance (Gaussian neurons)), and w = [w1, w2, ..., w3, ...wN ] represents the weights,
a, w ∈ [0, 1]n, defined in the range between 0 and 1. Finally, z is the neuron’s output, which
is also seen as a fuzzy rule. This neuron can generate fuzzy rules as shown below:

Rule1 : I f x1 is A1
1 with impact w11 . . .

or x2 is A2
1 with impact w21 . . .

or xn is An
1 with impact wn1 . . .

Then y1 is v1

RuleL : I f x1 is A1
L with impact w1L . . .

or x2 is A2
L with impact w2L . . .

or xn is An
L with impact wnL . . .

Then yL is vL

(38)

with A1
i , . . . , An

i fuzzy sets represented as linguistic terms for the n inputs appearing in
the ith rules, and y1, . . . , yL are consequent terms (output); L is the number of rules, and v
represents the correspondence value for the output [17].

3.3. Third Layer

The third layer of the fuzzy neural network is composed of the neural network that
aggregates all the fuzzy rules generated in the first layer. Its inputs are the fuzzy neurons
with their respective weights generated in the training process, to be explained later. An
artificial neuron aggregates these fuzzy rules and processes them with weights to generate
model outputs. This singleton neural network (composed of a single neuron) has a linear
activation function, and a signal function transforms the values obtained by the model into
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the expected outputs (−1 and 1), indicating whether or not there was fraud in the auction.
This defuzzification process can be mathematically described by [38]:

y = Ω

(
l

∑
j=0

fΓ(zj, vj)

)
(39)

where z0 = 1, v0 is the bias, and zj and vj, j = 1, . . . , l are the output of each fuzzy neuron
of the second layer and their corresponding weight, respectively. fΓ represents the linear
activation function and Ω the signal function [38].

The linear and signal function are represented, respectively, by:

fΓ(z) = z*w (40)

Ω =

{
1, i f ∑l

j=0 fΓ(zj, vj) > 0
−1, i f ∑l

j=0 fΓ(zj, vj) < 0
(41)

3.4. Training

The neural network training process facilitates the definition of existing parameters
in an evolving fuzzy neural network. In the model proposed in this article, this training
takes place in two stages. The first, offline, is performed using the concept of the Extreme
Learning Machine [10], and in the evolving phase of the model, a recursive weighted least
squares (RWLS) approach [52] is used. The first process guarantees a definition of weights
based on the initial architecture, and the second incrementally updates these weights as new
fuzzy rules, and samples with essential information are evaluated. The initial definition
of the weights of the third layer carried out in the offline training stage can be expressed
by [38]:

~vk = Z+~ym ∀m = 1, . . . , 2 (42)

where m is the number of classes, and Z+ = ZTZ is the pseudo-inverse of the Moore–
Penrose matrix [53] of Z (output of the second layer). This procedure is commonly applied
in training artificial neural networks and sets the weights in a single step, allowing the
training to be fast and accurate.

In the evolving phase of the model (new incoming online stream samples), the recur-
sive weighted least squares (RWLS) approach is used [52] with formulas for updating the
~vk , and it can be expressed as follow:

η = ~ztQt−1
(

ψ + (~zt)TQt−1~zt
)−1

(43)

Qt = (ILt−ηT~zt)ψ−1Qt−1 (44)

~vt
k = ~vt−1

k + ηT(yt
m−~zt~vt−1

k ) (45)

where the index k again denotes the class index k = 1, . . . , C. ~zt denotes the regressor vector
of the current sample, η is the current kalman gain vector, ILt

s
is an identity matrix based on

the number of neurons in the second layer, and Lt
s × Lt

s; ψ ∈]0, 1] denotes forgetting factor
(1 per default). Q denotes the inverse Hessian matrix Q = (ZT

selZsel)
−1 and is set initially

as ωILt
s
, where ω = 1000 [54].

This matrix is directly and incrementally updated by the second equation above
without requiring (time-consuming and possibly unpredictable) matrix re-inversion. This
procedure identifies existing changes in the dataset and updates the weight values without
losing the previous reference. Thus, the concept of memory is applied to the weights,
allowing the model’s training to be consistent with the premises of evolving fuzzy systems.

The eFNN-SODA can be synthesized, as represented in Algorithm 1. It has one
parameter during the initial batch learning phase:

Granularity of the cloud results (grid size), ϑ;



Mathematics 2022, 10, 3872 16 of 31

Algorithm 1 eFNN-SODA Training and Update Algorithm
Initial Batch Learning Phase (Input: data matrix X):

(1) Define granularity of the cloud, ϑ.
(2) Extract L clouds in the first layer using the SODA approach (based on ϑ).
(3) Construct L fuzzy neurons with Gaussian membership functions with~c and σ values
derived from SODA.
(4) Calculate the combination (feature) weights ~w for neuron construction using Equa-
tion (34).
(5) Construct L logic neurons on the second layer of the network by welding the L fuzzy
neurons of the first layer, using or-neurons (Equation (37)) and the centers~c and widths~σ.
(6)
for i = 1, . . . , K do

(6.1) Calculate the regression vector z(xi).
(6.2) Store it as one row entry into the activation level matrix z.

end for
(7) Extract activation level matrix z according to the L neurons.
(8) Estimate the weights of the output layer for all classes k = 1, . . . , C by Equation (42)
using z and indicator vectors ~yk .

Update Phase (Input: single data sample ~xt):
(11) Update L clouds and evolving new ones on demand (based on Stages 5, 6, and 7 of
the SODA approach).
(12) Update the feature weights ~w by updating the within- and between-class scatter
matrix and recalculating Equation (34).
(13) Perform Steps (3) and (5).
(14) Calculate the interpretability criteria (Section 3.5).
(15) Calculate the regression vector z(~xt).
(16) Update the output layer weights by Equation (45).

The computational complexity of eFNN-SODA encloses the number of flops de-
manded to process one single sample through the updated algorithm (second part in
Algorithm 1) because this affects the online speed of the algorithm. In this sense, the main
steps involved can be listed below:

• SODA algorithm: The complexity of O(p) (p is the dimensionality of the input space
when updating with a single sample).

• Or-neurons: Complexity O(mp) (constructing them from m clouds).
• Weights in the first-layer Gaussian neurons: Complexity Kp3 (where K is the number

of classes). That happens because the between- and within-class scatter matrices need
to be updated for each class for each feature separately and independently, having a
complexity of O(p2) (matrices have a size of p× p).

• Neuron activation in the third-layer model: The complexity of O(mp) (in each sample,
the activation levels to all m neurons (with dimensionality p) require to be estimated).

• Output-layer neuron: The complexity of O(mp2) (because of the weighted method in
each rule individually, demanding this complexity [55].)

3.5. Interpretability Criteria

The interpretability criteria are essential for evaluating the model’s behavior through-
out the evaluations. In this case, the eFNN-SODA model uses some approaches to validate
the interpretability criteria proposed in [37], so that the generated fuzzy rules are reliable.
In this case, the model applies some evaluations throughout the experiments to ensure that
the generated fuzzy rules can add some knowledge about the evaluated dataset. These
procedures are listed below:

Simplicity and Distinguishability: These two criteria verify whether the proposed
model is the simplest and has its structures distinguishable during training. This
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means that the evaluation revolves around low complexity and high accuracy. Regard-
ing the simplicity of the eFNN-SODA, the model is expected to have a more compact
structure and a high degree of assertiveness. The criterion defined for the identification
of model simplicity (in the comparison between models) can be expressed by:

i f {(La < Lb) ∨ (accuracymodela > accuracymodelb
)} then modela is simpler than modelb (46)

where La and Lb are, respectively, the number of fuzzy rules of the modela and modelb.
Regarding distinguishability, it is expected to assess whether there is an overlapping
in the structures formed in the fuzzification process. The SODA approach uses an
assessment of overlapping in the evolution process in its sixth stage, thus ensuring
that this situation does not occur. For the evaluation of the distinguishability criterion,
eFNN-SODA uses the comparison of similarity between the Gaussian neurons formed
in the first layer (termed as zi(be f ) and zi(a f ter)) dimension-wise, and similarity (Sim)
degree Sim(zi(be f ), zi(a f ter)) can be used for calculating an amalgamated value. The
degree of change (n) is then presented by [11]:

n (zi) = 1− Sim(zi(be f ), zi(a f ter)) (47)

be f = N − n and a f ter = N, assuming that n new samples have passed the data-
stream-based transformation phase with N samples operated so far for model training
and adaptation [11].
Therefore, it is feasible to conclude that two rules are only identical if all their an-
tecedent parts are equivalent. The x coordinates of the points of intersection of two
Gaussians used as fuzzy sets in the identical antecedent part of the Gaussian rule i
(here for the jth) before and after its update can be estimated by [56]:

interx(1, 2) = −
~cbe f ,j~σ

2
a f ter,j −~ca f ter,j~σ

2
be f ,j

~σ2
be f ,j −~σ

2
a f ter,j

+−

√√√√(
~cbe f ,j~σ

2
be f ,j −~cbe f ,j~σ

2
a f ter,j

~σ2
a f ter,j −~σ

2
be f ,j

)2 −
~c2

be f ,j~σ
2
a f ter,j −~c

2
a f ter,j~σ

2
be f ,j

~σ2
a f ter,j − σ2

be f ,j
(48)

with~cbe f ,j,~σbe f ,j being the jth center coordinate and standard deviation of the Gaussian
neuron before its update, and~ca f ter,j and~σa f ter,j the jth center coordinate and standard
deviation of the Gaussian neuron after its update [11].
The maximal membership degree of the two Gaussian membership functions in the
intersection coordinates is then used as overlap. Consequently, the similarity degree
of the corresponding rules’ antecedent parts in the jth dimension is [11]:

Sbe f ,a f ter
im (j) = max(µi(interx(1)), µi(interx(2))) (49)

with µi(interx(1)) being the membership degree of the jth fuzzy set in Rule i in the
intersection point interx(1). The amalgamation of overall rule antecedent parts leads
to the final similarity degree between the rule before and after its update:

Sim(zi(be f ), zi(a f ter)) = Tp
j=1Sbe f ,a f ter

im (j) (50)

where T denotes a t-norm operator, and p is the number of inputs, as a robust nonover-
lap along one single dimension is sufficient for the clouds to not overlap at all [56].

• Consistency, Coverage, and Completeness: The concept of consistency in evolving
fuzzy systems is attending when their fuzzy rule-set does not deliver a high noise
level or an inconsistently learned output behavior. Therefore, a set of fuzzy rules is
considered inconsistent when two or more rules overlap in the antecedents, but not in
the consequents. In this paper, the consistency of fuzzy rules (comparing a rule before
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and after its evolution) can be measured by evaluating the similarity involved in its
rule antecedents (Sante) and consequents (Scons). In this case, they can be expressed
by [37]:

Rule z1 is inconsistent to Rule z2 i f and only i f

Sante(z1,z2) > Scons(z1,z2) with Sante(z1,z2) > thr.
(51)

where consistency =

{
1 i f Equation (51) is f alse
0 i f Equation (51) is true

where Sante and Scons are close to 1 invariably can be assumed to indicate a heightened
similarity, and when they are close to 0, a low similarity [37]. thr is a threshold value
usually set at 0.8 or 0.9.
The coverage criterion identifies whether there are holes in the resource space by
generating undefined input states. This criterion can be solved by applying Gaussian
functions, which have unlimited support. In this case, eFNN-SODA guarantees this
criterion using this type of function throughout the model’s training [37].
Finally, the ε-completeness criterion in the eFNN-SODA is defined by [37]:(

∀~x ∃i (zi = T
j=1,...,rl

(µij) > ε)

)
⇒
(
∀~x ∃i (∀j µij > ε)

)
(52)

where µij is the membership degree of a fuzzy set Aj appearing in the jth antecedent
part of the ith rule, rl is the rule length, and ε = 0.135 according to definitions made in
other research, which is considered an evaluation standard for this criterion [37].

• Antecedent Interpretation: The evaluation of rule antecedents is also a fundamental
part of interpreting and validating the results. In the case of eFNN-SODA, this
evaluation is performed with the behavior of the evolution of the weights and the
evaluation of the similarity of the Gaussian neurons formed in the first layer.

• Consequent Interpretation: The evaluation of rule consequents in eFNN-SODA is
performed by graphically evaluating changes in the class to which the rule is connected.
This is because the values of ~v can change as the model evaluates new samples, and
the consequent of the respective rule can be changed.

• Feature Importance Level: The evaluation of the features of the problem is also a
fundamental part of understanding the model’s behavior. Graphical analyses of the
variations generated by the weights in Equation (34) are obtained, allowing us to
identify the behavior of the features throughout the experiment.

• Knowledge Expansion: The expansion of knowledge takes place by evaluating the
evolution of fuzzy rules throughout the experiment. The SODA approach acts on
the evolution and reduction in irrelevant rules. The eFNN-SODA model can also
appreciate this behavior throughout the experiment.

4. Auction Fraud Testing

The following sections presents the details and procedures of the tests that were
performed, as well as the models and data set. All tests were performed on a computer
with the following settings: Intel (R) Core (TM) i7-6700 CPU 3.40 GHz with 16 GB RAM. In
the execution and elaboration of the models present in the tests of this paper, Matlab was
used, and for data analysis, the Orange Data Mining tool was used (developed in phyton
(https://orangedatamining.com/ (accessed on 17 August 2022))).

4.1. Data Set Features

As mentioned previously, this study aims to analyze Shill Bidding fraud. The analyzed
dataset was collected by [4] and published in the Machine Learning Repository—UCI (arch
ive.ics.uci.edu/ml/datasets/Shill+Bidding+Dataset (accessed on 17 August 2022)). The
data correspond to fraudulent bids on one of the largest auction sites on the Internet, eBay.

https://orangedatamining.com/
archive.ics.uci.edu/ml/datasets/Shill+Bidding+Dataset
archive.ics.uci.edu/ml/datasets/Shill+Bidding+Dataset
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The collected database [4], features completed iPhone 7 auctions for three months
(March to June 2017). The original dataset contains 12 input features. However, for the
studies described in this paper, the dimensions related to personal IDs (Record ID, Auction
ID, and Bidder ID) were removed since they are ID values and, therefore, irrelevant to
the experiments. The remaining nine dimensions are Bidder Tendency, Bidding Ratio,
Successive Outbidding, Last Bidding, Auction Bids, Auction Starting Price, Early Bidding,
Winning Ratio, Auction Duration, and Class (1 to normal and −1 to fraud). Figure 5
presents statistical values and the data distribution by class involved in the problem.

Figure 5. Statistical values and the data distribution—Auction Fraud data set.

As shown in Figure 5, the dataset used in this experiment is imbalanced, making the
classification task challenging.

Figure 6 presents a representation of the data using the FreeViz technique [57]. In it,
points in the same class attract each other, while those from different classes repel each
other, and the resulting forces are exerted on the anchors of the attributes, that is, on unit
vectors of each dimensional axis. With this technique, it is possible to identify projections
of unit vectors that are very short compared with the others. This indicates that their
associated attribute is not very informative for a particular classification task.
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Figure 6. FreeViz projection—Auction Fraud data set.

Based on Figure 6, the most representative dimensions for fraud classification in
auctions are successive outbidding, bidding, and winning ratios. In Figure 7, a data
visualization according to the Radviz technique [58] is presented to demonstrate a nonlinear
multidimensional visualization that can display data defined by three or more variables in
a two-dimensional projection. Visualized variables are presented as anchor points evenly
spaced around the perimeter of a unit circle. Data instances close to a variable anchor set
have higher values for those variables than for others.

Figure 7. Radviz projection—Auction Fraud data set.
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4.2. Models and Hyperparameters

The models used in the experiment are evolving fuzzy systems considered state-of-the-
art in classifying binary patterns. They have different architectures and training methods.
The parameters of each of these models were defined through pre-tests that used 10-folds
in a group of parameters that make up each approach. The models used in the experiment
are listed below:

EFDDC—Evolving fuzzy data density cluster. The evolving model uses data-density-
based clustering based on empirical data analysis operators and nullneuron. The model’s
training is based on the Extreme Learning Machine and Bolasso technique to select the best
neurons. The model parameters are ρ = 0.01, bootstraps bt = 16, and consensus threshold
λ = 0.7 (the best parameters are defined between: ρ = {0.01, 0.02, 0.03, 0.04}, bt = {4, 8, 16, 32},
and λ = {0.5, 0.6, 0.7}) [59].

EFNHN—Evolving fuzzy neural hydrocarbon network. The model combines an evolv-
ing fuzzification technique based on data density (Autonomous Data Partitioning), training
based on Extreme Learning Machine, and unineurons. The defuzzification process is based
on an Artificial Hydrocarbon network. The model parameter is the Learning rate = 0.1 (the
best parameter is defined between: Learning rate = {0.01, 0.05, 0.1, 0.2}) [60].

EFNNS—Evolving fuzzy neural network and Self-Organized direction aware. The
evolving fuzzy neural network model uses the Self-Organized direction aware for fuzzification,
unineurons, Extreme Learning Machine, and pruning technique. The only parameter used in
the model is the ϑ =3 (the best parameter is defined between: Learning rate = {2, 3, 4, 5}) [61].

ALMMo-0*—Autonomous zero-order multiple learning with pre-processing. The
model is a neuro-fuzzy approach to autonomous zero-order multiple learning with pre-
processing that improves the classifier’s accuracy, as it creates stable models. The pa-
rameter is radius =

√
2− 2 cos (30◦) (the best parameter is defined between: radius =

{
√

2− 2 cos (15◦),
√

2− 2 cos (30◦),
√

2− 2 cos (45◦),
√

2− 2 cos (60◦)}) [62].
ALMMo—Autonomous zero-order multiple learning. A neuro-fuzzy approach for

autonomous zero-order multiple models without pre-processing. The parameter is ra-
dius =

√
2− 2 cos (30◦) (the best parameter defined between: radius = {

√
2− 2 cos (15◦),√

2− 2 cos (30◦),
√

2− 2 cos (45◦),
√

2− 2 cos (60◦)}) [63].
eGNN—Evolving Granular Neural Network. A model that uses concepts of hy-

berboxes and nullnorm. The parameters are Rho = 0.85, eta = 2, hr = 40, Beta = 0,
chi = 0.1, zeta = 0.9, c = 0, counter = 1, and alpha = 0 (for this model, the reference val-
ues proposed by the author of the model were used. More information can be seen at
https://sites.google.com/view/dleite-evolving-ai/algorithms (accessed on 18 August
2022)) [64].

4.3. Evaluation Criteria of Experiments

Evolving fuzzy systems approaches can act in the evaluation of stream data, where
each sample is considered separately, and the accuracy of the result is evaluated individually
and incrementally added to the final result. In this case, the evaluation of accuracy in trend
lines is suitable for this type of context as it allows the evolution of the model results to be
seen as new samples are evaluated.

These trend lines were calculated using the following criteria: [65]:

Accuracy(K + 1) =
Accuracy(K) ∗ K + Iŷ=y

K + 1
, (53)

where accuracy:

Accuracy =
TP + TN

TP + FN + TN + FP
∗ 100. (54)

where TP = true positive, TN = true negative, FN = false negative, and FP = false positive.

https://sites.google.com/view/dleite-evolving-ai/algorithms
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4.4. Results

The results of the evaluation of the trend lines are presented in Figure 8. This evaluation
was carried out with 20% of the total samples (1264) for initial training and the rest (5057)
for online adaptation, evolution, and evaluation of the model. For the experiments, the
models listed above were compared with the results obtained by eFNN-SODA with ϑ = 2
(the values were defined through a cross-validation procedure for ϑ = {2, 3, 4, 5}).

Figure 8. Trend lines for the Auction Fraud dataset.

The results presented in Figure 8 corroborate the efficiency of the approach in correctly
classifying the situations involved in the data set that deal with fraud in auctions. The model
proposed in this paper could dynamically and more assertively resolve cases of attack or
nonexistence in evaluating the samples. Next to the results obtained by eFNN-SODA are
the results generated by Autonomous zero-order multiple learning with pre-processing
and Autonomous zero-order multiple learning. Numerically, they are similar, with a
slight advantage for eFNN-SODA. A little less effective, but with good results, is the
evolving fuzzy neural network with Self-Organizing Direction-Aware Data Partitioning
model. The other models did not perform as effectively as the eFNN-SODA models and
the Autonomous zero-order multiple learning variations.

The eFNN-SODA model solved the problem of fraud in auctions with three rules. In
this case, the Self-Organizing Direction-Aware Data Partitioning fuzzification approach did
not generate new neurons, as it was only necessary to change centers in the rule antecedents
to solve the problem. The three fuzzy rules are presented in the following:

Rule 1. If Bidder Tendency is small with impact 0.41 or Bidding Ratio is small with
impact 0.59 or Successive Outbidding is small with impact 1.00 or Last Bidding is medium
with impact 0.39 or Auction Bids is small with impact 0.38 or Auction Starting Price is
medium with impact 0.38 or Early Bidding is medium with impact 0.38 or Winning Ratio is
small with impact 0.53 or Auction Duration is small with impact 0.38 then output is normal.

Rule 2. If Bidder Tendency is medium with impact 0.41 or Bidding Ratio is medium
with impact 0.59 or Successive Outbidding is medium with impact 1.00 or Last Bidding is
high with impact 0.39 or Auction Bids is high with impact 0.38 or Auction Starting Price
is high with impact 0.38 or Early Bidding is high with impact 0.38 or Winning Ratio is
medium with impact 0.53 or Auction Duration is medium with impact 0.38 then output
is fraud.
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Rule 3. If Bidder Tendency is high with impact 0.41 or Bidding Ratio is high with
impact 0.59 or Successive Outbidding is high with impact 1.00 or Last Bidding is small with
impact 0.39 or Auction Bids is medium with impact 0.38 or Auction Starting Price is small
with impact 0.38 or Early Bidding is small with impact 0.38 or Winning Ratio is high with
impact 0.53 or Auction Duration is high with impact 0.38 then output is normal.

These rules are seen as the extraction of knowledge from the evaluated data set and
can serve as a conceptual analysis of the events involved in identifying or not identifying
fraud in auctions. The interpretability criteria help understand and validate the generated
knowledge to confirm the efficiency of the generated fuzzy rules.

The first evaluation seeks to verify whether the eFNN-SODA model was the sim-
plest in solving auction fraud problems. This factor is confirmed because, according to
Equation (46), the eFNN-SODA model had the lowest number of fuzzy rules and the high-
est accuracy result compared with the other models used in the experiments. eFNN-SODA
assertively solved the target problem with only three fuzzy rules. As a comparison, the
different models tested in the experiments generated between 10 and 28 fuzzy rules.

The distinguishability criteria (based on Equation (50)) of the formed solution are
presented in Figure 9. In this figure, the evolution of the first layer of Gaussian neurons
can be observed, and it is identified that the neuron was the one that suffered the most
changes during the experiments. It is responsible for representing when there is no fraud
in the auction (the largest class of the data set). Therefore, it is expected that with a
more significant number of samples in this context, the changes in clouds will be more
remarkable, consequently generating a greater impact on the comparative similarity with
their previous version (before the evolution training). In this evaluation, it is possible to
identify that the fuzzy rules (presented below) are distinguishable from each other, as they
have different antecedents and consequents.

Figure 9. Similarity of Gaussian neurons.

Regarding the overlapping criteria of the generated Gaussians, it can be seen in
Figure 10 (generated at the beginning of the training) that the centers of the generated fuzzy
neurons are not superimposed. This confirms that there are differences between them. This
criterion is also guaranteed by steps 5 and 6 of the Self-Organizing Direction-Aware Data
Partitioning fuzzification approach. This figure presents the evaluation concerning the
successive outbidding and bidding ratio dimensions (more relevant in the model analysis
shown below).
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Figure 10. Evaluation of overlapping of the three generated fuzzy neurons during the fuzzification
process: successive outbidding versus bidding ratio.

The consistency of the generated fuzzy rules (Equation (51)) is visualized in Figure 11.
In this figure, it is possible to see that the consistency relation of the fuzzy rules is vio-
lated only in a few evaluations in each of the three fuzzy rules generated. At the end of
the experiment, all rules are consistent, concluding that model training corrected these
inconsistencies when they appeared.

Figure 11. Consistency of fuzzy neurons.

Concerning the criterion of completeness of the fuzzy rules, an evaluation based on
ε− completeness was applied during training, according to Equation (52). The results
visualized in Figure 12 confirm that the generated fuzzy ruleset meets this validation
criterion throughout the experiment.
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Figure 12. ε− completeness criteria during the training.

Changes in antecedents and consequents of fuzzy rules can also be observed and
visualized in eFNN-SODA. Table 1 presents feedback from the model in the last sample
evaluation that generated impacts on the first and third fuzzy rules.

Table 1. Interpretability concerning (degree of) changes in fuzzy neurons during the evolution phase.

Rule 1 changed with two membership functions, and this impacts changes in the consequent rule by a degree of 45%.

Rule 2 did not change.

Rule 3 changed with two membership functions, and this impacts changes in the consequent rule by a degree of 0.0003%.

The evaluation of the evolving behavior of the problem features is also a relevant part
of the interpretability of the results. This variation can be seen in Figure 13 and identifies
how each weight generated according to the separability criterion (Equation (34)) was
significant during the fraud classification process. The most relevant dimensions were suc-
cessive outbidding, bidding ratio, and winning ratio (which makes sense when compared
with the analysis in Figure 6). Figures 14 and 15 present a graphical evaluation based on a
scatter plot of the two dimensions that best contribute to the class separability criterion.

Finally, the expansion of knowledge given by eFNN-SODA demonstrates a different
way of interpreting the problem through fuzzy rules connected with the relevance of the
problem’s features. The Fuzzy Hoeffding Decision Tree model [66] also generated an
interpretative approach, which presents a decision tree according to fuzzy techniques in
constructing its leaves. The Expliclas [67] online solution (https://demos.citius.usc.es/Ex
pliClas/datasets (accessed on 12 August 2022)) facilitates the acquisition of knowledge to
be compared with the extraction of knowledge obtained in this paper. The decision tree
formed by the Fuzzy Hoeffding Decision Tree is shown in Figure 16.

https://demos.citius.usc.es/ExpliClas/datasets
https://demos.citius.usc.es/ExpliClas/datasets
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Figure 13. Feature separability criteria throughout the evaluations of the eFNN-SODA model.

Figure 14. Scatter plot of successive outbidding feature.
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Figure 15. Scatter plot of bidding ratio feature.

Figure 16. Fuzzy Hoeffding Decision Tree interpretability.

5. Discussions

Discussions about the results obtained by the model are carried out based on the
interpretability criteria to be evaluated in eFNN-SODA. This is required to ensure that the
information extraction stated below is trustworthy and coherent, in addition to verifying
the accuracy findings.

The results obtained by the model present factors that can be interpreted through fuzzy
rules that solve the target problem. The fuzzy rules were validated concerning the criteria of
simplicity (fewer rules with greater accuracy), distinguishability (not similar), consistency,
with coverage in all samples evaluated, and that meet the criteria of completeness. Through
these generated fuzzy rules, it is possible to identify and analyze their antecedents and
consequents and the relationship between them, and finally, it is possible to identify the
evolution of the model through the creation of new fuzzy rules.
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An interpretive evaluation of fuzzy rules leads us to identify that all dimensions of the
problem (except successive outbidding) have similar final relevance values for separating
fraudulent behavior from normal behavior. This indicates that there is not such a clear
separability between the two groups of samples in these dimensions. The evolving behavior
of the weights (Figure 13) also demonstrates stability in the order of relevance of the features
of the problem. They did not change their position of relevance throughout the experiment.
The second highest weight value for the feature weight technique is the Bidding Ratio
of 0.59. This demonstrates that, except for the Successive Outbidding dimension, all the
others involved in the problem have poorly separable samples according to the Dy–Brodley
separability criteria.

The comparison of interpretability extracted by the eFNN-SODA model and the Fuzzy
Hoeffding Decision Tree model (Figure 16) has some similarities and distinctions. The tree
model is easier for visualizing the relationships, but the fuzzy rule model is closer to human
reasoning. Regarding their similarities to the root of the tree shown in Figure 16 that has
the Successive Outbidding as its central dimension, other nodes arise for the following
evaluations. This corroborates that this is the first value to be analyzed in the tree, thus
being the most relevant dimension. The generated fuzzy rules also identify this factor, as
Successive Outbidding significantly impacts rule antecedents.

The three most relevant dimensions to the problem were determined based on the
fuzzy rules generated. With them, it is possible to elaborate future studies and techno-
logical tools that can avoid Successive Outbidding, Bidding Ratio, and Winning Ratio
considered fraudulent. Successive Outbidding Technologies to avoid subsequent bids can
be implemented in digital solutions that provide auction services. For example, if the fuzzy
neural network identifies a user at high risk of fraud, they cannot place successive bids
for a certain period. In the same way, when possible fraud in the bids is identified, they
may undergo an audit (human or through some expert system) or be the subject of extra
validation, such as the confirmation of some data or limitation on the number of bids that
they can give for a product until their veracity is proven. Finally, different mechanisms can
be provided for Winning Ratio fraud if the fuzzy neural network identifies that that winner
has a fraudulent profile.

6. Conclusions

This work presented an evaluation through evolving fuzzy neural network models
to address auction fraud problems. The eFNN-SODA model proposed in this paper
achieved more than 98% in correctly classifying fraudulent situations or not within a
highly unbalanced data set. eFNN-SODA can be considered the most straightforward
approach compared with the other models evaluated in the experiment, as it performed
the fraud classification tasks with fewer fuzzy rules and greater assertiveness. The model
also presented distinguishable fuzzy rules because their antecedents and consequents
are dissimilar.

Another factor verified in the experiments is that the inconsistencies of the fuzzy rules
during the experiment were minimal and promptly corrected by training eFNN-SODA.
Regarding the coverage criterion, as they are Gaussian neurons formed in the fuzzification
process, eFNN-SODA also meets the requirement. Finally, the model meets the criterion of
completeness throughout the experiment. Therefore, it can be concluded that the model’s
fuzzy rules presented at the end of the training meet the criteria of consistency, coverage,
and completeness.

The evaluation of problem features helped the classifier to correctly identify the classes
by assigning to each fuzzy rule antecedent a weight corresponding to its relevance in
correctly identifying the problem classes. Factors such as the expansion of knowledge
through a new approach, the visualization of the interpretability of the problem, and
the analysis of antecedents and consequents were also presented in this article. They
corroborate the statement that the fuzzy rules generated by the eFNN-SODA model are
efficient and interpretable in solving fraud identification problems in an auction.
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The model proposed in this paper can generate technological products that evolve
their knowledge as the behavior of fraud changes. This can happen by creating auxiliary
expert systems to validate or investigate certain behaviors in the auctions. Fuzzy rules can
be shown to system administrators and users, allowing corrective or analysis actions. With
this type of system, both parties have clear and understandable logical relationships. Finally,
creating an expert system to assist in data validation after the auction is also possible.

Possible future work can be conducted to develop new training techniques for model
evolution and to use other neural structures to improve model accuracy. Another interesting
topic to address is to evaluate or propose new methods for verifying the interpretability of
models evolving neuro-fuzzy networks. The validation of the generated fuzzy rules can
also be a potential focus of future research. Other (less unbalanced) data sets and auction
fraud assessments are also encouraged to verify the model’s adaptability in solving the
problems of this behavior.
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