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Abstract: A self-organizing joint system classical oscillator–random environment is considered within
the framework of a complex probabilistic process that satisfies a Langevin-type stochastic differential
equation. Various types of randomness generated by the environment are considered. In the limit
of statistical equilibrium (SEq), second-order partial differential equations (PDE) are derived that
describe the distribution of classical environmental fields. The mathematical expectation of the
oscillator trajectory is constructed in the form of a functional-integral representation, which, in the
SEq limit, is compactified into a two-dimensional integral representation with an integrand: the
solution of the second-order complex PDE. It is proved that the complex PDE in the general case
is reduced to two independent PDEs of the second order with spatially deviating arguments. The
geometric and topological features of the two-dimensional subspace on which these equations arise
are studied in detail. An algorithm for parallel modeling of the problem has been developed.

Keywords: general theory of random and stochastic dynamical systems; partial differential equations;
measure and integration; noncommutative differential geometry; parallel computing
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1. Introduction

From ancient sources, we know that Pythagoras (l. c. 571–497 BC) and the students of
his school considered complex numerical and geometric constructions, as well as compli-
cated natural phenomena. Nonetheless, the metaphorization of the word “system” seems
to have been first proposed by Democritus (born c. 460 BCE—died c. 370), which meant the
formation of complex bodies from atoms, similar to the formation of words from syllables
and syllables from letters. In addition, in ancient Greek philosophy, the ”system” charac-
terized the orderliness and integrity of natural objects. Sometime later, Plato (427–347 BC)
formulated the thesis that the whole is greater than the sum of its parts. Aristotle (384–322 BC),
being in a polemic with Plato, formulated the opposite thesis, saying that the whole can
be decomposed and studied separately, and then put back together again without losing
anything (see for example [1,2]). In those distant times, the Aristotelian concept became
more popular due to its simplicity, and for the next almost 2500 years, all research on
the problems of natural science was carried out within the framework of this particular
concept. Despite its idealized nature, this concept remained the main method of cognition
in science for a long time, stimulated its development and contributed to the creation of a
huge number of new technologies. Nevertheless, the triumph of Aristotle’s concept at the
beginning of the 20th century was the creation of a logically perfect theory—the classical
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mechanics of closed systems, which after a short time experienced a deep crisis, which led
to the development of a more general physical representation of quantum mechanics.

In the 20th century, Einstein and Smoluchowski developed the theory of Brownian
particle motion [3,4], which stimulated the emergence of a new approach in the study
of nature—the theory of classical and quantum open systems [5]. Recall that an open
physical system, interacting with the environment, unlike an isolated system, exchanges
mass, energy, information, etc. with it. At present, the science of open systems is inten-
sively developing both theoretically and experimentally, especially in the fields of modern
quantum physics, chemical physics, etc. [6–8]. Note that the open systems approach is
not equivalent to Plato’s concept, but it is closer to it in spirit. Nevertheless, as shown
by numerous studies, this approach also has serious difficulties that do not allow one to
describe a number of important phenomena in nonequilibrium thermodynamics, many-
particle quantum systems, etc. Recall that the main drawback of all representations of open
systems is that when describing various physical processes, a certain part of information
is inevitably lost, especially when it comes to physical systems under extreme conditions.
This is due to ignoring the influence of the system on the medium, which excludes the
possibility of formation of a small environment (SE) self-consistent with it, which, most likely,
can be considered as its integral part or continuation [9].

The purpose of this study is to combine two opposite concepts of nature cognition,
namely, to supplement an open system with its environment and to describe the joint system
JS as a closed system. Note that just such a statement of the problem would be equivalent
to Plato’s concept!

In this paper, we demonstrate the implementation of this idea on the example of the
well-known problem of a classical oscillator immersed in a random environment and under
the action of an external force. Recall that this problem has been studied in sufficient
detail within the framework of various models of Brownian motion [10], and its results are
widely used in solving a number of important applied problems (see [11]). In particular,
a Brownian particle moving in a viscous medium exchanges energy and momentum with
the environment, which affects the motion of the particle itself. In other words, such
mutual influence leads to the appearance of memory in the Brownian particle, i.e., its
behavior becomes dependent on the entire previous history of the process. However, we
know that a Markov model, by definition, cannot describe random processes with memory,
and therefore, taking into account the entrainment of particles of the medium imparts a
non-Markov character to the Brownian motion. To overcome the difficulties of describing
non-Markovian Brownian motion, it is necessary to reformulate the standard statement
of the problem, making significant changes to the mathematical apparatus. In connection
with this, a number of authors have proposed the so-called generalized Langevin equation,
in which instead of a resistance force proportional to velocity, an integral operator of the
convolution type is used [12]. Note that despite the adaptation of the theory of Brownian
motion to emerging new scientific and technical problems, this is the theory of open
systems and has all the above limitations and disadvantages. In other words, the standard
theories of Brownian motion are unsuitable for describing the properties of systems far
from equilibrium or in critical states.

Thus, the solution to the problem lies in the development of a fundamentally new math-
ematical representation, which makes it possible to study the process of self-organization
of the entire system, consisting of finite and infinite subsystems, as a closed system.
The article is organized as follows:

In Section 2, we present a statement of the problem and derive complex stochastic
differential equations describing the movement of fields of a random environment for three
different cases:

• The oscillator frequency is random and there is no external field;
• The oscillator frequency is random and the external field is a regular function;
• The frequency of the oscillator is a regular function and the external force is random.
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Note that for all three cases, we have obtained the distribution equations for the fields
of the environment using the systems of the corresponding stochastic differential equations.

In Section 3, we represent in detail a method for constructing a function space measure.
Formulas are derived for the mathematical expectation of the oscillator trajectory in the form
of a double integral representation for the three cases indicated above, where the integrand
is a solution of the corresponding complex second-order partial differential equation PDE.

In Section 4, we obtain a 4th order algebraic equation with coefficients depending
on two variables and time, which generates a two-dimensional compactified subspace on
which second-order complex PDEs are defined. The geometric and topological features of a
two-dimensional manifold are studied in detail. We prove that the formation of topological
manifolds with the first Betti [13] number is less than or equal to 4, depending on the
interaction constants of the oscillator with the environment.

In Section 5, we present a complex second-order PDE as a system of two coupled
real PDEs and formulate the Neumann initial-boundary value problem for this system.
We analyze in detail the PDEs system for the case of symmetry or asymmetry as well as
the absence of any symmetry of the desired solutions. Using the symmetry properties
of the problem, we proved that in the case of symmetry or antisymmetry of solutions,
the system of equations reduces to two independent PDEs. Finally, we have shown that
when the solutions do not have a certain symmetry, the PDEs system again reduces to two
independent PDEs but with deviant arguments.

In Section 6, we construct the time-dependent Shannon entropy for a classical oscillator
as an open system affected by the environment. In the same section, we constructed the
generalized Shannon entropy for a closed self-organizing system oscillator and random
environment. In Section 7, we develop algorithms for numerical simulation of the PDE
system as well as analyze, interpret, and visualize the results of various numerical experi-
ments. In Section 8, we discuss the obtained theoretical and numerical results and outline
directions for future research.

2. Problem
2.1. Statement of the Problem

The classical action of a one-dimensional oscillator immersed in a random environment
can be represented as (see [14]):

S[x, ti, t f ) =
∫ t f

ti

L
(
ẋ(t), x(t), t

)
dt, (1)

where ti and t f are the moments of time when the interaction of the oscillator with the
environment turns on and off, respectively; in addition, L

(
ẋ(t), x(t), t

)
is the Lagrangian

describing the oscillator with a random environment:

L
(

ẋ(t), x(t), t
)
=

1
2

ẋ2 − 1
2

Ω2(t; {f})x2 + F
(
t; {g}

)
x. (2)

Recall that {f} and {g} are complex probabilistic processes (stochastic sources or
generators), whose properties will be refined below. Obviously, the presence of stochastic
generators in the Lagrangian makes the action also stochastic. Despite this, one can still
require the fulfillment of the minimization condition:

δS[x, ti, t f ) = δ
∫ t f

ti

L
(
ẋ(t), x(t), t

)
dt = 0. (3)

Performing the standard procedure for varying the expression (3), taking into account
the conditions δx(ti) = 0 and δx(t f ) = 0 (see [15]), we obtain the following second-order
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differential equation describing the motion of a test particle, i.e., classical oscillator in a
random environment (thermostat):

ẍ + Ω2(t; {f})x = F
(
t; {g}

)
, x, t ∈ (−∞,+∞), (4)

where ẋ = dx/dt.
It is important to note that the randomness of the action S[x, ti, t f ) and, accordingly,

the Lagrangian L
(

ẋ(t), x(t), t
)

does not affect the variation procedure, as a result of which a
stochastic Equation (4) is found. However, as we well know, the second-order Equation (4)
is still undefined, since the stochastic equation must be first order.

For definiteness, we will assume that random generators satisfy the white noise correla-
tion relations:

E
[

f (υ)(t)
]
= 0, E

[
f (υ)(t) f (υ)(t′)

]
= 2ε

(υ)
f δ(t− t′),

E
[
g(υ)(t)

]
= 0, E

[
g(υ)(t)g(υ)(t′)

]
= 2ε

(υ)
g δ(t− t′), υ = (i, r), (5)

where E
[
...
]

denotes the expectation of the random variable, the set of random generators
{ f (r), g(r)} and { f (i), g(i)}; then, they characterize, respectively, elastic and inelastic col-
lisions of the oscillator with a random environment, while {ε(r)f , ε

(r)
g } and {ε(i)f , ε

(i)
g } are

sets of constants that describe the powers of these processes.
We consider two different cases:

1. When randomness in a JS generates a complex process {f} 6= 0, and the second source
of the random process is absent {g} ≡ 0, and, accordingly,

2. when {f} ≡ 0 and randomness in a JS generates the generator {g} 6= 0, which has a
complex character.

In the case when the external force is an arbitrary regular function of time, i.e., F0(t) =
F(t; {g})

∣∣
{g}≡ 0, the solution of Equation (4) can be formally represented as (see [16]):

x(t) =
1√

2Ω−0

[
ξ(t)d∗(t) + ξ∗(t)d(t)

]
, d(t) =

i√
2Ω−0

∫ t

−∞
ξ(t′)F0(t′)dt′, (6)

where the symbol “∗” denotes the complex conjugation of a function, ξ(t) is the solution of
the homogeneous Equation (4), i.e., when F

(
t; {g}

)
≡ 0, in addition, the following notations

are made; Ω−0 = lim t→−∞ Ω
(
t, {f}

)
= const− and Ω+

0 = lim t→+∞ Ω
(
t, {f}

)
= const+.

Note that in the general case, the asymptotic states (in) at t → −∞ and (out) at
t → +∞ can be different and, accordingly, const− 6= const+. Below, for definiteness, we
will use the model of the regular frequency Ω0(t), which has the following form:

Ω0(t) = 2 +
1
γ

[
1 + tanh(νt)

]
, (7)

where γ, ν > 0 are some constants.

2.2. Derivation of Environmental Fields Distribution Equations

Theorem 1. If we assume that Equation (4) for the case F(t; {g}) ≡ 0 reduces to a complex
Langevin SDE, and the complex force {f} is a Gauss–Markovian random process (5), then the
conditional probability distribution of the environmental fields in the limit of statistical equilibrium
will obey the Fokker–Planck-type equation.

Proof. We can represent the solution of the classical oscillator Equation (4) as:

ξ(t) =

{
ξ0(t), t ≤ t0,

ξ0(t0) exp
{∫ t

t0
φ(t′) dt′

}
, t > t0,

(8)
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where ξ0(t) is the solution of the classical oscillatory Equation (4) in the case when the fre-
quency is a regular function of time Ω0(t) = Ω(t; {f})

∣∣
{f}≡ 0 and the external regular force

is identically equal to zero F0(t) ≡ 0; in addition, t0 = 0 denotes the time of switching on a
random environment. As for the function φ(t), it denotes a complex probabilistic process.

Substituting (8) into (4), taking into account the regular equation:

ξ̈0 + Ω2
0(t)ξ0 = 0, (9)

we obtain the following non-linear stochastic differential equation (SDE) of Langevin type:

φ̇ + φ2 + Ω2
0(t) + f (t) = 0, φ̇ = dφ/dt, (10)

where Ω2(t; {f}) = Ω2
0(t) + f (t).

For further study of the problem, it is convenient to represent the complex probabilistic
process φ(t) as a sum of fields:

φ(t) = u1(t) + iu2(t). (11)

Using Equation (10) and representation (11), we can write the following system of
non-linear SDEs [9]: {

u̇1 = (u2)
2 − (u1)

2 −Ω2
0(t)− f (r)(t),

u̇2 = −2u1u2 − f (i)(t),
(12)

where f (t) = f (r)(t) + i f (i)(t).
Note that the environment fields satisfy the following initial conditions:

u̇1(t0) = Re
{

ξ̇0(t0)/ξ0(t0)
}
= 0, u̇2(t0) = Im

{
ξ̇0(t0)/ξ0(t0)

}
= Ω−.

Let us consider the following functional describing the distribution of the conditional
probability of fields:

P(u, t|u′, t′) =
〈
δ[u(t)− u(t′)]

〉
, u = (u1, u2). (13)

Differentiating expression (13) with respect to the time “t”, taking into account Equa-
tion (10), we obtain:

∂tP(u, t|u′, t′) = −∂u
〈
utδ[u(t)− u(t′)]

〉
=

∂u
{

K(u, t)P(u, t|u′, t′) +
〈
{ f}δ[u(t)− u(t′)]

〉}
, (14)

where ut = ∂tu and u′ ≡ u(t′), in addition:

K(u, t) =

{
k1(u1, u2, t) = (u1)

2 − (u2)
2 + Ω2

0(t),
k2(u1, u2, t) = 2u1u2.

(15)

Taking into account that the vector probabilistic process {f} satisfies the correlation
relations (5), we can calculate the second term in expression (14). Using Wick’s theorem for
an arbitrary functional N

(
u, t; { f})|u′, t′

)
of the argument { f} (see [17]), we can obtain:

〈
{ f}N

(
u, t; { f})|u′, t′

)〉
= 2

〈
δN
(
t; { f}

)
δ f (i)(t)

〉
+ 2

〈
δN
(
t; { f}

)
δ f (r)(t)

〉
= 2∂u1

〈
δu1(t)

δ f (r)(t)
δ[u(t)− u(t′)]

〉
+ 2∂u2

〈
δu2(t)
δ f (i)(t)

δ[u(t)− u(t′)]
〉

. (16)
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Since u1(t) and u2(t) are stochastic functions, the variational derivatives with respect
to the independent random forces f (r)(t) and f (i)(t) can be defined as follows:〈

δu1(t)
δ f (r)(t)

〉
= ε

(r)
f sgn(t− t′) +O(t− t′),

〈
δu2(t)
δ f (i)(t)

〉
= ε

(i)
f sgn(t− t′) +O(t− t′). (17)

After carrying out the regularization procedure in the sense of the Fourier expansion,
we find its value at the time t = t′: ε

(υ)
f sgn(0) = 1

2 ε
(υ)
f . Considering the equalities in (17)

for the conditional probability, we obtain the following Fokker–Planck equation:

∂tP = L̂(u, t)P, ∂t ≡ ∂/∂t, u = u(u1, u2). (18)

In Equation (18), the evolution operator L̂(u, t) has the form:

L̂ = ε
(r)
f

∂ 2

∂u2
1
+ ε

(i)
f

∂ 2

∂u2
2
+ k1(u1, u2, t)

∂

∂u1
+ k2(u1, u2, t)

∂

∂u2
+ k0(u1, u2, t), (19)

where k0 = 4u1. In addition, in Equations (18) and (19), the variables u1 and u2 denote the
coordinates of the distribution of the environmental fields in the state of quasi-equilibrium.

In the case when t′ = t0, the conditional probability P(u, t) ≡ P(u, t|u0, t0) describes
the distribution of classical fields without taking into account the influence of the oscillator
on the environment. An important condition for the exact formulation of the problem is the
definition of the type of two-dimensional space, on which, let me remind you, the equation
for the distribution of environmental fields is set. The latter, in particular, implies writing
the conditional probability Equations (18) and (19) in tensor form.

For simplicity, below, we assume that the Fokker–Planck Equations (18) and (19) are
defined on a two-dimensional Euclidean space and solve this equation as Neumann’s
initial-boundary value problem [9]. The numerical study of the free fields of the environ-
ment P(u1, u2, t) is carried out using the mathematical algorithm-difference Equation (87)
developed in Listing 1 (Section 7). To illustrate the calculations, graphs of the distribution
of fields for various media depending on time are plotted (see Figures 1–3 of Section 7.1).

Now, consider the case when the frequency of the oscillator is regular Ω0(t), while the
external force, on the contrary, is random and can be represented as the sum:

F
(
t; {g}

)
= F(r)(t; {g})+ iF(i)(t; {g}) 6= 0, (20)

where F(r)(t; g(υ)(t)
)
= F0(t) +

√
ε
(r)
g ḡ(t) and F(i)(t; g(υ)(t)

)
=
√

ε
(i)
g ḡ(t); in addition, ḡ(t)

is a real Gauss–Markov random process, which will be clearly defined below. In partic-
ular, using the definition (20) and given that the frequency is regular, we can write the
Equation (4) as follows:

ẍ + Ω2
0(t)x = F0(t) +

[√
ε(r) + i

√
ε(i)
]
ḡ(t). (21)

Theorem 2. If the oscillator trajectory obeys Equation (21), and the random function ḡ(t) satisfies
the Gauss–Markov random process (5), then the distribution of fields of the environment in the
limit of statistical equilibrium will be described by PDE of the second order, which, in the (out)
asymptotic state or in the limit t→ +∞, transforms into the PDE of the Fokker–Planck type.

Proof. Let us represent the solution of the Equation (21) in the form:

x1(t) =

{
x0(t), t ≤ t0,

x0(t0) exp
{∫ t

t0
θ(t′) dt′

}
, t > t0,

(22)
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where x0(t) is the solution of a classical oscillator with a regular non-stationary frequency
under the action of an external non-stationary force and satisfies the following second-order
differential equation:

ẍ0 + Ω2
0(t)x0 = F0(t). (23)

Substituting (22) into Equation (21) and assuming that θ(t) = w1(t) + iw2(t), we
obtain the following system of stochastic integro-differential equations:{

ẇ1 = (w2)
2 − (w1)

2 −Ω2
0(t) + F0(t)e−σ1(t) cos σ2(t) + ḡ(t)A+(t),

ẇ2 = −2w1w2 − F0(t)e−σ1(t) sin σ2(t) + ḡ(t)A−(t), (24)

where
A+(t) =

[√
ε
(r)
g cos σ2(t) +

√
ε
(i)
g sin σ2(t)

]
e−σ1(t),

A−(t) =
[√

ε
(i)
g cos σ2(t)−

√
ε
(r)
g sin σ2(t)

]
e−σ1(t).

As for the functions σ1(t) and σ2(t), they are singly differentiable, i.e., belong to class
L1 and are represented as:

σ1(t) =
∫ t

t0

w1(t′)dt′ + Re[ln x0(t0)], σ2(t) =
∫ t

t0

w2(t′)dt′ + Im[ln x0(t0)].

Assuming that the random function ḡ(t) satisfies the white noise correlation relations:

〈ḡ(t)〉 = 0, 〈ḡ(t)ḡ(t′)〉 = 2δ(t− t′),

we can use a system of stochastic differential Equations (66) and obtain the following
equation for the conditional probability of the environmental fields:

∂tP = L̂
(
w, t

)
P , w = w(w1, w2), (25)

where the evolution operator L̂ has the form:

L̂(w, t) = A−(t) ∂ 2

∂w2
1
+A+(t)

∂ 2

∂w2
2
+

h1(w1, w2, t)
∂

∂w1
+ h2(w1, w2, t)

∂

∂w2
+ h0(w1, w2, t), (26)

in addition:

h1(w1, w2, t) = (w1)
2 − (w2)

2 + Ω2
0(t)− F0(t)e−σ1(t) cos σ2(t),

h2(w1, w2, t) = 2w1w2 + F0(t)e−σ1(t) sin σ2(t), h0(w1, w2, t) = 4w1.

Obviously, if the medium is turned on in the time interval [ti, t f ], then after t ≥ t f ,
Equation (25) becomes the Fokker–Planck-type equation.

3. The Mathematical Expectation of the Trajectory
3.1. The Measure of the Functional Space

For further analytical constructions of the theory, it is necessary to determine the
distance between functions in the functional space R{ξ} or, more precisely, the measure
of the function space (see [18,19]). Let the conditional probability P(u, t|u′, t′) satisfy the
following limiting condition:

lim
t→ t′

P(u, t|u′, t′) = δ(u− u′), t = t′ + ∆t. (27)
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The latter means that for small intervals, i.e., for ∆t = t− t′ � 1, we can represent the
solution of Equations (18) and (19) as:

P(u, t|u′, t′) =
1

2π
√
|det ε|∆t

×

exp

{
−
[
u− u′ −K(u, t)∆t

]T
ε−1[u− u′ −K(u, t)∆t

]
2∆t

}
, (28)

where ε is the second-rank matrix with elements; ε11 = ε(r), ε22 = ε(i) and ε12 = ε21 = 0,
while [· · ·]T denotes a vector transposition.

Using (28), we can write an explicit expression for the distribution:

P(u1, u2, t|u′1, u′2, t′) =
1

2π
√

ε(r)ε(i)∆t
×

exp

{
−
[
u1 − u′1 − k1(u1, u2, t)∆t

]2
2ε(r)∆t

−
[
u2 − u′2 − k2(u1, u2, t)∆t

]2
2ε(i)∆t

}
, (29)

where the coefficients k1 and k2 are defined from expression (15).
In the case when there is no dissipation in the environment, i.e., ε(i) = 0, the distribu-

tion (29) takes the following form:

P(u1, u2, t|u′1, u′2, t′) =
1

2π
√

ε(r)∆t
×

exp

{
−
[
u1 − u′1 − k1(u1, u2, t)∆t

]2
2ε(r)∆t

}
δ
[
u2 − u′2 + k2(u1, u2, t)

]
. (30)

As can be seen from the expression (29), the evolution of the system in the functional
space R{ξ} is characterized by a regular shift with a speed K(u, t) against the background
of Gaussian fluctuations with the diffusion matrix εij. Concerning to the trajectory u(t) in
the space R{ξ}, it is determined by the following equations (see for example [20]):

u(t) =

{
u1(t + ∆t) = u1(t) + k1(u1, u2, t)∆t + f (r)(t)∆t1/2,

u2(t + ∆t) = u2(t) + k2(u1, u2, t)∆t + f (i)(t)∆t1/2.
(31)

As can be seen from (31), the trajectory is continuous everywhere, i.e., u(t+∆t)
∣∣
∆t→ 0 =

u(t), but it is nonetheless everywhere non-differentiable due to the presence of the term
∼ ∆t1/2. If the time interval is represented as ∆t = t/N, where N → ∞, then expres-
sion (29) can be interpreted as the probability of transition from the vector u l(t) to the
vector u l+1(t) during ∆t in the Brownian motion model.

Now, we can define the Fokker–Planck measure of the functional space:

Dµ(u) = dµ(u0) lim
N→∞

{(
1

2π

N/t√
ε(r)ε(i)

)N N

∏
l= 0

du1(l+1)du2(l+1) exp

[
− N/t

2ε(r)

(
u1(l+1) −

u1(l) − k1(l+1)
tl+1
N

)2

− N/t
2ε(i)

(
u2(l+1) − u2(l) − k2(l+1)

tl+1
N

)2
]}

, (32)

where dµ(u0) = δ(u1 − u1(0))δ(u2 − u2(0))du1du2 denotes the measure of the initial distri-
bution; in addition, the following notations are made:

u1(l) = u1(tl), u2(l) = u2(tl), k1(l) = k1(u1(l), u2(l), tl), k2(l) = k2(u1(l), u2(l), tl).
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Note that the measure Dµ(w), which describes the probability of a given trajectory
in the functional space R{x}, can be constructed in a similar way using the equation
distributions for classical fields of the environment (25).

3.2. The Stages of the Expected Trajectory Calculation

We can now rigorously calculate the expected trajectory of the oscillator for the three
cases described above.

Definition 1. The functional integral along the random trajectory $
[
u1(t), u2(t), t

]
will be called

the mathematical expectation of the trajectory:

$̄(t) = E[$(t)] = 1
α(t)

∫
R{ξ}

Dµ(u)$
[
u1(t), u2(t), t

]
. (33)

where α(t) =
∫
R{ξ}

Dµ(u) =
∫ ∫

Σ(2)
u (t)

P(u1, u2, t) is a normalizing constant.

Let us consider the case when the oscillator is not subjected by a random force,
i.e., F(t; {g}) ≡ 0. Then, the representation for the mathematical expectation of the trajec-
tory, taking into account (8) and (33), will have the following form:

ξ̄(t) = E[ξ(t)] = ξ0(t0)

α(t)

∫
R{ξ}

Dµ(u) exp
{∫ t

t0

φ(t′)dt′
}

. (34)

Computing the functional integral (34) using the generalized Feynman–Kac theo-
rem [19], one can find the following two-dimensional integral representation for the mathe-
matical expectation of the trajectory:

ξ̄(t) = E[ξ(t)] = ξ0(t0)ΛQ(t), ΛQ(t) =
1

α(t)

∫ ∫
Σ(2)

u (t)
Q(u1, u2, t)du1du2, (35)

where the function Q(u1, u2, t) is the solution of the following second-order complex PDE:

∂tQ =
{

L̂(u, t) + u1 + iu2
}

Q. (36)

Since ξ0(t0) is a constant, the main role in determining the expectation of the trajectory
is played by the function ΛQ(t).

A numerical study of a complex PDE (36) is carried out using the developed algorithm
in the form of a system of difference equations (see Listing 2 Section 7). The results of
numerical simulation of the function Q(u1, u2, t) depending on the state of the environment
and time are shown in Figures 4–6 of Section 7.2. The mathematical expectation of the
trajectory, depending on various parameters and time, was calculated and represented on
the graphs (for details see Section 7.3, Figure 7).

Now, let us calculate the mathematical expectation of the trajectory x̄(t) when the
oscillator is acted upon by a regular external force F0(t).

Given Equation (6), the trajectory can be formally written as follows:

x̄(t) = E
[
x(t)

]
=

1√
2Ω0

[
I(t) + I∗(t)

]
, I(t) =

〈
ξ(t)d∗(t)

〉
, (37)

where the symbol
〈
· · ·
〉

denotes functional integration with respect to the Fokker–Planck
measure (see expression (32)):

I(t) =
〈
ξ(t)d∗(t)

〉
=
∫
R{ξ}

Dµ(u)ξ(t)d∗(t). (38)
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The functional integral in (38) can be calculated and brought to a two-dimensional
integral representation if we use the following auxiliary relation:

I(t) = I(m|t)
∣∣
m= 0=

iξ0(t0)√
2Ω0

∂λ

〈∫ t

t0

[
φ(t′) + λξ(t′)F0(t′)

]
dt′
〉∣∣∣∣

λ= 0
.

The value under the derivative sign can be calculated using the generalized Feynman–
Kac theorem:〈∫ t

t0

[
φ(t′) + λξ(t′)F0(t′)

]
dt′
〉

=
∫ ∫

Σ(2)
u (t)

Qλ(u1, u2, t)du1du2, (39)

where the function Qλ(u1, u2, t) is the solution of the following second-order PDE:

∂tQλ =
{

L̂ + u1 + iu2 + λξ(t)F0(t)
}

Qλ. (40)

Differentiating Equation (40) with respect to the parameter λ, we find the following
equation:

∂tDλ =
{

L̂ + u1 + iu2 + λξ(t)F0(t)
}
Dλ + ξ(t)F0(t)Qλ,

where Dλ(u1, u2, t) ≡ ∂λQλ(u1, u2, t).
Now, introducing the notation D(u1, u2, t) = Dλ(u1, u2, t)

∣∣
λ= 0, we obtain the follow-

ing two-dimensional integral representation:

I(t) =
iξ0(t0)√

2Ω0
ΛD(t), ΛD(t) =

∫ ∫
Σ(2)

u (t)
D(u1, u2, t)du1du2,

where the function D(u1, u2, t) satisfies the following complex second-order PDE:

∂tD =
(

L̂ + u1 + iu2
)
D + ξ(t)F0(t)Q, Q ≡ Qλ

∣∣
λ= 0. (41)

To solve Equation (40), it is necessary that the solution satisfies the following initial
condition:

D(u1, u2, t)
∣∣
t= t0

= 0. (42)

As we can see, Equation (41) includes two external parameters; one of them is the
regular function F0(t) (external force), and the other is the random oscillator trajectory
ξ(t) ∈ L1, which is a solution to stochastic Equation (12).

Integrating Equation (41) with respect to the Fokker–Planck measure (32), one can
obtain a new equation:

〈∂tD〉 =
(

L̂ + u1 + iu2
)
D̄ + ξ̄(t)F0(t)Q, D̄ = 〈D〉, (43)

where ξ̄(t) denotes a regular function representing the mathematical expectation of the
oscillator trajectory without external influence (see (34)). The 〈∂tD〉 term in Equation (43)
can be represented as:

〈∂tD〉 = ∂t〈D〉 − 〈(∂tM(t))D〉 = ∂tD̄ − (∂tM(t))D̄, (44)

whereM(t) denotes the exponent of the Fokker–Planck measure (32) in the limit N → ∞
when the sum goes into an integral.

It is easy to see that the term ∂tM(t) is a random function and, accordingly, the new
averaging does not allow one to obtain a regular equation for the distribution function D̄.
However, since at large times ∂tD → 0, then from Equation (43) in the asymptotic t→ ∞,
we can obtain the following regular stationary equation:(

L̂ + u1 + iu2
)
D̄ + ξ̄(t)F0(t)Q = 0. (45)



Mathematics 2022, 10, 3868 11 of 32

Taking into account (45), we can write the expectation of the oscillator trajectory in the
external field when the process enters the asymptotic channel (out):

x̄(t) =
1√
2Ω0

{
Ī(t) + Ī∗(t)

}
, Ī(t) =

iξ0(t0)√
2Ω0

∫ ∫
∑
(2)
u (t)
D̄(u1, u2, t)du1du2. (46)

Considering that at t→ ∞, the ergodic properties of JS will prevail, we expect that the
oscillator trajectory x̄(t) becomes a regular function of time.

In conclusion, we calculate the mathematical expectation of the oscillator trajectory
under the action of an external random force F(t; {g}). Carrying out similar reasoning, we
can write the following functional integral for it:

x̄1(t) = E
[
x1(t)

]
=

x0(t0)

α(t)

∫
R{x}

Dµ(w) exp
{∫ t

t0

θ(t′)dt′
}

. (47)

Doing a similar calculation in the functional integral (47), we obtain:

x̄1(t) = x0(t0)ΛQ1(t), ΛQ1(t) =
1

α(t)

∫ ∫
Σ(2)

w (t)
Q1(w1, w2, t)dw1dw2,

where Σ(2)
w (t) is a two-dimensional manifold, the geometric and topological features of

which must be studied specially. In addition, the function x0(t0) is a solution to the regular
Equation (23), and the function Q1(w1, w2, t) is a solution to the following complex PDE:

∂tQ1 =
{
L̂(w, t) + w1 + iw2

}
Q1. (48)

As we can see, Equation (48) differs significantly from the parabolic complex PDE (36).
It can go into the usual complex PDE in the t → ∞ limit when JS comes to statistical
equilibrium.

4. Geometric and Topological Features of a Compactified Space

As we saw in the previous section, in the limit of statistical equilibrium, the functional
space R{ξ} compactifies into the two-dimensional manifold. In particular, for a random
frequency and no external force, the functional space R{ξ} compactifies into the two-

dimensional manifold Σ(2)
u (t), and for a random external force and a regular frequency,

the functional space, respectively, is compactified into another two-dimensional manifold;
R{ξ} → Σ(2)

w (t). Thus, it is obvious that in this case, the JS in the limit of statistical

equilibrium is described in three-dimensional space; R3
• ∼= R1 ⊗ Σ(2)

u (t) or R3
• ∼= R1 ⊗

Σ(2)
w (t), where R1 is a one-dimensional Euclidean subspace, and Σ(2)

u (t) and Σ(2)
w (t) are

two-dimensional manifolds. Below, as an example, we will study in detail the topological
and geometric features of the manifold Σ(2)

u (t).

4.1. Geometry of Two-Dimensional Subspace Σ(2)
u (t)

Definition 2. A generalized Riemannian (or pseudo-Riemannian) space is a smooth manifold
Σ(2)

u (t) with a doubly covariant tensor gµν defined on it, which we will call the generalized met-
ric tensor.

Theorem 3. If the motion of a dynamical system is described by stochastic differential equations
of the Langevin type (12), then in the limit of statistical equilibrium, these equations generate a
two-dimensional space with an antisymmetric metric (Riemann–Cartan manifold).
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Proof. Let us represent Equations (18) and (19) in tensor form (see for example [21]):

∂tP = ∇2P + k0(u1, u2, t)P, ∇2 =
1√
|g|

2

∑
i,j=1

∂

∂ui

(√
|g|gij ∂

∂uj

)
, (49)

where the following notations are made: u1 = u1 and u2 = u2.
To find the elements of the metric tensor, we write the two-dimensional Laplace-

Beltrami operator ∇2 in explicit form:

∇2 = g11 ∂2

∂u2
1
+

1√
|g|

[
∂

∂u1

(√
|g|g11

)
+

∂

∂u2

(√
|g|g21

)] ∂

∂u1
+ g12 ∂2

∂u1∂u2

+ g22 ∂2

∂u2
2
+

1√
|g|

[
∂

∂u2

(√
|g|g22

)
+

∂

∂u1

(√
|g|g12

)] ∂

∂u2
+ g21 ∂2

∂u2∂u1
. (50)

Comparing (50) with (19) and requiring the corresponding terms in the equations to
be equal, we find:

g11 = ε(r), g22 = ε(i), g12 = −g21, g = g11g22 − g12g21 = ε(r)ε(i) +
(

g12)2. (51)

As can be seen from (51), the metric tensor of the subspace Σ(2)
u (t) is antisymmetric

and, therefore, the corresponding geometry is non-commutative. Note that spaces with
such properties arise both in mathematics and in quantum physics, and all of them are asso-
ciated with non-commutative algebras [22]. For a deep understanding of non-commutative
spaces—non-commutative versions of vector bundles, connections, curvature, etc.—as a
rule, the operator algebra is used [23]. Recall that a non-commutative algebra is an associa-
tive algebra in which the multiplication is not commutative; i.e., xy does not always equal
yx. More generally, this algebraic structure, in which one of the basic binary operations is
not commutative, furthermore allows for additional structures, such as topology or a norm,
that can be carried over to a non-commutative functional algebra.

Before proceeding to the study of various properties of the Σ(2)
u (t) subspace, we

perform the following coordinate scaling transformation:

u1 → ū1 = u1/
√

ε(r)/λ, u2 → ū2 = u2/
√

ε(i)/λ, (52)

where λ > 0 is some constant.
In this case, the metric tensor ḡij in the orthogonal basis can be represented as the

following sum: ḡij = λij + ȳij, λij = λji, ȳij = −ȳji), which can be represented explicitly:

ḡij = λ

(
1 0
0 1

)
+ ȳ

(
0 1
−1 0

)
, (53)

where y(u1, u2, t) = g12(u1, u2, t) 7→ ḡ12(ū1, ū2, t) = ȳ(ū1, ū2, t).
The first feature of the generalized metric is that the non-symmetric part does not

contribute to the definition of the length, since ȳijvivj = 0, and therefore:

|v| =
√

ḡijvivj =
√

λijvivj + ȳijvivj =
√

λijvivj.

Recall that the tensor λij defines the Euclidean geometry of the plane tangent to the
manifold v ∈ Σ(2)

u (t) at a given point. In this symmetric space, λij = λji angular measure
and coordinates of the unit vector v are defined and equal to v = (cos ϑ, sin ϑ), respectively,
where ϑ is the Euclidean angle between the vector v and the first basis vector.
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Based on this definition and taking into account the antisymmetry property of the
off-diagonal element of the metric tensor ḡ12(u1, u2, t) = −ḡ21(u1, u2, t), it is easy to obtain
two expressions for the cosine of an angle [24]:

{ cos(v̂1, v2) =
λij(v1)i(v2)j + ȳij(v1)i(v2)j√

λij(v1)i(v1)j

√
λij(v2)i(v2)j

,

cos(v̂2, v1) =
λij(v1)i(v2)j − ȳij(v1)i(v2)j√

λij(v1)i(v1)j

√
λij(v2)i(v2)j

,
(54)

where (v1)i denotes the projection of the v1 vector onto the ui axis (see (13)).
After doing some simple calculations, we find:{

cos ψ+ = cos(v̂1, v2) =
√

1 + (ȳ/λ)2 cos(∆ϑ + δ),
cos ψ− = cos(v̂2, v1) =

√
1 + (ȳ/λ)2 cos(∆ϑ− δ).

(55)

where ∆ϑ = ϑ2 − ϑ1 is the Euclidean angle between the vectors v1 and v2. As for the angle
δ, it is determined from the following relations:

λ√
λ2 + ȳ2

= cos δ,
ȳ√

λ2 + ȳ2
= sin δ.

From (55) also follows the important conditions for the Euclidean angles ϑ+ = ∆ϑ + δ
and ϑ− = ∆ϑ− δ. In particular, it follows from the definition of Euclidean geometry that
the angles must satisfy the following constraint conditions:

cos ϑ+ ≤ 1√
1 + (ȳ/λ)2

, cos ϑ− ≤ 1√
1 − (ȳ/λ)2

. (56)

Recall that two different values of the angle ψ+ and ψ− between the vectors
v1 = v1(u1, u2) and v2 = v2(u1, u2) (see (55)) depending on the direction of rotation—
to the right or to the left— is a characteristic peculiarity of Kozyrev’s theory [25].

Taking into account the antisymmetry of the metric of the two-dimensional space
Σ(2)

u (t), it is easy to prove that its Gaussian curvature is equal to zero. However, following
Cartan [26,27], one can introduce a generalized linear connection:

Gi
jk = Γi

jk + Ki
jk, i, j, k = 1, 2, (57)

where Γi
jk =

1
2 λil(λl j;k + λlk;j − λjk;l

)
, (λl j;k = ∂λl j/∂ūk) is the Christoffel symbol and Ki

jk
denotes the curvature tensor formed by the interaction of an oscillator with a random
medium. This tensor can be defined as follows:

Kijk(ū1, ū2, t; ȳ) =
1
2

(∂wi

∂ūk −
∂wk

∂ūi

)
ūj, wi = ȳδii,

where δij denotes the Kronecker symbol.
Note that since the tensor Kijk(ū1, ū2, t; ȳ) is antisymmetric with respect to the first pair

of indices, then the connection Gijk(ū1, ū2, t; ȳ) is consistent with the metric.
Now, we can write the equation of motion of a quasi-particle or excitation of an envi-

ronment, which, taking into account the representation (53) will have the following form:

∂2ūi

∂s2 + Ki
jk(ū1, ū2, t; ȳ) ˙̄uj ˙̄uk = 0, Γi

jk ≡ 0, i, j, k = 1, 2, (58)

where s =
∫ √

λijduiduj =
∫ √

dūidūi and ˙̄ui = ∂ūi/∂s.
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Thus, Equation (58) can be considered as the equation of a geodesic line in space with
connection Ki

jk(ū1, ū2, t; ȳ). To solve this equation, it is necessary to know the form of the

contortion tensor Ki
jk(ū1, ū2, t; ȳ) as a function of coordinates and time.

4.2. Topology of Two-Dimensional Subspace Σ(2)
u (t)

Theorem 4. The generalized metric gij(u1, u2, t) satisfying (49)–(51) is defined by the antisym-
metric metric element g12(u1, u2, t) = −g21(u1, u2, t), which satisfies a fourth-degree algebraic
equation generating a topological manifold with possibly non-trivial singularities and a first Betti
number less than or equal to 4.

Proof. Comparing the operators (19) and (50) and taking into account the coordinate
transformations (52), we can obtain the following first-order partial differential equations
for the antisymmetric element of the metric tensor y = g12(u1, u2, t):

ε(r)χ
∂y
∂u1
−
(
1 + yχ

) ∂y
∂u2

= k1(u1, u2, t),

ε(i)χ
∂y
∂u2

+
(
1 + yχ

) ∂y
∂u1

= k2(u1, u2, t), (59)

where χ = y/(a + y2) and a = ε(r)ε(i).
However, as follows from (59), the system of equations is redefined with respect to the

desired function y. In this regard, a reasonable question arises: under what conditions are
these equations compatible?

From Equation (59), it is easy to find expressions for two different derivatives of the
off-diagonal component of the metric tensor:

y1 =
∂y
∂u1

=
ε(i)k1χ + k2(1 + yχ)

aχ2 + (1 + yχ)2 , y2 =
∂y
∂u2

=
ε(r)k2χ− k1(1 + yχ)

aχ2 + (1 + yχ)2 . (60)

Using Equation (60), we can find the following two expressions for the mixed second
derivatives of the metric tensor element y = g12(u1, u2, t):

y12 =
∂2 y

∂u2∂u1
=

ε(i)(k1;2χ + k1χ2) + k2;2(1 + yχ) + k2(y2χ + yχ;2)

aχ2 + (1 + yχ)2

−2
ε(i)k1χ + k2(1 + yχ)

[aχ2 + (1 + yχ)2]2
[
aχχ;2 + (1 + yχ)(y2χ + yχ;2)

]
,

y21 =
∂2 y

∂u1∂u2
=

ε(r)(k2;1χ + k2χ;1)− k1;1(1 + yχ)− k1(y1χ + yχ;1)

aχ2 + (1 + yχ)2

−2
ε(r)k2χ− k1(1 + yχ)

[aχ2 + (1 + yχ)2]2
[
aχχ;2 + (1 + yχ)(y1χ + yχ;1)

]
, (61)

where χ;j = ∂χ/∂uj and ki;j = ∂ki/∂uj, (i, j = 1, 2).
It is important to note that the antisymmetry of the off-diagonal elements of the metric

tensor arises at the stage of choosing the coordinate system and, accordingly, the orientation
of the considered sub-manifold.

As for the question of the symmetry of mixed second derivatives on any oriented
manifolds, then, based on the basic requirement of mathematical analysis, the following
identity must hold at any time at each point of the manifold (Schwarz’s theorem, see [28]):

y12 =
∂2 y

∂u1∂u2
= y21 =

∂2 y
∂u2∂u1

, (62)
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which is a necessary condition for a twice continuously differentiable function. In the
context of partial differential equations, it is called the Schwarz integrability condition.

If we write this equality (62) explicitly, taking into account expressions (61), then it
will look like this:

2
[
ε(r)k2χ− k1(1 + yχ)

] aχχ;1 + (1 + yχ)(y1χ + yχ1)

aχ2 + (1 + yχ)2 + (k1 + k2y)χ;2

= 2
[
ε(i)k1χ + k2(1 + yχ)

] aχχ;2 + (1 + yχ)(y2χ + yχ;2)

aχ2 + (1 + yχ)2 + (k2 − k1y)χ;1

− (k1;1 + k2;2)(1 + yχ)− (k1y1 + k2y2 + ε(i)k1;2 − ε(r)k2;1)χ. (63)

Finally, given (60) from Equation (63), we obtain the following 4th degree algebraic
equation:

4

∑
n=0

An(u1, u2, t)yn = 0, (64)

where the coefficients of the algebraic equation An(u1, u2, t) are defined by the expressions:

A0 = a
{

4au1 − 4ε(r)u2
1u2

2 − ε(i)[u2
1 − u2

2 + Ω2
0(t)]

2}, A1 = −2au2(ε
(r) + ε(i)), A2 =

24au1 + 8ε(r)u2
1u2

2 + 2ε(i)[u2
1 − u2

2 + Ω2
0(t)]

2, A3 = −8u2(ε
(r) + ε(i)), A4 = 32u1.

The general 4th degree Equation (64) is solved exactly by the Ferrari method and
has four solutions, some of which may be complex [29]. Since the coefficients of the
Equation (64) are functions of two coordinates (u1, u2) and time, the solutions must form
a continuum of sets in two-dimensional Euclidean space. We will be interested in those
sets of solutions that are complex. Obviously, if we cut out and remove from the Euclidean
space all the domains on which the solutions of the algebraic Equation (64) are complex,
then the remaining space will have topological singularities. As the numerical solution of
the algebraic Equation (64) shows, depending on the parameters ε(r) and ε(i), the manifold
Σ(2)

u (t) has the first Betti number n ≤ 4, where 4 is the number of complex solutions of
this equation.

Thus, we have proved the necessary condition for the compatibility of the system
of Equation (59). To prove whether this condition is sufficient for the compatibility of
the system of Equation (64), it is necessary to substitute the solution of the algebraic
Equation (64) into this system. Unfortunately, this assertion verification procedure turns
out to be a very difficult task. However, due to the fact that all sequential mathematical
constructions are performed analytically by algebraic methods, there is every reason to
believe that inverse transformations also take place; i.e., up to linear functions u1 and u2,
the function y is a solution to the Equation (59).

To illustrate the above, below are the results of visualization of a series of calculations
(see Figures 8–11), which allow obtaining a detailed idea of the topological features of the
two-dimensional manifold Σ(2)

u (t), which arises after the compactification of the function
space R{x} (see Section 7.4 of Section 7 for details). It is also important to note that a similar
analysis for the complex Equation (36) describing the solution Q(u1, u2, t) proves that the
exact geometry for solving this problem is the manifold Σ(2)

u (t).

5. Statement of the Initial-Boundary Value Problem for the Complex PDE

For definiteness, we will study the initial-boundary value problem in the case when an
external force does not act on the oscillator in the thermostat. In this case, the mathematical
expectation of the trajectory is described by a two-dimensional integral representation (35),
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where the function Q(u1, u2, t) is the solution of a complex second-order PDE (36). We will
consider the problem when Σ(2)

u (t) is a two-dimensional Euclidean space, that is:

Σ(2)
u (t) ∼= R2 ≡ (−∞, +∞)× (−∞, +∞)

Theorem 5. If a two-dimensional complex PDE has the form (36), then using the internal symmetry
of the equation, it can be reduced to two independent PDFs belonging to the class of PDFs with a
deviated argument given by affine transformations such as reflection.

Proof. Representing the solution of Equation (36) as a sum of real and imaginary parts:

Q(u1, u2, t) = Q(r)(u1, u2, t) + iQ(i)(u1, u2, t), (65)

one can obtain the following system of PDEs:{
∂tQ(i)(u1, u2, t) =

{
L̂ + u1

}
Q(i)(u1, u2, t) + u2Q(r)(u1, u2, t),

∂tQ(r)(u1, u2, t) =
{

L̂ + u1
}

Q(r)(u1, u2, t)− u2Q(i)(u1, u2, t).
(66)

The functions Q(i)(u1, u2, t) and Q(r)(u1, u2, t) can be normalized and given the mean-
ing of the probability density:

Q̄(i)(u1, u2, t) = β−1(t)Q(i)(u1, u2, t), Q̄(r)(u1, u2, t) = β−1(t)Q(r)(u1, u2, t),

β(t) =
∫ ∫

Σ(2)
u (t)

[
Q(i)(u1, u2, t) + Q(r)(u1, u2, t)

]
du1du2. (67)

and, obviously, the functions must satisfy the normalization condition:∫ ∫
Σ(2)

u (t)

[
Q̄(i)(u1, u2, t) + Q̄(r)(u1, u2, t)

]
du1du2 = 1.

It is easy to see that when changing the coordinates (u1, u2)→ (u1,−u2), the system
of Equation (66) becomes:{

∂tQ(i)(u1,−u2, t) =
{

L̂ + u1
}

Q(i)(u1,−u2, t)− u2Q(r)(u1,−u2, t),
∂tQ(r)(u1,−u2, t) =

{
L̂ + u1

}
Q(r)(u1,−u2, t) + u2Q(i)(u1,−u2, t).

(68)

If we assume that Q(i)(u1,−u2, t) = Q(r)(u1, u2, t) and, accordingly, Q(r)(u1,−u2, t) =
Q(i)(u1, u2, t), then the system of Equation (68) takes the original form (66), i.e., the first
equation goes over into the second, and the second goes into the first. Using these obvious
symmetry properties, we can write the system of coupled PDEs (68) as two independent
PDEs: {

∂tQ(i)(u1, u2, t) =
{

L̂ + u1
}

Q(i)(u1, u2, t) − u2Q(i)(u1,−u2, t),
∂tQ(r)(u1, u2, t) =

{
L̂ + u1

}
Q(r)(u1, u2, t) + u2Q(r)(u1,−u2, t).

(69)

As we can see in the system (69), the equations are independent, and each of them
belongs to the PDE class with a spatially deviated argument given by affine transforma-
tions such as reflection. By solving one of the equations, we can obtain the solution of
the second one using a 180-degree rotation in the two-dimensional Euclidean space R2.
Before proceeding to the numerical solution of these PDEs, we consider three possible
scenarios:

(a) When the solutions of Equation (69) are even functions with respect to the u2
coordinate, i.e., Q(i)(u1,−u2, t) = Q(i)(u1, u2, t) and Q(r)(u1,−u2, t) = Q(r)(u1, u2, t);

(b) When the solutions of Equation (69) are odd functions with respect to the coordinate
u2, i.e., Q(i)(u1,−u2, t) = −Q(i)(u1, u2, t) and Q(r)(u1,−u2, t) = −Q(r)(u1, u2, t), and,
accordingly, the case;
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(c) When the indicated functions do not have definite parity.
In the first (a) case from (69), we obtain two unrelated PDEs:{

∂tQ(i)(u1, u2, t) =
{

L̂ + u1
}

Q(i)(u1, u2, t)− u2Q(i)(u1, u2, t),
∂tQ(r)(u1, u2, t) =

{
L̂ + u1

}
Q(r)(u1, u2, t) + u2Q(r)(u1, u2, t).

(70)

In the second (b) case, we again obtain a system of uncoupled differential equations,
only in this case, it is necessary to replace Q(i)(u1, u2, t)→ Q(r)(u1, u2, t) in the first equa-
tion and Q(r)(u1, u2, t)→ Q(i)(u1, u2, t) in the second one, respectively.

In the third (c) case, the functions Q(i)(u1, u2, t) and Q(r)(u1, u2, t) are described by the
system of Equation (69). Note that this is the most general and difficult case for numerical
simulation, which will be considered in detail below.

We will consider a more complicated case where the PDE is a deviant argument. Our
task will be to formulate an initial-boundary value problem for solving one of the PDEs of
the equations system (69).

For definiteness, let us consider the second equation in (69). We can represent it as the
following system:{

∂t Q(r)(u1, u2, t) =
{

L̂ + u1
}

Q(r)(u1, u2, t) + u2Q(r)(u1,−u2, t),
∂tQ(r)(u1,−u2, t) =

{
L̂ + u1

}
Q(r)(u1,−u2, t) + u2Q(r)(u1, u2, t).

(71)

Recall that the second equation in (71) is obtained from the first one by replacing
u2 → −u2.

As an initial condition, we assume that the probability distribution of the environmen-
tal fields Q(r)(u1, u2, t) at time t0 is described by the Dirac delta function:

Q(r)(u1, u2, t0) =
2

∏
j=1

δ(uj − u0j), u0j = uj(t0). (72)

As for the boundary conditions, we define the Neumann boundary conditions on the
perpendicular axes u1 and u2, respectively:

∂

∂u2
Q(r)(u1, u2, t)

∣∣
u2= 0= Q(r)

;2 (u1, 0, t),
∂

∂u1
Q(r)(u1, u2, t)

∣∣
u1= 0= Q(r)

;1 (0, u2, t), (73)

where Q(r)
; i = ∂Q(r)/∂ui, (i = 1, 2). We will determine their values based on a num-

ber of physical considerations. As we will see below, the conditions (73) lead to two
different equations.

First, we consider the behavior of the second equation in (69) near the u1 ∈ (−∞,+∞)
axis. The solution of the equation near this axis can be represented as:

Q(r)(u1, u2, t)
∣∣
u2 ∼ 0= (a0 + a1u2 + a2u2

2 + · · ·)e−u2
2/2Q(r)

1 (u1, t), (74)

where a0, a1 and a2 are some unknown constants that will be determined based on physi-
cal considerations.

Substituting (74) into the second equation in (69), in the limit of u2 → 0, one obtains
the following second-order PDE:

∂

∂t
Q(r)

1 =

{
ε(r)

∂2

∂u2
1
+
(
u2

1 + Ω2
0(t)

) ∂

∂u1
+

[
5u1 − ε(i)

(
2a2

a0
− 1
)]}

Q(r)
1 . (75)

In particular, for the first Neumann condition, we obtain:

∂

∂u2
Q(r)(u1, u2, t)

∣∣
u2= 0= Q(r)

;2 (u1, 0, t) = a1Q
(r)
1 (u1, t). (76)
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Since the equation for the function Q(r)(u1, u2, t) is not symmetric with respect to the
change u2 → −u2, the first Neumann boundary condition cannot be equal to zero and,
accordingly, a1 6= 0. In addition, the function Q(r)

;2 (u1, t) ∼ Q(r)
1 (u1, t) has the meaning of

the probability density on the u1 axis; we can normalize it to one. The latter means that
a1 = 1 and the normalization of the solution Q(r)

1 (u1, t) is equal to one, that is:

Q̄(r)
1 (u1, t) = c−1

0 (t)Q(r)
1 (u1, t), c0(t) =

∫ +∞

−∞
Q(r)

1 (u1, t)du1,

where c0(t) is the normalization constant.
Proceeding from the fact that the boundary conditions on the perpendicular axes u1

and u2 describe the probability distributions of elastic and inelastic collisions independent
of each other, it is natural to assume that the term of inelastic collision in Equation (75)
should be identically equal to zero. In other words, we can require that the equality
2a2/a0 − 1 = 0 becomes satisfied, and thus, Equation (75) can be written as:

∂

∂t
Q(r)

1 =

{
ε(r)

∂2

∂u2
1
+
(
u2

1 + Ω2
0(t)

) ∂

∂u1
+ 5u1

}
Q(r)

1 . (77)

To solve this equation, it is necessary to formulate the following initial-boundary value
problem:

Q(r)
1 (u1, t)

∣∣
t=t0

= δ(u1 − u01), (78)

and, correspondingly,

Q(r)
1 (u1, t)

∣∣
u1= s1

= 0, Q(r)
1 (u1, t)

∣∣
u1= s2

= 0. (79)

where s1 and s2 denote points far enough from the origin 0, which are located to the left
and right, respectively.

Now, to establish the second Neumann boundary condition, we consider the solution
Q(r)(u1, u2, t) near the axis u2 ∈ (−∞,+∞). To do this, we represent the solution in
the form:

Q(r)(u1, u2, t)
∣∣
u1 ∼ 0= (b0 + b1u1 + b2u2

1 + · · ·)e−u2
1/2Q(r)

2 (u2, t), (80)

where b0, b1 and b2 are some constants that we will define below.
Substituting (80) into (69), in the limit of u1 → 0, we obtain the following equation:

∂

∂t
Q(r)

2 (u2, t) ={
ε(i)

∂2

∂u2
2
+

[
ε(r)
(2b2

b0
− 1
)
+

b1

b0

(
Ω2

0(t)− u2
2

)]}
Q(r)

2 (u2, t) + u2Q
(r)
2 (−u2, t). (81)

Since only inelastic processes are taken into account on the u2 axis, we can require that
the following condition becomes fulfilled: 2b2/b0 − 1 = 0. In addition, for definiteness,
we can set the constant b0 = 1 and b1 = 1/2. Taking into account the clarifications made,
Equation (82) can be simplified and presented as:

∂

∂t
Q(r)

2 (u2, t) =
{

ε(i)
∂2

∂u2
2
+

1
2
(
Ω2

0(t)− u2
2
)}

Q(r)
2 (u2, t) + u2Q

(r)
2 (−u2, t). (82)

Because (82) is a second-order PDE with a deviant argument, it can be solved together
with the same equation but after replacing the argument u2 → −u2. For Equation (82), we
can formulate the following initial-boundary conditions:

Q(r)
2 (u2, t)

∣∣
t=t0

= δ(u2 − u02),
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and, correspondingly,

Q(r)
2 (u2, t)

∣∣
u2=± s= 0, |s| � 1.

Considering the above, for the second boundary condition, we can write the following
expression:

∂

∂u1
Q(r)(u1, u2, t)

∣∣
u1= 0= Q(r)

2;1(0, u2, t) = b1Q
(r)
2 (u2, t) =

1
2
Q(r)

2 (u2, t). (83)

As in the case of the solution Q(r)
1 (u1, t), we can interpret the solution Q(r)

2 (u2, to) as
the density probability and normalize it to one.

6. Entropy of a Self-Organizing System

As known, for a classical dynamical system, an important characteristic is the non-
stationary Shannon entropy [30]. In particular, the entropy production rate is a quantitative
measure of a non-equilibrium processes, and knowledge of its quantity indicates informa-
tion about the dissipated heat [31,32], the difference in free energy between two equilibrium
states [33,34], and also about the efficiency, if the considered non-equilibrium system is an
engine [35–37]. It should be noted that the rate of entropy production provides important
information for systems with hidden degrees of freedom [38,39], as well as for interacting
subsystems, where the amount of information plays a key role [40–43].

In philosophy, physics and mathematics, the term negentropy is often used, which
has a negative value and, therefore, has the opposite to entropy sense. Note that if entropy
characterizes the measure of orderliness and organization of the system, then negentropy
is the possibility of reducing entropy or an effort toward order. Recall that this concept was
first proposed by Schrödinger [44] when explaining the behavior of living systems: in order
not to die, a living system struggles with the surrounding chaos and with the entropy it produces,
organizing and ordering the latter by introducing negentropy. This, in particular, explains the
behavior of self-organizing systems.

For definiteness, let us consider the question of the change in the entropy of a classical
oscillator in the case when its frequency has a random component. We first calculate the
dynamics of the oscillator entropy without taking into account its influence on the random
environment, when, as in the second case, we will consider this influence consistently and
strictly. In particular, in the first case, we can define the non-stationary entropy in the
standard way:

S(t) = −
∫ ∫

Σ(2)
u (t)

P̄(u1, u2, t) ln P̄(u1, u2, t)du1du2. (84)

It is often important to know the change in entropy or entropy production over a
certain period of time:

∆S(t1, t2) ≡ S(t2)− S(t1).

Since processes of different nature occur in the problem under consideration, we can
also introduce the concept of partial entropy, which characterizes the production of entropy
of a particular process:

S (σ)par (t) = −
∫ ∫

Σ(2)
u (t)

Q̄(σ)(u1, u2, t) ln Q̄(σ)(u1, u2, t)du1du2, σ = i, r. (85)

Note that the partial entropies S (r)par(t) and S (i)par(t) are in any case related by the total
probability normalization condition (67) and, accordingly, will influence each other in the
course of evolution. Recall that the partial entropy S (r)par(t) characterizes the processes

of elastic collisions of the oscillator with the environment, while S (i)par(t) describes the
processes of inelastic collisions of the oscillator with the environment. The study of partial
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entropies will obviously provide additional important information about a dynamical
system immersed in a thermostat.

Finally, we can determine the entropy of a closed self-organizing system classical
oscillator + thermostat. In this case, the expression for the generalized Shannon entropy
Sgen(t) can be represented as:

Sgen(t) = −
∫ ∫

Σ(2)
u (t)

(
∑

σ=i, r
Q̄(σ)(u1, u2, t)

)
ln
(

∑
σ=i, r

Q̄(σ)(u1, u2, t)
)

du1du2. (86)

As can be seen from the graphs (see Figure 11), at intermediate times, the behavior
of the entropies calculated by the formulas (84) and (86) differ greatly in value and in
character. Moreover, in some time intervals, the generalized entropy (86), regardless of the
intensity of the processes in the environment, takes a negative value, which is quite natural
for a self-organizing system. Finally, as follows from the simulation and the corresponding
visualizations, the behavior of both ordinary and generalized entropy tends to a constant
value in the limit of large times.

Details of entropy calculations are discussed in Sub-section E of Section 7.

7. Numerical Methods for Solving the Problem

Numerical simulation of the self-organization processes in the joint system (classical
oscillator and thermostat), even for a simple case, i.e., in the absence of an external field
F
(
t; {g}

)
≡ 0, requires large computational resources. This is due to the fact that the

complex probabilistic processes described by the three key PDEs, Equations (18) and (19),
as well as the system of Equation (66), are numerically difficult solvable tasks. Recall that
in [9], we have already considered a PDE of this type. In the same work, we considered
various finite-difference methods of solution. Taking into account the analysis performed
and test calculations for the numerical solution, we chose an explicit finite-difference
scheme of the second order of accuracy in coordinates and the first order in time. Despite
the external simplicity of this method, we believe that this scheme satisfies the goals of
our work in terms of efficiency and accuracy. Note that Equations (18), (19) and (66) are
second-order PDEs of the parabolic type with a source term. The main difficulty that we
face in the calculations arises in connection with the convective transfer, which must be
taken into account when increasing the size of the computational domain.

Below, we consider a numerical algorithm for solving the initial-boundary value prob-
lems for these PDEs in the two-dimensional Euclidean spaceR2, as shown in Listings 1 and 2.

For a PDE system (88) with appropriate conditions on the coordinate axes, the finite
difference scheme is similar to Listing 1.

In view of the symmetry of Equations (87) and (88) with respect to the coordinate ū2,
the calculation was carried out for the upper half-plane, i.e., for the ū2 ≥ 0 for a square
grid of 600× 400 nodes in ū1 × ū2, respectively. Then, the results were recalculated for the
entire region R2, that is on the 600× 800 grid for all solutions P(ū1, ū2, t), Q(r)(ū1, ū2, t)
and Q(i)(ū1, ū2, t). Space steps, ∆ū1 = ∆ū2 = 0.02, time step for the first option, ∆t = 10−5;
for the second and third options, ∆t = 2× 10−5.

Note that in this work, the proposed difference scheme for a linear two-dimensional
equation with a source term, which can be attributed to the parabolization schemes for
equations of the convection–diffusion type, has no independent meaning. The stability con-
ditions for such schemes have been considered in sufficient detail in various monographs;
see, for example, [45]. Let us present the necessary stability conditions for scheme (87).
The conditions for scheme (88) look similar. Let us rewrite expression (87) in the following
form, ignoring the source term 4∆tPn

j,k:

Pn+1
j,k = Pn

j,k + r1
[
Pn

j+1,k − 2Pn
j,k + Pn

j−1,k
]
+ r2

[
Pn

j,k+1 − 2Pn
j,k + Pn

j,k−1
]
+

C1
[
Pn

j+1,k − Pn
j−1,k

]
+ C2

[
Pn

1,k+1 − Pn
j,k−1

]
,
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where
C1 =

∆t
2∆ū1

[
(ū2

1)j − (ū2
2)k −Ω0(n)

]
, C2 =

∆t
∆ū2

(ū1)j(ū2)k.

Listing 1. Numerical algorithm for solving PDEs (18) and (19) after coordinate transformations (52).

1. The continuous area R2 for Equations (18) and (19) is replaced by the calculated area:
[(ū1)min, (ū1)max]× [(ū2)min, (ū2)max]× [0, T]. In the computational domain, a uniform differ-
ence grid is set in time t and in spatial coordinates ū1 and ū2:

(ū1)j = j∆ū1, j ∈ [1, M], (ū1)min = (ū)j=1, (ū1)max = (ū)j=M,

(ū2)k = k∆ū2, k ∈ [1, L], (ū2)min = (ū)k=1, (ū2)max = (ū)k=L,

tn = n∆t, n = 0, 1, 2, ...T/∆t− 1,

where ∆ū1 and ∆ū2 are steps in spatial coordinates, and ∆t is a step in time.
2. In these notations, for the constructed grid, we have the following difference equation for the

PDEs (18) and (19):

Pn+1
j,k = Pn

j, k + r1
[
Pn

j+1,k − 2Pn
j,k + Pn

j−1,k
]
+ r2

[
Pn

j,k+1 − 2Pn
j,k + Pn

j,k−1
]
+ 4∆tPn

j,k +

∆t
2∆ū1

[
(ū2

1)j − (ū2
2)k + Ω2

0(n)
](

Pn
j+1,k − Pn

j−1,k
)
+

∆t
∆ū2

(ū1)j(ū2)k
(

Pn
j,k+1 − Pn

j,k−1
)
, (87)

where the following notations are introduced:

Pn
j, k = P(j∆ū1, k∆ū2; n∆t), Ω2

0(n) = Ω2
0(tn), r1 = ε(r)

∆t
(∆ū1)2 , r2 = ε(i)

∆t
(∆ū2)2 .

3. To calculate Equations (18) and (19), it is also necessary to set two boundary conditions in the
form of difference equations on the coordinate axes ū1 and ū2, respectively, which can be easily
found by approximating Equation (87). Note that these difference equations must be solved
taking into account the Dirichlet boundary conditions; Pl(x)|x=± |s| = 0, (|s| � 1), where the
index (l = 1, 2) denotes the first and second boundary conditions, respectively.

4. The condition is set at the center of the coordinate axes:

P(ū1, ū2 = 0, t)
∣∣
ū1=0= P(ū1 = 0, ū2, t)

∣∣
ū2=0.

In addition, the Dirichlet condition P(ū1, ū2, t)
∣∣
∂G= 0 is specified on the boundaries of the

computational domain, where ∂G denotes the boundary.
5. As an initial condition, instead of the Dirac delta function, we use the Gaussian distribution:

P(ū1, ū2, t)
∣∣
t=0≈ σ exp

{
−ω

([ ū1
a

]2
+
[ ū2

b

]2)}
.

Note that the parameters σ = 500, ω = πσa2 and a = b = 1/2 included in the function were
chosen in such a way to normalize the initial distribution to unit.

In this case, the following inequalities must hold:

r1 + r2 ≤ 1/2, C1 + C2 ≤ 1.

Such necessary conditions are quite sufficient in determining the upper limit of the time
step ∆tcrit : ∆t ≤ ∆tcrit for all options presented in the table below. To estimate the sufficient
stability condition, we can use the approximation taken from the one-dimensional case:

C2
i ≤ ri ≤ 1, i = 1, 2.

In real test calculations, the original differential equation behaves more complicated
than the model linear equation. However, the real ∆tcrit obtained from the calculations
is close to the value determined from the given difference scheme stability inequalities.
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Formally, we can represent the system of Equations (87) and (88) in matrix form, which in
the general case looks like: (

f n+1
j,k

)
l = Al f n

j,k, l = 1, 2, 3,

where Al denotes the transition matrix for the variable f , in which connection A1 is the
transition matrix for the variable

(
f n+1
j,k

)
1 = P (see Equation (87)), and the matrices A2 and

A3 are for the variables
(

f n+1
j,k

)
2 = Q(i) and

(
f n+1
j,k

)
3 = Q(r) (see Equation (88)). To save

space, we do not write out these matrices in detail. It is important to note that the calculation
process itself is clear from Equations (87) and (88).

Listing 2. Numerical algorithm for solving the system of PDEs (52) after coordinate transformation.

1. The continuous region R2 for the PDEs system (66) is replaced by a discrete grid, as described
in Listing 1.

2. Using the PDEs system (66), we can obtain the following system of difference equations on the
constructed grid:[

Q(i)]n+1
j, k =

[
Q(i)]n

j, k + r1

{[
Q(i)]n

j+1, k − 2
[
Q(i)]n

j, k +
[
Q(i)]n+1

j−1, k

}
+ r2

{[
Q(i)]n

j, k+1 −

2
[
Q(i)]n

j, k +
[
Q(i)]n+1

j, k−1

}
+

∆t
2∆ū1

[
(ū2

1)j − (ū2
2)k + Ω2

0(n)
]{[

Q(i)]n
j+1, k −

[
Q(i)]n

j−1, k

}
+

∆t
∆ū2

(ū1)j(ū2)k

{[
Q(i)]n

j, k+1 −
[
Q(i)]n

j, k−1

}
+ ∆t

{
5(ū1)j

[
Q(i)]n

j, k + (ū2)k
[
Q(r)]n

j, k

}
,[

Q(r)]n+1
j, k =

[
Q(r)]n

j, k + r1

{[
Q(r)]n

j+1, k − 2
[
Q(r)]n

j, k +
[
Q(r)]n+1

j−1, k

}
+ r2

{[
Q(r)]n

j, k+1 −

2
[
Q(r)]n

j, k +
[
Q(r)]n+1

j, k−1

}
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(88)

where
[
Q(υ)

]n
j, k = Q(υ)(j∆ū1, k∆ū2; n∆t); in addition, υ = (i, r).

3. Similarly, as in Listing 1, for the solutions Q(i)ū1, ū2, t) and Q(r)(ū1, ū2, t), boundary conditions
are set on the ū1 and ū2 axes in the form of difference equations, which can be obtained by
approximating Equation (88) on the same axes. Note that we solve each equation obtained for
the boundary conditions as an internal Dirichlet problem with a zero value of the solution at
the boundary.

4. As in the case of the probability density P(ū1, ū2, t) (see Listing 1), the solutions Q(i)(ū1, ū2, t)
and Q(r)(ū1, ū2, t) are subject to similar conditions at the center of the coordinate axes:

Q(i)(ū1, ū2 = 0, t)
∣∣
ū1=0= Q(i)(ū1 = 0, ū2, t)

∣∣
ū2=0,

Q(r)(ū1, ū2 = 0, t)
∣∣
ū1=0= Q(r)(ū1 = 0, ū2, t)

∣∣
ū2=0.

In addition, we will assume that at the boundary of the computational domain, the solutions
are subject to the following conditions:

Q(i)(ū1, ū2, t)
∣∣
∂G= 0, Q(r)(ū1, ū2, t)

∣∣
∂G= 0.

5. Finally, as an initial condition for solving the system of Equations (88) for both solutions
Q(i)(ū1, ū2, t) and Q(r)(ū1, ū2, t), Gaussian distribution with parameters as in Listing 1 is chosen.

7.1. Distributions of the Free Environmental Fields

To calculate the distribution equation for the free fields of the environment (18) and
(19), we use the difference Equation (87), which is described in detail in Listing 1. For the
numerical simulation of the problem, the initial data given in Table 1 were used.
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Table 1. Initial data required for problem modeling.

ν = 0.5; γ = 2; ε(r) = 0.01; ε(i) = 0.01;
ν = 0.5; γ = 2; ε(r) = 1.00; ε(i) = 0.01;
ν = 0.5; γ = 2; ε(r) = 1.00; ε(i) = 0.50.

Note that each line of this table characterizes different states of the environment:
a. When the processes going on in the environment, both elastic and inelastic, are

weak;
b. When elastic processes are strong and inelastic processes are weak;
c. When both elastic and inelastic processes are strong in the environment.

Figure 1. The different stages of the evolution of the free fields of the environment, respectively,
at t1 = 1.5, t2 = 10 and t3 = 20. Note that these distributions were calculated using the data from the
first row of the table, which corresponds to weak elastic and inelastic processes in the environment.
Comparing the distributions at different times, it is easy to see that as t ∼ 10, the distribution
P̄(u1, u2, t) normalized to unity is established or tends to its stationary limit.

Figure 2. A series of graphs of the distribution of free fields of the environment at time points
t1 = 1.5, t2 = 10, t3 = 20. Recall that we used the data of the second line table, which characterizes
strongly elastic and weakly inelastic processes occurring in the environment. An analysis of the
graphs shows that the distribution tends to the stationary limit already at t ∼ 7.

Figure 3. Distributions of free fields of the environment, respectively, at the time points t1 = 1.5,
t2 = 3, t3 = 10 and t4 = 20. The data of the third row table, corresponding to strong elastic and
inelastic processes occurring in the environment, were used for the calculation. As can be seen from
the figures, the greater the constants that determine the powers of elastic and inelastic processes,
the faster the distribution of environmental fields is established.

7.2. Distributions of Environmental Fields Taking into Account the Influence of the Oscillator

We now present figures illustrating the evolution of the normalized functions Q̄(r)(u1, u2, t)
and Q̄(i)(u1, u2, t) depending on time. Using the algorithm developed in Listing 1, we can
calculate and visualize all of these solutions. Below are the normalized distributions for
three different cases.
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Figure 4. Distributions of the environment fields in the process of evolution, respectively, at the time
points t1 = 1.5, t2 = 10 and t3 = 20, calculated from the data of the first line table.

Figure 5. Distributions of the fields of the environment in the course of evolution, respectively, at the
time points t1 = 1.5, t2 = 10 and t3 = 20, calculated using the third line of the table.

Figure 6. Distributions of environmental fields in the process of evolution, respectively, at time points
t1 = 1.5, t2 = 10 and t3 = 20. The calculations are performed for the case ε(r) = ε(i) = 1, when
processes, both elastic and inelastic, are strongly developed.

In particular, as we see from these figures, with an increase in the constants of interac-
tions with the environment, the time for establishing distributions is reduced.

7.3. Mathematical Expectation of the Oscillator Trajectory

Using all the above calculations, one can simulate the expected value of the oscillator
trajectory in the absence of an external field based on Equation (35). We modeled the
expected oscillator trajectory for both its real and imaginary parts for five different environ-
mental states and visualized their behavior as a function of time (see Figure 7). In particular,
as can be seen from the figures, in all the cases under consideration, the mathematical
expectation of the trajectory not only has a non-trivial oscillatory character, but it decreases
with time, taking both positive and negative values.
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Figure 7. Mathematical expectations of the real (blue) and imaginary (red) parts of the oscillator
trajectory for five sets of parameters. Left to right, front row: (ε(r) = ε(i) = 0.01), (ε(r) = 1, ε(i) =

0.001) and (ε(r) = 1, ε(i) = 0.01); in the second row: (ε(r) = 1, ε(i) = 0.5) and (ε(r) = ε(i) = 1).

7.4. Calculation of Topological and Geometric Features of the Manifold Σ(2)
u (t)

As we saw above, the off-diagonal term of the metric tensor y = g12(u1, u2, t) of a man-
ifold Σ(2)

u (t) is determined by the algebraic equation of the 4th degree (64) with coordinates-
and time-dependent coefficients. Computing this equation with the Mathematics–Wolfram
solver for three sets of parameters (see data of the table), we obtain sets of surfaces for the off-
diagonal term of the metric tensor (see Figures 8–11), which allows us to study and under-
stand the geometric and topological features of the manifold Σ(2)

u (t). An analysis of the sur-
faces (see Figure 8) shows that when the oscillator is immersed in an environment with weak
elastic and inelastic interactions, these surfaces do not have interesting topological features.
However, there is an obvious singularity at the point u1 = 0− ε, (u1 ∈ (−∞, 0] \ 0, ε > 0),
because as ε→ 0, the term of y = g12(u1, u2, t) tends to plus infinity in the upper half-space
when as in the lower half-space, the term y = −g21(u1, u2, t) tends to minus infinity. It
should be noted that in the case under consideration, the evolution of the environment
characteristically does not change the geometry of space but only shifts the minimum point
of the surface.
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Figure 8. The two figures (from left to right) show the evolution of the space Σ(2)
u (t) from the

asymptotic state (in) with the environment data
(
ε(r) = ε(i) = 0.01

)
and frequency Ω−0 = 1, to the

asymptotic state (out) with frequency Ω+
0 = 3.

Figure 9. The first row on the right shows a topological space with the first Betti number equal to 2 in
the (in) asymptotic state, which in the process of evolution to the (out) asymptotic state transits into
two simply connected half-spaces with displaced holes. The second row shows three two-dimensional

pictures—projections of the manifold Σ(2)
u (t) onto the plane

(
u1, u2

)
, characterizing the evolution

of the topological singularities of the manifold when transitioning between these asymptotic states
defined by the data (Ω−0 = Ω0(t) = 1 Ω0(t) = 2, Ω+

0 = Ω0(t) = 3) and (ε(r) = 1, ε(i) = 0.01),
respectively.
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In the presence of strong elastic and weak inelastic processes in the environment,
the calculations lead to the formation of the following surfaces (see Figure 9). An analysis
of the pictures shows that the arising manifold is topological space with the first Betti
number is equal to 2, which during evolution transits to the manifold consisting from
two sub-manifolds each of which is a simply connected topological space with spatially
shifted typological singularities. Moreover, the shift between the topologies of the upper
and lower sub-manifolds is present already in the (in) asymptotic state. In the course of
evolution, this shift only increases, while the gap intersection decreases and already in
the (out) state becomes equal to zero. Moreover, the shift between the topologies of the
upper Σ(2)+

u (t) and lower Σ(2)−
u (t) sub-manifolds is present in the (in) asymptotic state

(this can be verified by analyzing three-dimensional graphs in Figure 9). In the course of
evolution, this shift only increases, while the gap intersection decreases and already in the
(out) state becomes equal to zero. In other words, the manifold Σ(2)

u (t) can be represented
as the union of two sub-manifolds:

Σ(2)
u (t) ∼= Σ(2)+

u (t) t Σ(2)−
u (t), (89)

where Σ(2)+
u (t) denotes a submanifold of the upper half-space, while Σ(2)−

u (t) is a submani-
fold of the lower half-space. As we will see below, this manifold can evolve into a disjoint
union of two sub-manifolds in the course of evolution.

Figure 10. The two figures in the first row (from left to right) show the evolution of the manifold

Σ(2)
u (t) from the asymptotic state (in) with data

(
Ω−0 = 1, ε(r) = 1, ε(i) = 0.5

)
to the (out) asymp-

totic state with data
(
Ω+

0 = 3, ε(r) = 1, ε(i) = 0.5
)
. The second row represents two-dimensional

projections of this manifold onto the (u1, u2) plane, showing the evolution of its topological features.
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Figure 11. The three figures in the first row (from left to right) show the evolution of the topolog-

ical singularities of the submanifold Σ(2)+
u (t) from the asymptotic state (in) with data

(
Ω−0 = 1,

ε(r) = 1, ε(i) = 0.5
)
, to (out) an asymptotic state where the frequency is Ω+

0 = 3. In the second row

(from left to right), there are figures showing a similar evolution for the sub-manifold Σ(2)−
u (t).

Finally, let us consider the case when strong elastic and non-weak inelastic processes
occur in the environment. As calculations show (see Figure 10), in this case, the manifold
also has the first Betti nuber equal to 2 but with different sizes and slot configurations.
In particular, the first row in Figure 10 shows three-dimensional visualizations of the
elements of the metric tensor g12(u1, u2, t) and g21(u1, u2, t) as functions of coordinates
(u1, u2) in asymptotic states (in) and (out), respectively. The second row (Figure 10) shows
the graphs showing the evolution of the topological features of the manifold Σ(2)

u (t) in the
transition from (in) to the state (out). As can be seen from the figures, the manifold Σ(2)

u (t)
loses its topological features in the process of evolution. However, since we know that
the manifold Σ(2)

u (t) is the union of two sub-manifolds (see (89)), a natural question arises:
do these sub-manifolds retain any of their topological singularities during evolution? As
the calculations and their two-dimensional visualizations (Figure 11) show, each of the
sub-manifolds (see the first and second rows of the graphs) in the process of evolution
passes from a topological space with the first Betti number equal to 2 to a simply connected
topology. However, as we can see, these topologies are displaced and do not have a
common hole (see the graphs in the second line of Figure 10, obtained by combining the
graphs of the first two lines of Figure 11). It is important to note that depending on the
parameters, a topological manifold with the first Betti number equal to 3 also arises, which
is a union of two oriented topological submanifolds Σ(2)+

u (t) and Σ(2)−
u (t) with the first

Betti number equal to 3. In the end, we note that the manifold Σ(2)
u (t), regardless of the

state of the environment, at the end of its evolution in the state (out) is a disjoint union of
two sub-manifolds.
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7.5. Features of Entropy Calculation

The integrals in the equations for the ordinary (84) and generalized (86) entropies were
calculated using the trapezoidal method.

However, due to the fact that in the expressions for the entropy, there is a term of
type A ln(A), which has a singularity at A = 0, the condition A ln(A) = 0 is introduced,
which makes it possible to eliminate this singularity. We performed entropy calculations
using Formulas (84) and (86) for three different states of the environment and visualized
them (see Figure 12) taking into account the data of Table 1. As follows from these graphs,
the usual entropy S(t) (left column) in the first two cases continuously increases with time
and reaches a constant value in the (out) state. In the third case, when inelastic precessions
in the environment are strong enough, as we observe, from some moment, the increase
in entropy passes into the stage of its decrease, and already at the long times, when the
system goes into (out) state, it takes a constant value. The right column contains graphs of
the generalized entropy Sgen(t), which, in addition to being non-monotonic, also contain
areas with negative values. This behavior of entropy is quite explainable for a closed
self-organizing system, which at some point can generate negentropy to stabilize the state
of the joint system. In particular, the negative value of entropy can also be explained by the
short-term capture or “swallowing” of a small or oscillator subsystem by a large subsystem
or thermostat.

Figure 12. In the figure, the left column of three graphs describes the Shannon entropy for three
different environmental states, while the right column describes the generalized entropy describing
the JS for the same environmental states.

As can be seen from the graphs of the right column, in the first two cases, the gener-
alized entropy Sgen(t) relatively fast tends a constant value, while in the third case, the
process of stabilization of the combined system proceeds non-monotonically and takes a
long time.
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8. Conclusions

The main achievement of this work is the development of a mathematically rigorous
representation that allows one to study the statistical properties of a classical oscillator with
its random environment as a problem of self-organization of a closed self-consistent system.
Note that such a statement in the philosophical sense corresponds to the consideration
of the problem within the framework of Plato’s concept, which excludes the loss of infor-
mation in the JS. We have carried out a mathematical implementation of this idea within
the framework of a complex probabilistic process that satisfies the SDE of the Langevin
type. The paper considers three typical scenarios of a random environment or thermostat,
for which, in the limit of statistical equilibrium, the kinetic equations for the distribution of
the fields of the environment are derived (see Equations (18), (19), (25) and (26)). With the
help of these equations, the measures of functional spaces are determined, which make it
possible in the future to build mathematical expectations of the corresponding physical
parameters of the problem. We use the generalized Feynman–Kac theorem [18,19] to
compactify the infinite-dimensional functional integral describing the expectation of the
oscillator trajectory and reduce it to the two-dimensional integral representation, where the
integrand is the solution of the complex second-order PDE given on a two-dimensional
manifold Σ(2)

u (t).
The second important result of the work is the proof that the subspace Σ(2)

u (t) is
generally described by a non-commutative geometry, which may also have important
geometric and topological features. In the case of non-intensive random processes in the
environment, i.e., when (ε(r), ε(i))� 1, the manifold Σ(2)

u (t) ∼= E(2)+
u (t) tE(2)−

u (t), where
E(2) +u (t) and E(2)−

u (t) are Euclidean subspaces with one singular boundary (see Figure 8).
As the power of random processes in the environment (ε(r), ε(i)) ∼ 1 increases, both the
geometric properties of the manifold Σ(2)

u (t) ∼= Σ(2)+
u (t) t Σ(2)−

u (t) and their topological
features change strongly. In particular, as shown in Figure 10, the sub-manifolds Σ(2)+

u (t)
and Σ(2)−

u (t) have a non-Euclidean curvilinear geometry and topologies with the first Betti
number (see for example [13]) equal to 2, which, in the (out) state, go over to a simply
connected topology. In other words, conformational transformations of an additional
subspace Σ(2)

u (t) of a self-organizing classical system, taking into account its geometric
and typological features, lead to radical differences in the description of the dynamics
of a classical system without an environment and when it is immersed in a random
environment. However, it is obvious that the correct formulation is to solve the problem
not on the two-dimensional Euclidean space R2 but on the manifold Σ(2)

u (t), which is the
union of two topological sub-manifolds Σ(2)+

u (t) and Σ(2)−
u (t), respectively. We emphasize

once again that this is due to the fact that the generated manifold Σ(2)
u (t) is generally

described by a non-commutative geometry that has non-trivial topological singularities.
In this paper, we develop an efficient mathematical algorithm for the sequential and parallel
calculation of various characteristic parameters of the problem, taking into account that the
manifold Σ(2)

u (t) is the Euclidean space. Note that this approximation takes place when the
interaction constants of the oscillator with the environment are small.

In the near future, we plan to generalize the computational algorithm for performing
calculations on just such a manifold. Recall that in this case, the distribution of the environ-
mental fields will be described by the tensor Equations (49) and (50) where the off-diagonal
element g12(u1, u2, t) = −g21(u1, u2, t) will be determined by the algebraic equation of the
4th degree (64). The latter will allow numerical methods to study important features of the
dynamics of a classical system within the framework of an ideologically more consistent
and accurate Platonic concept.

In conclusion, it should be noted that the study of quantum analogues of the con-
sidered classical models, taking into account the non-commutativity of the emerging
geometries, will be extremely interesting and rich in new and unexpected results.
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