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Abstract: Here, we prove some general results that allow us to ensure that specific representations (as
well as extensions) of certain Lipschitz operators exist, provided we have some additional information
about the underlying space, in the context of what we call enriched metric spaces. In this conceptual
framework, we introduce some new classes of Lipschitz operators whose definition depends on the
notion of metric coordinate system, which are defined by specific dominance inequalities involving
summations of distances between certain points in the space. We analyze “Pietsch Theorem inspired
factorizations" through subspaces of `∞ and L1, which are proved to characterize when a given metric
space is Lipschitz isomorphic to a metric subspace of these spaces. As an application, extension
results for Lipschitz maps that are obtained by a coordinate-wise adaptation of the McShane–Whitney
formulas, are also given.
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1. Introduction

The natural context in which Lipschitz operators make sense is that of metric spaces,
and no additional structure in the spaces involved is needed in principle to give the
definition and analyze their basic properties. However, in most cases some additional
structure (algebraic relations, geometric properties, etc.) is needed, for example, to represent
a linear endomorphism on a finite dimensional normed space from the image of a basis of
the space, the linear structure is obviously necessary.

In the setting of extension of Lipschitz maps, two (deeply related but) different abstract
notions make sense.

• The first one regards the classical extension problem, that consists on when, given a
metric subspace S of a metric space M and a Lipschitz map T : S→ N acting in it, T
can be extended to the whole space M preserving the Lipschitz constant. We call it an
extension of T.

• The second one regards the idea of reconstruction. Given a Lipschitz operator
T : M→ N and a subspace S ⊆ M, when there exists an extension rule that allows to
determine T using only T|S and the additional information that is known on the space
M. We call it a representation of T.

Both issues are studied and combined in the present paper. They are classical topics in
analysis and general topology, and some authors have paid attention to both of them. Some
specific developments have been recently published in several related topics. Since the
foundational paper by Farmer and Johnson ([1], 2009), there has been a growing interest in
the Lipschitz version of operator ideals theory (see, for example, [2–7] and the references
therein). Such ideals are often characterized by means of factorization theorems, some of
them connected to the results of the present paper. On the other hand, the classical topic
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of the extension of Lipschitz maps is also of current interest, both from a theoretical and
applied point of view (see, for example, [8,9]), and is also used today as a theoretical tool
for the foundations of new methods in Machine Learning ([10,11]).

In this paper, we present a new unified context to understand how these matters are
related, and we also show as applications some concrete new results on the structure of
metric spaces and the existence of constructive extensions of Lipschitz maps. First, we
develop the general framework for understanding when a representation of a Lipschitz
operator is possible, using the notion of representation tool. We also introduce the notion of
enriched metric space in order to give a formal definition of when additional information
on the metric space is available. Some of the ideas that are further developed in the present
paper were already introduced in [12]. We show some applications for the case of normed
spaces, in which the algebraic linear structure constitutes a fundamental support.

Thus, the first part of the paper is devoted to characterize the conditions under which
a restriction of a given Lipschitz map T to a metric subspace can be extended (by using
some extension rule) to the entire space to give exactly the original map T. This is explained
in Section 2. As an application, we give in Proposition 1 and Theorem 1 the particular
result for the case of Euclidean spaces. As it is shown in Section 2, the existence of an
extension rule that allow to reconstruct an operator using only its values in a fixed subset S
of its domain, X, is related with the possibility of distinguish any point x ∈ X using only
the known relations of x with the points in S. This is the starting point of the results of
Section 3, in which the notion of metric generating system for a metric space is introduced.
Metric ∞−bounded and metric summing maps are also studied as technical tools to find
new results in two directions: (1) representation of metric spaces as metric subspaces of the
Banach spaces `∞ and L1(µ) (Section 3.1), and (2) extension theorems for maps acting in
metric generating systems, mimicking the linear extension of operators from their values
on a basis of a finite dimensional normed space (Section 3.2).

We use standard notions and results on metric spaces and Lipschitz maps. Definitions
and fundamental results will be introduced through the paper when needed. Recall that
a metric on a set M is a symmetric and transitive function d : M × M → R+ such that
d(a, b) = 0 if and only if a = b, a, b ∈ M. If (M, d) and (D, q) are metric spaces, we say
that a map T : M → D is a Lipschitz operator if there is a constant K > 0 such that
q(T(x), T(y)) ≤ K · d(x, y) for all x, y ∈ M. We write Lip(T) for the infimum of all such
constants K; this is called the Lipschitz constant of T. We will denote by Lip(M, D) the
class of Lipschitz maps from M to D. Since some of the notions introduced in the paper are
new, we have made a special effort to show many examples and counterexamples.

2. Representation of Lipschitz Operators on Enriched Metric Spaces

The construction of a representation procedure is based on the determination of some
kind of connection between the data available on the Lipschitz map and the extension
method itself that allows the operator to be reconstructed. Within this concern, we have
first to fix a general setting which allows to establish the minimal requirements for an
extension to exist. So, we are interested in providing a characterization of when there is a
constructive rule such that, given a restriction T|S of a Lipschitz map T to a subspace S, we
can define an extension to the whole space using only the known relations between S and
M (distances, and relations, that could include, for example, algebraic equalities), such that
it coincides with the original map T.

In order to analyze this problem, let us now introduce several technical tools that will
be necessary to develop the ideas in the present work. Essentially, we have to consider two
types of information regarding the relations among the subset S and all the elements of M.

2.1. Representation of Enriched Metric Spaces

The following definition formalizes the notion of representability of a given space in
terms of a subset of it. To use it, we assume that the metric space M has some additional
relational structure, which we denote byR. We write (M, d,R) for the resulting space, and
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call it an enriched metric space. In the next part, we will focus our attention on Euclidean
spaces, but other examples could be considered, such as topological groups in which the
topology is defined by a metric, or pure metric spaces, which have null additional relations
between their elements, that is,R = ∅.

We use the next formal notation. Let S ⊂ M and a ∈ M. We write:

• Dist(S, a) for all the distances d(s, a) among the elements of S and a. These relations
can be represented as a one-side restriction of the distance function d : S×M→ R+

(write it as d(S, ·)), and
• Rel(S, a) for the set of relations that exist on the metric space: algebraic equalities that

hold among the elements of S and a, order properties among the elements of M, and
any relation can be established in M. These sets, considered for each a ∈ M, defineR.
For example, the equations as a = λ1 · s1 + λ2 · s2 constitutes Rel(S, a) ifR is defined
by the linear relations in a 2-dimensional normed space, {s1, s2} defines a basis and a
is any element of E.

Definition 1. Consider an enriched metric space (M, d,R) and a subset S ⊆ M. We say that M
is S-representable if the information contained in d(S, ·) andR is sufficient to distinguish between
any two elements of M. In other words, for any two different elements a, b ∈ M, we have that
Dist(S, a) 6= Dist(S, b) or Rel(S, a) 6= Rel(S, b).

For enriched metric spaces that are S-representable, we can define an index set
RepS(M) using the information provided by d(S, ·) and R that allows to distinguish
between any two points of M. This index set can be identified with the set M, and so there
is a representation map I : M → RepS(M) that separates points, that is, the following
statements are equivalent for every two elements a, b ∈ M:

• I(a) 6= I(b),
• Dist(S, a) 6= Dist(S, b) or Rel(S, a) 6= Rel(S, b),
• a 6= b.

Thus, there is an inverse for I. In terms of maps, this property can be characterized
as the existence of a factorization scheme for the identity map through the representation
RepS(M) as

M

I
��

Id // M .

RepS(M)
I−1

66

Of course, the set of relations that are considered inR has to be fixed for the Definition
of the representation.

In the case that the information contained in d(S, ·) andR is not enough to provide
a complete representation for the space M, we can also consider a partial representation
as follows. For every a ∈ M, consider its equivalence class with respect to d(S, ·) and R
provided by

[a] :=
{

b ∈ M : d(S, a) = d(S, b) and Rel(S, a) = Rel(S, b)
}

.

Write q : M→ [M] for the corresponding quotient map. The quotient space [M] can
then play the role of M instead, in such a way that we can define a representation RepS([M])
for it and a representation map [I] : [M]→ RepS([M]), that is injective. Since Rep([M]) is
still giving a(n) (“incomplete”) representation of the space, we still use the notation Rep(M)
for it. The representation map I : M→ RepS(M) can always be defined as

I = [I] ◦ q : M→ [M]→ RepS([M]) = Rep(M),
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but it is not necessarily injective. Thus, for each element a ∈ M we obtain a representation
I(a), but it may happen that there are two different elements a, b ∈ M such that I(a) = I(b).

Example 1. Consider a finitely generated group G (multiplicative notation) with generating system,
that we take as the subset S. Write S−1 as the set of inverse elements of S. We define the length
function ` associated to S as `(1) = 0 and

`(g) := min
{

n ∈ N
∣∣ there are s1, .., sn ∈ S ∪ S−1 : g = s1 · · · sn

}
,

for any g 6= 1. Then, the word metric dS is given by dS(g, h) := `(g−1h), g, h ∈ G. Take the set of
relations R as the set of all equations of the group that give the representations of each g ∈ G as
g = s1 · · · sn. So we consider the enriched metric space (G, dS,R).

In this case, the generating system S provides a representation of the space as follows. Every
element g ∈ G can be written as g = s1 · · · sk, s1, . . . , sk ∈ S. Choose one of such decompositions
for each g, and consider the representation Rep(G) given by the ordered set of the elements of S
appearing in each of these decompositions. The map I : G → Rep(G) given by g 7→ I(g) =
{s1, . . . , sk} ∈ Rep(G) plays the role of a full representation of G, and I satisfies a factorization
scheme as the one given above. Clearly, it is an injective map, so the inverse operator I−1 can be
defined and the corresponding factorization Id = I−1 ◦ I commutes. Therefore, G is S-representable.

2.2. Representations and Extension Rules for Lipschitz Operators

Once we have defined when a metric space M is representable from a subspace S,
we are in position to analyze when a given operator T can be always extended from its
restriction to S. In this case, we will say that T is S-representable.

Thus, as we explained in the Introduction, the aim of this paper is to give a formal
framework and explicit results on the existence of suitable extensions rules (ER) for Lipschitz
operators that allow the representation of such operators as extensions of their restriction
to a subset S ⊆ M. An ER is a procedure for extending a Lipschitz map from a subspace of
an enriched metric space to the whole space. So, we want to answer the following question:

If we have a Lipschitz operator T acting on M and we consider its restriction T|S to S ⊆ M,
is there a method ER such that gives T when applied to T|S?

In other words, we have to find an extension rule ER to be applied to the restriction
T|S to obtain ER(T|S) = T. In this case, ER(T|S) can be considered a representation of T
based on the subspace S. Let us give a formal definition of extension rule.

Definition 2. Let (M, d) be a metric space, (S, d) a subspace of (M, d), and let (D, q) be another
metric space. An extension rule is a map ER : Lip(S, D)→ Lip(M, D) that preserves the Lipschitz
constant, that is Lip(T) = Lip(ER(T)) for all T ∈ Lip(S, D).

In case we have some additional structure on the space D, more can be said about
such a map ER. For example, if D is a Banach space, then both Lip(S, D) and Lip(M, D)
are linear spaces with Lip(·) a semi-norm, that could become a norm if functions that differ
by a constant are identified; the norms of T and ER(T) coincide for all T ∈ Lip(S, D).

The rules ER can be of different nature, but all of them have to define a map ER(T) :
M → D using the available information on the subspace S. A lot is known about the
problem of defining such an extension of a Lipschitz map, that is a classical topic in
functional analysis. Let us mention the McShane–Whitney extension theorem for Lipschitz
forms T : (S, d) → (R, | · |), (where S is a subspace of a metric space M), that establishes
that we can always find an extension T : M→ R preserving the Lipschitz norm (see e.g.,
([13], Ch. 4), and the original papers [14,15]). Other fundamental result in this direction is
Kirszbraun’s theorem, that states that if S is a subset of some Hilbert space H, K is another
Hilbert space and T0 : S→ K is a Lipschitz map, we can always define an extension of T0
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to H with the same Lipschitz constant. The interested reader can find the original result in
[16] and the excellent explanation by Fremlin in [17].

Definition 3. Let (M, d,R) be an enriched metric space. Consider a subset S ⊆ M and a repre-
sentation RepS(M) defined by S. We say that a Lipschitz map T : M→ M is S-symmetric (under
the representation RS(M) with representation map I) if T(x) = T(y) whenever I(x) = I(y).

Example 2. Consider the metric group (G, ·, `) explained in Example 1 and a representation
provided by the generating system S ⊂ G. Take an element h ∈ G and consider the map Th : G → G
given by g 7→ h · g.

Note that this map is Lipschitz with Lipschitz constant equal to 1; a look to the expression of
the metric ` makes clear that `(g1, g2) = `(h · g1, h · g2), since (h · g1)

−1 · (h · g2) = g−1
1 · h−1 ·

h · g2 = g−1
1 · g2. On the other hand, the representation provided by S is complete, in the sense that

the associated map I is injective. Thus, I(g1) = I(g2) implies g1 = g2. Therefore, Th is obviously
S-symmetric.

Moreover, note that we can define the extension rule ER for Th|S provided by a representation
as the one explained in Example 1. If g ∈ G, we choose a decomposition in terms of the elements of
S as g = s1 · · · sn, s1, . . . , sn ∈ S. As explained, the finite sequences as {s1, . . . , sn} associated to
each g ∈ G (one of them for each set of element of the group), give a representation RepS(G).

Write ∏{s1, . . . , sn} := s1 · · · sn. The representation map I : G → RepS(G) is then given
by I(g) = {s1, . . . , sn}, where the elements of S in this representation are given by the chosen
particular decomposition of each g. An extension rule can then be given by

ER(Th|S)(g) := h ·∏ I(g) = h · s1 · · · sn = Th(s1) · s2 · · · sn.

We clearly have ER(Th|S) = Th for all the elements of G.

Remark 1. For particular metric spaces, requirements for the existence of extension rules to
reconstruct the original map could be very restrictive. Essentially, it depends on how rich the
structure of the space is and on the information that is considered to define the representation
RepS(M). Let (D, ρ) be a discrete metric space, that is, ρ(a, b) = 1 if a 6= b, and ρ(a, b) = 0 if
a = b. Suppose that there is no complementary relations structure, that is,R = ∅. Let T : D → D
be a map; it can be easily seen that such a T is always Lipschitz. However, the result concerning the
characterization of when there is an extension rule is very restrictive: the following statements are
equivalent for a subset D0 ⊆ D.

(1) For every T : D → D, there is an extension rule ER such that

ER(T|D0) = T.

(2) D \ {c} ⊆ D0 for a certain c ∈ D.

Proof. The proof of this equivalence is immediate. In this case, the only information
available for the representation of D is the one provided by Dist. For (1)⇒ (2), suppose
that there are two different points b, c ∈ D that are not in D0, and take a map T : D → D
such that T(b) 6= T(c). The only information we have is that the distance from any other
point to them is 1, and so these points are indiscernible if we can only use the information
available to us: when we try to write them using the metric information, both of them are
described by d(a, b) = 1 for all a ∈ D0, and d(a, c) = 1 for all a ∈ D0. The values of T|D0

do not provide any information about the values of T(b) and T(c). This means that we
cannot define a map f : {b, c} → D such that f (b) 6= f (c) through the description of b and
c with the available metric information about them, since they coincide in this description.
However, T(b) 6= T(c), so there is no extension rule such that ER(T|D0) = T. This proves
(1) ⇒ (2). For (2) ⇒ (1), note that we only have to define ER(T|D0) in c. The unique
element that is described by d(a, c) = 1 for all a ∈ D0 is c, so we can define an extension as
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c 7→ ER(T|D0)(c) just by c 7→ T(c). With this extension we obviously have ER(T|D0) = T,
as required.

However, if we center our attention on a given operator, conditions can be given for
the existence of an extension rule for it. Fix a subset D0 ⊂ D. The representation RepD0(D)
provided by the metric only allows to distinguish among the elements that are in D0 and
the rest of the elements. Therefore, the associated map I : D → D leaves D0 to D0 and
the rest of the elements to a unique element, since all the elements of D \ D0 are the same
one in RepD0(D). Thus, T is D0-symmetric if and only if T(x) = T(y) for all x, y ∈ D \ D0.
And, in this case, there is an extension rule for T given by ER(T|D0)(a) = T(a) if a ∈ D0
and ER(T|D0)(b) = c if b ∈ D \ D0 for a fixed c ∈ D. This is the motivation of the
characterization of the existence of a representation for an operator T that is given in the
next section for the case of Euclidean spaces.

2.3. An Application: Representation of Lipschitz Endomorphisms on Euclidean Spaces

Now, we focus attention on the case of finite dimensional Euclidean spaces E = Rn.
The linear structure of these spaces allows us to avoid the problems that appears in the
case of the general metric space shown in Remark 1. The result makes it clear that similar
arguments could be used for general finite dimensional normed spaces; but recall that all
the norms are equivalent in a finite-dimensional space. We give both relations and metric
characterizations.

In this case, the metric properties needed to define Dist are given by the Euclidean
norm ‖ · ‖2. The Lipschitz condition of the operators involved are just given to assure
boundedness and relate the results with the linear counterparts. The relations properties to
defineR are the ones coming from both the linear structure and the projections provided
by the scalar product. All the equalities relating the subset S and the rest of the elements
of the space to define Alg consist of linear combinations and projections on subsets of S.
Recall that we are only considering real normed spaces.

Proposition 1. Let (E, ‖ · ‖2,R) be the (enriched) n-dimensional Euclidean space and consider a
subset E0 ⊆ E. The following statements are equivalent.

(i) There is an extension rule ER such that for any Lipschitz map T : E→ E, ER(T|E0) = T.
(ii) E0 contains a basis of E.
(iii) The convex hull co(E0 ∪ {0}) contains a ball.

Proof. Let us prove first (i)⇒ (ii). In order to do it, suppose that E0 does not contain a basis,
and write S0 for the subspace generated by E0. Consider a norm one vector v0 belonging to
the orthogonal subspace S⊥0 . Recall that the only information available about v0 is given
by the metric structure of E, the values of x 7→ T(x) for all x ∈ E0 and the values of the
distance d(v0, x) = ‖v0 − x‖2 for all x ∈ E0. Due to the lack of further known structure for
T besides of being Lipschitz, the information on T is not useful at this step. Take v0 and−v0.
Fix an orthogonal basis e1, . . . , ek for S0. Then we have that for every x = ∑k

i=1 λiei ∈ S0,

‖x− v0‖2 =
k

∑
i=1

λ2
i + ‖ − v0‖2 =

k

∑
i=1

λ2
i + ‖v0‖2 = ‖x + v0‖2.

Consequently, there is no way of distinguishing v0 and −v0 to define an extension that
includes a map {v0,−v0} 7→ E.

For (ii) ⇒ (iii), take the basis e1, . . . , en of E that belongs to E0 and consider the
vectors xr = r · ∑n

i=1 ei/n, that belongs to co(E0 ∪ {0}) for every 0 ≤ r ≤ 1 and belongs
to the interior of co(E0 ∪ {0}) for a fixed 0 < r < 1, so there is an ε > 0 such that
Bε(xr) ⊂ co(E0 ∪ {0}).

Finally, to show (iii)⇒ (i) consider a ball Bε(x0) ⊂ co(E0 ∪ {0}). Fix an orthogonal
basis {e1, . . . , en} of the space E; the elements xi := ε · ei + x0 belong to co(E0 ∪ {0}) as well
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as x0. So, each of these points can be written as a (finite) convex combination of elements of
E0. Therefore, each ei can be written as (xi − x0)/ε, that is, as a (fixed) finite addition of real
numbers multiplied by elements of E0. On the other hand, any vector x of E can be written
as a linear combination of e1, . . . , en, which finally allows to write each x univocally using
finite sums of elements of E0 multiplied by real numbers that are univocally determined.
Let us write rep(x) for this representation (the ordered set of the involved vectors of E0 and
the corresponding scalars), and note that for every different elements x, y ∈ E, we have that
rep(x) 6= rep(y). Thus, the map x 7→ rep(x) 7→ T(x) can be defined and gives a suitable
extension for T|E0 to all E. This is the required extension rule.

Proposition 1 is the extreme case of a situation that is fixed in the next theorem. It gives
a general characterization of when an extension is possible for a Lipschitz endomorphism
on an Euclidean space. Recall that, given a subspace S, the projection operator on S is
denoted by PS.

For the particular case of the Lipschitz endomorphism on Euclidean spaces, we can
give a more explicit description of what an E0-symmetric operator is. We say that a Lipschitz
map T : E → E is E0-symmetric, for E0 ⊆ E, if, for the representation provided by the
following Dist and Alg,

1. Dist contains all the distances {d(x, y) : y ∈ E0}, and
2. Alg contains all the equations for the vectors that are linear combinations of the

elements of E0, and all the projections PS(x) for all x ∈ E, where S is the subspace
generated by E0,

Here, we have that T(x) = T(y) if x and y are indiscernible with respect to the
equations in Dist∪ Alg; using the notation introduced in the previous section, T(x) = T(y)
if I(x) = I(y).

So, in this case, to be E0-symmetric can be written as follows. T is E0-symmetric if for
every x, y ∈ E such that

• d(x, z) = d(y, z) for all z ∈ E0, and
• PS(x) = PS(y),

we have that T(x) = T(y).
Recall that the distance d(x, S) of a point x to a subspace S is defined by

d(x, S) = inf{‖x− y‖ : y ∈ S}.

Theorem 1. Let T : E→ E be a Lipschitz map on the n-dimensional Euclidean space (E, ‖ · ‖2).
Consider a subset E0 ⊆ E and write S for its linear hull. The following statements are equivalent.

(i) T is E0-symmetric.
(ii) For x, y ∈ E, if d(x, S) = d(y, S) and PS(x) = PS(y), then T(x) = T(y).
(iii) There is an extension rule ER such that ER(T|E0) = T.

Proof. The arguments are a refinement of those that prove Proposition 1. For (i)⇒ (ii), fix
x ∈ E. Since T is E0-symmetric, all the distances d(x, y), y ∈ E0, are known, and also the
projection PS(x) on the linear hull S of E0. On the other hand, assume that PS(x) = PS(y)
and d(x, S) = d(y, S). Take an element z ∈ E0. Then, using Pythagorean Theorem, we get

d(x, z)2 = ‖x− z‖2 = d(x, S)2 + ‖PS(x)− z‖2 = d(y, S)2 + ‖PS(y)− z‖2 = d(y, z)2.

Thus, since T is E0-symmetric we obtain T(x) = T(y), as we wanted to prove. The
converse (ii) ⇒ (i) is also a consequence of the same argument: we have to prove that
PS(x) = PS(y) and d(x, z) = d(y, z) for all z ∈ E0 implies d(x, S) = d(y, S). Take x, y ∈ E,
and suppose that d(x, z) = d(y, z) for all z ∈ E0. Then, again, Pythagorean Theorem gives

d(x, S) =
√

d(x, z)2 − ‖PS(x)− z‖2 =
√

d(y, z)2 − ‖PS(y)− z‖2 = d(y, S).
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Thus, we obtain T(x) = T(y) by (ii), and we obtain the result.
For (i)⇒ (iii), let us explicitly define the extension. Any extension rule is given by

the map E→I RepS(E)→R E for a certain operator R, and the composition has to obtain
the values x 7→ ER(T)(x) = R ◦ I(x) = T(x), and so for x, y ∈ X, I(x) = I(y) has to
imply T(x) = T(y). But this is provided by the requirement of being E0-symmetric. Indeed,
following the definition of representation of the space, I(x) = I(y) means that x and y
are indiscernible, that is, d(x, z) = d(y, z) for all z ∈ E0, and PS(x) = PS(y). But then the
E0-symmetry implies T(x) = T(y).

Finally, let us see that (iii)⇒ (i). The existence of an extension rule implies a factoriza-
tion through the representation provided for T. Then we have that T(x) has to be equal to
T(y) for every x, y ∈ E such that all the equalities contained in Dist and Alg for x and y are
the same for both of them, that is d(x, z) = d(y, z) for all z ∈ E0 and PS(x) = PS(y). That is,
T is E0-symmetric.

Example 3. Suppose that T : E → E is a (not necessarily linear) “diagonalizable" operator
in the sense that there exists a basis B = {x1, x2, . . . , xn} of E such that T(α1, α2, . . . , αn) =
( f1(α1), f2(α2), . . . , fn(αn)) in coordinates of the basis. Let E0 = {αxi : α ∈ R, 1 ≤ i ≤ n} be
the “axis" set, since it contains the basis B, T is E0-symmetric (Proposition 1 and Theorem 1). Note
that an extension rule can be provided by “linearity", if x = ∑n

i=1 αixi ∈ E,

ER(T|E0)(x) =
n

∑
i=1

fi(αi)xi.

This extension rule allows to reconstruct the original operator T, that is ER(T|E0) = T.
Observe that only the linear information of the space E is used in this extension rule, and none of its
metric properties are used.

3. Metric Coordinates and Extension of Lipschitz Functions

In this section, we show a concrete setting in which the general philosophy explained
in the previous section is applied. We introduce the notion of metric generating system
for a metric space and two different summability requirements based on such systems.
In the next step we show two representation results, that allow to write a metric space
satisfying any of these summability properties as a metric subspace `∞ or L1(µ) for a certain
probability measure µ. We prove also that, using these results, we can obtain a new class of
extension theorems for general Lipschitz maps. It is well-known that, in general, we cannot
assure the existence of Lipschitz extensions of metric-space-valued Lipschitz functions. As
an exception, we have the Kiszbraun Theorem for extension of Lipschitz endomorphisms
on subsets of Hilbert spaces, that states that, if H and L are Hilbert spaces, S ⊆ H, and
T : S→ L is a Lipschitz map, there is an extension T̂ : H → L of T preserving the Lipschitz
constant (see, for example, [16,17]). However, the main result on extensions that is relevant
for the present paper is the McShane–Whitney Theorem ([14,15]), which estates that any
real Lipschitz map acting in a subspace of a metric space can be extended to the whole
space preserving the Lipschitz constant.

In this section, we show some results for Lipschitz maps between metric spaces using
the idea of metric coordinates, in the general context that we have outlined in the preceding
sections. Some basic ideas on extension of Lipschitz maps on metric spaces using the notion
of metric coordinate system has been already used in ([18], Sec. 6). We are interested in
going further in this direction. Therefore, in the rest of the paper we will study Lipschitz
extensions of Lipschitz maps defined on pure metric spaces, that is, metric spaces without
any further algebraic structure, which however are enriched by a certain representation
tool, that gives in this case the setR, in our notation.

The main idea underlying the notion of “metric coordinate system”, which has been
studied by Calcaterra, Boldt and Green in [18], fits well with the framework that we have
presented in the previous section. In this case, the existence of a metric generating system
provides the “extra" information that is required to obtain reconstructions and extensions
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of Lipschitz maps. Let us introduce some technical concepts, that are straightforward
adaptations of the notion of basis and associated definitions that appear in linear algebra.

Let (M, d) be a metric space and consider a non-empty subset C ⊆ M, we can always
define a map m : M→ RC by

M 3 x 7→ m(x) =
(
mc(x)

)
c∈C =

(
d(c, x)

)
c∈C ∈ RC.

Using the notation of the previous section, m(x) is the information in d(C, x). More-
over, consider the Banach space `∞(C). If C is pointwise bounded, that is supc∈C d(x, c) ∈ R
for every x ∈ M, the map m can be defined to take values on `∞(C).

Definition 4. We say that a subset C ⊂ M is a metric generating system for M if m is injective,
that is, for every x, y ∈ M,(

d(x, c)
)

c∈C =
(
d(y, c)

)
c∈C implies x = y.

Using the notation of the previous section, C is a metric generating system for M if (M, d) (as
a pure metric space,R = ∅) is S-representable.

We say that a subset C ⊂ M is a metric basis (or a metric generating independent system)
for M if C is a metric generating system, and for every c ∈ C, C \ {c} is not a metric generating
system for M. Thus, it is a “minimal" metric generating system for M.

As will be shown later on, in this paper, we are mainly concerned with the notion of
metric generating system. Since we are going to use properties associated to summability of
series in the metric spaces, we impose that these systems have to be be countable. However,
this requirement is not fundamental for the definition and could be removed in a more
general analysis: for compact metric spaces countable systems will be enough.

Some examples of metric basis and metric generating systems are provided in ([18],
Sec. 2). Let us show now some other examples more connected with our concrete setting.

Example 4.

1. Consider the n-dimensional Euclidean space Rn, studied regarding the topic of the present
paper in [18]. Then any orthogonal basis {a1, . . . , an} together with the vector 0 is a metric
generating system for it. Indeed, for any point x we only need to use the equations that allows
to compute the projection of x in each of the subspaces generated by every ai by means of
the distances from x to ai and from x to 0. For a fixed i, this can be easily done using the
Pythagorean Theorem. For example, fix i = 1 and write r1 for the distance ‖x− x1a1‖. Then,
by the Pythagorean Theorem we have that

x2
1 + r2

1 = ‖x‖2, (x1 − ‖a1‖)2 + r2
1 = ‖x− a1‖2.

Consequently, 2x1‖a1‖ − ‖a1‖2 = ‖x‖2 − ‖x− a1‖2. From these equations, we can easily
compute the value of x1 using only the information about d(x, 0) = ‖x‖ and d(x, ai) =
‖x− a1‖. The same simple geometric arguments give the result for the other intervals. Using
the same idea for all x2, . . . , xn, we obtain the result. Clearly, it is also a basis.

2. For the metric space ([0,+∞), | · |) the element 0 clearly gives a metric basis.
3. Consider the (finite) cyclic groups Zn = Z/nZ = Gn = {1, g, g2, . . . , gn−1}, n ∈ N, n ≥ 2,

endowed with the minimal path distance, that is,

d(gj, gk) = min
{
{0 ≤ r < n : gk = gj · gr},
{0 ≤ r < n : gk · gr = gj}

}
,

where gr indicates the r−times product of the group g · g · · · g. It can be easily seen that
{gr, gm} ⊂ Gn (0 ≤ r, m < n) is basis for Gn if and only if |r−m| 6= n

2 . No single-element
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set can be a metric generating system, and all sets of three elements are metric generating
systems, but not basis.

4. Consider the graph (G, d) with 7 elements defined as a tree with 3 branches, each of them
containing 3 vertices, where d is the shortest path distance in the graph. Then no set containing
just one element is a metric generating system. However, a subset with two different elements
is a metric basis if and only if it does not contain the initial and the two elements does not
belong to the same branch. Moreover, every subset containing 3 elements without the initial
vertex is a metric generating system, but not a metric independent system.

5. Let (H, 〈·, ·〉) be a separable Hilbert space with its usual distance dH(x, y) =
√
〈x− y, x− y〉.

Let B be an orthonormal basis, it is shown in [18] that B ∪ {0} is a metric generating system
for H.

It is also possible to show straightforward examples of spaces not having metric
generating systems.

Example 5. Take I to be an uncountable index set, and consider the space `1(I) of all sequences
with support in I such that the sum of the absolute value of its components is convergent, and recall
that all its elements have countable support. Suppose that such a space has a (countable) generating
system, G. The union S of the supports of all its elements is countable, so there are two elements
i, j ∈ I \ S. Clearly, ‖ai − ei‖`1(I) = ‖ai − ej‖`1(I) for all ai ∈ G, where ei and ej are the canonical
sequence which coefficientes equal 1 at the positions i, j ∈ I, respectively. Therefore, G is not a
generating system for `1(I).

This example suggests the following result, that indeed provides a constructive method
for obtaining metric generating systems.

Remark 2. A separable metric space has always a metric generating system. In fact, any countable
dense set is a metric generating system.

Proof. Let (M, d) be a metric space, and let S be a countable dense set on it. Let us take
two distinct elements x1, x2 ∈ M and write ε := d(x1, x2). Then there is an element s ∈ S
such that d(x1, s) < ε/3, and hence d(x1, s) ≥ 2ε/3. Consequently, we find an element in S
that distinguishes x1 and x2 by distance, so S is a generating system.

However, this is not the only way of getting a metric generating system for a metric
space; easier systems are often available, as the following example shows.

Example 6. The set {0} is a metric basis for the metric space composed by [0, 1] endowed with the
Euclidean distance, while Remark 2 would give a countable generating system.

Fix now other subset S ⊆ M, where (M, d) and (N, ρ) are metric spaces, and consider
a K-Lipschitz function T : S → M. For every c ∈ C, we will consider the next McShane
type extension formulas involving all the maps mc : M→ R, mc(x) = d(x, c), that is,

T̂c(x) = sup
a∈S

(
mc(T(a))− K · d(x, a)

)
= sup

a∈S

(
d(T(a), c)− K · d(x, a)

)
.

At the end of the paper, we will expose similar extension formulas.

3.1. ∞-Bounded and Metric Summing Lipschitz Maps

In the case that we suppose some compactness property (the space or the metric
generating system is compact), better information on metric representation of the space is
available. We will show that an equivalent metric based on the metric coordinates can be
sometimes obtained. In fact, we present a characterization of when an equivalent distance
can be found, and explicit formulas for them are given.
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Recall that by the Borel–Lebesgue Theorem (see, for example, Section 3.6 in [19]), a
metric space is compact if and only if it is complete and totally bounded; a metric space M
is totally bounded if for every ε > 0 there are finitely many x1, x2, ..., xn ∈ M such that that
{Bε(xi) : 1 ≤ i ≤ n} is an open cover of M.

Lemma 1. Let (K, d) be a compact metric space. Let T : (K, d) → (N, ρ) be a Lipschitz map.
Then there is a countable metric generating system G for K, and T(G) is a metric generating system
for T(K).

Proof. Since K is compact, by the Borel–Lebesgue theorem it is in particular totally bounded.
Consider the sequence defined by choosing the centers of the open covers provided by the
total boundedness of K associated when the ε’s are taken to be 1/2n. This clearly gives a
dense countable set, so we apply Remark 2 to obtain the result. As a consequence of T
being Lipschitz, T(G) is a dense subset of T(K), and a metric generating system.

The aim of the section is to show that, under some reasonable requirements, some-
times we can obtain a metric that is computed by means of the metric coordinates, and is
(Lipschitz) equivalent to the metric d.

Although we will obtain other possible formulae, let us start by providing the “∞-type”
metric based on the metric coordinates that could be equivalent to the initial metric d.

Definition 5. Let T : (M, d) → (N, ρ) be a Lipschitz map and consider a countable metric
generating system G of M. We say that T is metric ∞-bounded (with respect to G) if there is a
constant Q > 0 such that

ρ(T(x), T(y)) ≤ Q sup
a∈G

∣∣d(x, a)− d(y, a)
∣∣, x, y ∈ M.

This definitions follows from the idea of considering in M the map

m∞ : (M, d)→ `∞(G)
x 7→ m∞(x) = (m∞

a (x))a∈G = (d(x, a))a∈G

and the function on M×M

d∞(x, y) := sup
a∈G

∣∣d(x, a)− d(y, a)
∣∣ = d`∞(G)(m

∞(x), m∞(y)).

Note that, by the triangular inequality, the supremum always exists and d∞(x, y) ≤ d(x, y)
for all x, y ∈ M, so m∞ is a 1-Lipschitz function. Moreover, the fact that G is a metric generating
system implies that d∞ is a metric in M.

Next result is a straightforward rewriting of the definition of metric ∞-bounded operator.

Remark 3. Let T : M→ N be an operator, the following statements are equivalent.

1. T is is metric ∞−bounded.
2. There is a Lipschitz factorization for T as

M

m∞

��

T // N

S

R

55

⊂ `∞(G)

where R given by R(m∞(x)) = T(x) is also a Lipschitz map.
3. T is a Lipschitz map from (M, d∞) to (N, ρ).

In this case, the Lipschitz constant of R coincides with the one of T : (M, d∞)→ (N, ρ) and
the metric ∞−bounded constant of T.
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Observe that the metrics d and d∞ coincide in G, since for any a, b ∈ G

d(a, b) = |d(a, b)− d(b, b)| ≤ sup
c∈G
|d(a, c)− d(b, c)| = d∞(a, b) ≤ d(a, b).

So, a map T : (G, d)→ (N, ρ) is ∞-bounded if and only if is a Lipschitz map.
In the particular case when the identity map id : M → M is metric ∞−bounded,

d∞ is a metric on M, Lipschitz equivalent to d and (M, d) is Lipschitz isomorphic to a
metric subspace of `∞. Moreover, in this case any Lipschitz map T : M → N is metric
∞−bounded.

Some of the examples provided before are also examples of operators (the identity
map) that are metric ∞-bounded. It is also easy to show examples of operators that are not.
We center the attention on spaces in which the identity map satisfies the property.

Example 7. Take the compact set defined by the convergent sequence together with its limit
K = {xn = 1/2nen : n ∈ N} ∪ {0} ⊂ `2, where ei are the elements of the normalized canonical
basis of `2. Clearly, the set G = {a = e1} gives a metric generating system for it. Suppose that
there is a constant Q > 0 such that

d(x, y) ≤ Q sup
a∈G

∣∣d(x, a)− d(y, a)
∣∣ = ∣∣d(x, e1)− d(y, e1)

∣∣, x, y ∈ K.

This gives a contradiction. Indeed, take the sequences xn = 1/2nen, yn = 0, n ∈ N. Then

0 <
1
Q
≤ lim

n

√
1

22n + 1− 1

1/2n = lim
n

(√
1 + 22n − 2n

)
= 0,

a contradiction. So, the identity map on K is not metric ∞-bounded.

The following notion is a relevant tool for the rest of the paper. It allows to characterize
when a given metric generating system provides also a metric q for the space that is
equivalent to the original one d (in the sense that q(x, y) ≤ d(x, y) ≤ Q q(x, y) for a certain
Q > 0 for all x, y ∈ N) and satisfies that it can be computed as a certain (generalized)
convex combination of the coordinate functions associated to a certain metric generating
system. This gives the “1-bounded” version of the equivalent metric that completes the
picture, together with the ∞-bounded case.

Definition 6. Let T : (M, d) → (N, ρ) be a Lipschitz map and consider a countable metric
generating system G of M. We say that T is metric summing if there is a constant Q > 0 such that
for every finite set x1, . . . , xn, y1, . . . , yn ∈ M,

n

∑
i=1

ρ
(
T(xi), T(yi)

)
≤ Q sup

a∈G

n

∑
i=1

∣∣d(xi, a)− d(yi, a)
∣∣.

Notice that a map that satisfies the previous definition is always a Lipschitz 1-summing
using the notion introduced by Farmer and Johnson in [1]. However, the set on which
the supremum is calculated in our case (and thus the measure that finally provides the
domination theorem) has a very particular mathematical meaning, different from that in
the classical case of summing maps. Our result provides a domination by what is “almost a
convex combination” of distance evaluations on relevant elements, consistent with the idea
of what is a metric generating system.

Examples are easy to find. Let us provide some of them regarding metric spaces in
which the identity map (which of course is a Lipschitz map) is metric summing.
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Example 8.

1. A basic example is given by a finite discrete space. Take a finite set D = {x1, . . . , xn} and
consider the discrete metric space (D, d). Consider the metric generating system for it given
by D itself. Take a double finite sequence x1, . . . , xm, y1, . . . ym in D. Assume that xi 6= yi
for all i and note that there is an element x0 such that the element x0 appears at least r times
amont the xi’s of the sequence, where r ∈ N is such that m/n ≤ r. Then

m

∑
i=1

d(xi, yi) = ∑
i: xi 6=yi

d(xi, yi) ≤ m = n · m
n
≤ n · r

= n · ∑
i: xi=x0

∣∣d(xi, x0)− d(yi, x0)
∣∣

≤ n · sup
x∈D

m

∑
i=1

∣∣d(xi, x)− d(yi, x)
∣∣.

Consequently, the identity map is metric summing. Obviously, the space is compact.
These calculations cannot be extended to obtain an infinite (countable) version of this example;
along with this fact, we also have that the space is not compact in the infinite case. However,
this is not a general rule: later we will show in another example that there are compact spaces
in which the identity map is not metric summing.

2. Consider the disjoint union M2 of the interval [0, 1/2] with itself, that is, M2 = I1 ∪ I2,
I1 = I2 = [0, 1/2]. We write ri for the elements of the i−th copy of the interval Ii, i = 1, 2.
Consider the function q : M2 ×M2→R+ ∪ {0} given by

q(ri, sj) =

{
|ri − sj| if i = j
1 if i 6= j,

i, j ∈ {1, 2}.

It can be easily seen that this function defines a metric on M2. The set {01, 02}, where 0i is the
element 0 in the interval Ii, is a metric basis for the space (M2, q). It can be also easily seen
that (M2, q) is a compact space.
Consider now the identity map id : M2 → M2, and let us show that it is a metric summing
map. Take x1, . . . , xm, y1, . . . , ym ∈ M2. Let us divide the couples (xi, yi) in three sets,
A1 = {(xi, yi) : xi, yi ∈ I1}, A2 = {(xi, yi) : xi, yi ∈ I2}, and

B = {(xi, yi) : xi ∈ I1, yi ∈ I2, or xi ∈ I2, yi ∈ I1}.

Clearly, these sets are disjoint and |A1 ∪ A2 ∪ B| = m. Now compare the quantities

a1 := ∑
A1

|xi − yi| and a2 := ∑
A2

|xi − yi|,

and write j0 for the index 1 or 2 for which max{a1, a2} is attained. We have that

∑
A1∪A2

q(xi, yi) = a1 + a2 ≤ 2 ∑
Aj0

|xi − yi| = 2 ∑
Aj0

|q(xi, 0j0)− q(yi, 0j0)|.

On the other hand, ∑B q(xi, yi) = ∑B 1 = |B|, and so

|B| = 2 ∑
B
|1− 1/2| ≤ 2 ∑

B
|q(xi, 0j0)− q(yi, 0j0)|.

Summing up the computations above, we get

m

∑
i=1

q(xi, yi) ≤ 2 ∑
Ai0∪B

|q(xi, 0i0)− q(yi, 0i0)| ≤ 2 sup
0∈{01,02}

m

∑
i=1

∣∣q(xi, 0)− q(yi, 0)
∣∣.
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So the identity map is metric summing.

Examples of Lipschitz operators that are not metric summing are also easy to find,
even when the space in which it is defined is compact. Let us show one of them in the
next example.

Example 9. A compact space in which the identity map is not metric summing. Fix r ∈ N. Let us
consider the compact subset W of the Hilbert space `2 defined as

W =

(
r⋃

i=1

[
0,

1
i

ei

])
∪
{

1
i

ei : i = r + 1, r + 2, . . .
}

.

where [a, b] represents the set between a and b and ei is the i−th element of the canonical basis of `2.
So we take the compact metric space (W, ‖ · ‖2), where ‖ · ‖2 is the Hilbert space norm of `2.

First we claim that the sequence of vectors G = {ai = ei/i : i = 1, . . . , r} defines a metric
generating for W. If x = es/s ∈ W with s > r, then, d(ei/i, x) > 1/i for all ei/i ∈ G and s is
determined, for example, by d(e1, x) =

√
1 + 1/s2. If x ∈ W is in a set of the form [0, ej/j] with

j ≤ r, then d(x, ei/i) ≥ 1/j for all i = 1, 2, . . . , r, i 6= j and d(x, ej/j) determines the point x.
Let us show that a metric summing type inequality cannot be reached for the identity map

id : W →W. Take the vectors xi = ei/i and yi = 0 for all i ∈ N, then

n

∑
i=1
|d(xi, ak)− d(yi, ak)| = 1/k +

n

∑
i=1,i 6=k

|
√

1/i2 + 1/k2 − 1/k|

≤ 1 +
n

∑
i=1

1/i2 + 1/k2 − 1/k2
√

1/i2 + 1/k2 + 1/k

≤ 1 +
n

∑
i=1

1/i2

2/k

= 1 + k/2
n

∑
i=1

1
i2

.

Consequently, since G is finite,

lim
n→∞

sup
ak∈G

n

∑
i=1

∣∣d(xi, ak)− d(yi, ak)
∣∣ ≤ lim

n→∞
sup
ak∈G

1 + k/2
n

∑
i=1

1
i2

< ∞.

However, ∑n
i=1 d(xi, yi) = ∑n

i=1 1/i diverges when n→ ∞, so the metric summing inequality
does not hold for any Q > 0.

Next proposition is inspired by the Pietsch domination theorem for Lipschitz p-summing
maps ([1]), that is in turn inspired in the result for absolutely summing (linear) operators (see,
for example, ([20], Ch. 2)). As we announced, it gives a characterization of when a metric
computed by means of the coordinate functions, which is equivalent to the original metric,
can be obtained.

Theorem 2. Let (M, d), (N, ρ) be two metric spaces and K a compact subset of M. Let T : M→ N
a mapping and C > 0, the following statements are equivalent:

1. For any n ∈ N, x1, x2, . . . , xn, y1, y2, . . . , yn ∈ M,

n

∑
i=1

ρ(Txi, Tyi) ≤ C sup
w∈K

n

∑
i=1
|d(xi, w)− d(yi, w)|.

2. There exists a Borel regular probability measure µ on K such that for any x, y ∈ M
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ρ(Tx, Ty) ≤ C
∫

K
|d(x, w)− d(y, w)|dµ(w)

(
≤ Cd(x, y)

)
.

Proof. The proof can also be directly obtained as a consequence of the abstract Pietsch
domination theorem presented in [21]. However, for the aim of completeness and to
underline that our result is essentially an application of the fundamental Hahn–Banach
Theorem, we prefer to present the straightforward proof based on it. Let us first recall a
basic argument that extend the requirement to the case of inequalities in which coefficients
ai 6= 1 affecting the terms of the inequalities for all i = 1, . . . , n, are allowed. It seems
to be due to Mendel and Schechtman (see ([1], p. 2989)). Since it is allowed that the
elements xi, yi appear several times in the inequalities in (1) , we can use approximation
by rational numbers to show that, in fact, this requirement is equivalent to: for any n ∈ N,
x1, x2, . . . , xn, y1, y2, . . . , yn ∈ M and a1, a2 . . . , an ≥ 0,

n

∑
i=1

aiρ(Txi, Tyi) ≤ C sup
w∈K

n

∑
i=1

ai|d(xi, w)− d(yi, w)|.

Let us show the proof.

For the (2)⇒ (1) implication, it is enough to replace the function to integrate by its
supremum. Suppose that such µ exists and apply (2) on the first inequality,

n

∑
i=1

aiρ(Txi, Tyi) ≤
n

∑
i=1

aiC
∫

K
|d(xi, w)− d(yi, w)|dµ(w)

= C
∫

K

(
n

∑
i=1

ai|d(xi, w)− d(yi, w)|
)

dµ(w)

≤ C
∫

K

(
sup
t∈K

n

∑
i=1

ai|d(xi, t)− d(yi, t)|
)

dµ(w)

= C sup
t∈K

n

∑
i=1

ai|d(xi, t)− d(yi, t)|.

For the converse, consider for any finite set

A = {(x1, y1, a1), (x2, y2, a2), . . . , (xn, yn, an)} ⊆ M×M× [0,+∞[,

the function fA : K → R given by

w 7→
n

∑
i=1

ai
(
ρ(Txi, Tyi)− C|d(xi, w)− d(yi, w)|

)
.

This function is continuous (in fact, Lipschitz continuous) since for any w, t ∈ K,

| fA(w)− fA(t)| ≤
n

∑
i=1

aiC
∣∣|d(xi, w)− d(yi, w)| − |d(xi, t)− d(yi, t)|

∣∣
≤

n

∑
i=1

aiC|d(xi, w)− d(yi, w)− d(xi, t) + d(yi, t)|

≤
n

∑
i=1

aiC
(
|d(xi, w)− d(xi, t)|+ |d(yi, w)− d(yi, t)|

)
≤

n

∑
i=1

aiC
(
d(w, t) + d(w, t)

)
= 2C

(
n

∑
i=1

ai

)
d(w, t).
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Consider the Banach space (C(K), ‖ · ‖∞). The set of functions F = { fA : A ⊆
M×M× [0,+∞[ finite} is a subset of C(K). Clearly, for any fA, fB ∈ F, fA + fB = fA∪B ∈ F
and if λ ≥ 0, then λ fA is also in F so, in particular, F is a convex set.

Consider now the set G = {g ∈ C(K) : g(w) > 0 ∀w ∈ K}, which is also convex.
Since K is compact, any function in G attains its minimum, which is positive, so G is a open
set. We claim that F ∩ G = ∅. Indeed, consider fA ∈ G,

fA(w) =
n

∑
i=1

ai
(
ρ(Txi, Tyi)− C|d(xi, w)− d(yi, w)|

)
,

the continuity of fA and the compactness of K implies that fA attains its minimum, and the
hypothesis (1) shows that inf{ fA(w) : w ∈ K} = fA(w0) ≤ 0, so fA 6∈ G.

By the geometric version of the Hahn–Banach theorem, there exists µ ∈ C(K)∗ =
M(K) a Borel regular measure and ξ ∈ R such that∫

K
fAdµ ≤ ξ <

∫
K

gdµ

for all fA ∈ F, g ∈ G.
Let us see that ξ = 0. Since the zero function 0 = f(x,x,1) (for x ∈ M) is an element of

G, ξ ≥
∫

K 0dµ = 0. For any λ > 0, the constant function with value λ, λ1 : K → R is in F,
so ξ ≤ inf{

∫
K λ1dµ : λ > 0} = µ(K) inf{λ : λ > 0} = 0.

Moreover, µ is a positive measure. Indeed, any f ≥ 0 is a limit in C(K) of functions
( fn)n ∈ F (for example fn = f + 1

n 1), and
∫

K fndµ > 0. So, by the continuity of µ on C(K),∫
K

f dµ = lim
n→∞

∫
K

fn ≥ 0.

As µ(K) < +∞, we can assume (multiplying by a constant if is needed) that µ(K) = 1,
and µ is a Borel regular probability measure.

Let now x, y ∈ M, consider the function fA ∈ F with A = {(x, y, 1)}. Since
∫

K fA ≤ 0,

ρ(Tx, Ty) =
∫

K
ρ(Tx, Ty)dµ(w) ≤ C

∫
K
|d(x, w)− d(y, w)|dµ(w).

As in the metric ∞-bounded case (Remark 3), there is natural factorization counterpart
of the domination given in Theorem 2. It is one of our main results, and shows that any
metric summing map factors through a subset of an L1-space. This recalls the classical
domination/factorization that holds for the cases of linear operators (see ([20], Ch. 2)) and
Lipschitz maps ([1]).

In the rest of the paper, we fix a compact generating system G that will play the role
of the compact set K. We implicitly refer to such a system G when we introduce metric
∞−bounded and metric summing operators, sometimes without explicitly mentioning it.

Observe that any Borel regular probability measure µ on G induces the map

mµ : (M, d)→ L1(µ)

x 7→ mµ

(·)(x) = d(x, ·)

and then the function on M×M

dµ(x, y) :=
∫
G

∣∣d(x, a)− d(y, a)
∣∣dµ(a) = dL1(µ)(m

µ(x), mµ(y))

for x, y ∈ M. The triangular inequality shows that the integral is finite and that mµ is
a 1-Lipschitz function. Note that dµ is a pseudo-metric (it could not be a metric), but a
sufficient condition for it to be a metric is to satisfy that µ(a) > 0 for all a ∈ G.
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Corollary 1. Let T : M→ N be an operator, the following statements are equivalent.

1. T is metric summing.
2. There is a probability (regular Borel) measure µ, a subset S ⊆ L1(µ) and a Lipschitz factoriza-

tion for T as

M

mµ

��

T // N

S

R

55

⊂ L1(µ)

where the map R given by R(mµ(x)) = T(x) is a Lipschitz map.
3. There is a probability (regular Borel) measure µ such that T is Lipschitz from (M, dµ) to

(N, ρ).

In this case, the Lipschitz constant of R coincides with the one of T : (M, dµ)→ (N, ρ), that
is, the metric summing constant of T.

Together with Theorem 2, we obtain the next

Corollary 2. Let (M, d) be a metric space and a metric generating system G of M that is closed.
Then, id : M→ M is metric summing if and only if there is a constant C > 0 and a Borel regular
probability measure µ on G such that for any x, y ∈ M,

d(x, y) ≤ C
∫
G

∣∣d(x, w)− d(y, w)
∣∣dµ(w).

Consequently, in this case, d and dµ are Lipschitz equivalent metrics and (M, d) is Lipschitz
isomorphic to a metric subspace of an L1-space.

Taking into account the properties of the integral with respect to a probability measure,
we directly obtain the next result.

Corollary 3. Let T : (M, d)→ (N, ρ) a Lipschitz map. If T is metric summing, then it is metric
∞−bounded, and in this case there is a constant Q > 0 and a probability (regular Borel) measure µ
such that

ρ(T(x), T(y)) ≤ Q dµ(x, y) ≤ Q d∞(x, y) ≤ Q d(x, y), x, y ∈ M.

In particular, if the identity map in a given space is metric summing for a certain metric
generating system, then we can obtain two equivalent formulas that allow to compute
the (Lipschitz equivalent) distance(s) by only using the coordinates of the points of the
metric space.

Remark 4. Note that the equivalences of norms provided by the previous results give strong metric
relations. However, the construction provides also weaker topological equivalences if we assume
compactness on the metric space.

Consider a compact metric space (K, d) and a countable (or finite) metric generating system G
for K. Then we have that the map

ϕ : (K, d)→ (L1(µ), ‖ · ‖1)

x 7→ d(x, ·) : G → R.

satisfies that dµ(x, y) = ‖ϕ(x)− ϕ(y)‖1. Clearly, ϕ is a 1-Lipschitz function, so it is continuous.
Suppose that ϕ is one-to-one, (µ({a}) > 0 for all a ∈ G). Then, as L1(µ) is Hausdorff, ϕ−1 :
ϕ(K)→ K is continuous, so xn → x in dµ implies that xn → x in d. Then, the topological space
generated by d is the same as the one generated by dµ. However, this could happen even in the metric
space is not compact, as we show in the next example.
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Example 10. Let us give some (in a sense canonical) examples of the kind of equivalent metric that
can be defined as an integral with respect to a probability measure (an average).

1. Consider the case of the Euclidean space RN , N ∈ N, that was studied in [18] and in
Example 4. Observe that it is not a compact space. We can choose as a metric basis the set
G = {0, e1, e2, . . . , eN}, where ei are the elements of the canonical basis. So we can define the
new metric on RN by the measure on G given by

µ =
1

N + 1

(
δ0 +

N

∑
i=1

δei

)
,

where δx is as usual the Dirac’s delta at the point x. Then, we consider

dµ(x, y) =
1

N + 1

(∣∣∣‖x‖2 − ‖y‖2

∣∣∣+ N

∑
i=1

∣∣∣‖x− ei‖2 − ‖y− ei‖2

∣∣∣).

As G is a metric generating system, dµ is also a metric.
We claim that the metrics d and dµ provide the same topology on the Euclidean space RN for
N ≥ 2, but are not Lipschitz equivalent.
It is clear that dµ(x, y) ≤ d(x, y). To show that the corresponding topologies are in fact the
same, suppose the sequence (xn)n is convergent to x in dµ; we have to show that xn → x in d.
As (xn) is convergent, it is bounded (in dµ), so there exists M > 0 such that dµ(xn, 0) < M
for all n ∈ N. Then, it is also bounded in d, since

d(xn, 0) =
∣∣∣‖xn‖2 − ‖0‖2

∣∣∣ ≤ (N + 1)dµ(xn, 0) < (N + 1)M.

Let X = B̄RN (0, (N + 1)M), and let us consider now the function ϕ : (X, d)→ (RN+1, ‖ ·
‖1), z 7→ (d(z, w))w∈G . It is a continuous function since

‖ϕ(z)− ϕ(y)‖1 = (N + 1) dµ(z, y) ≤ (N + 1) d(z, y).

As in Remark 4, since (X, d) is compact, (RN+1, ‖ · ‖1) Hausdorff and ϕ is one-to-one (G is
a metric generating system), ϕ−1 : ϕ(X)→ X is also continuous.
Note that ‖ϕ(xn)− ϕ(x)‖1 = (N + 1)dµ(xn, x) → 0 when n → ∞, ϕ(xn) → ϕ(x) in
‖ · ‖1. By the continuity of ϕ−1, xn → x in d.

To show that d and dµ are not Lipschitz equivalent, consider the elements xn = (n + 1)e1 +
ne2 and yn = ne1 + (n + 1)e2. We calculate now dµ(xn, yn).

d(xn, 0) =
√
(n + 1)2 + n2 = d(yn, 0),

d(xn, e1) =
√

n2 + n2 =
√

2n,

d(yn, e1) =
√
(n− 1)2 + (n + 1)2 =

√
2
√

n2 + 1,

d(xn, e2) =
√
(n + 1)2 + (n− 1)2 =

√
2
√

n2 + 1,

d(yn, e2) =
√

n2 + n2 =
√

2n,

d(xn, em) =
√
(n + 1)2 + n2 + 1 = d(yn, em), for m ≥ 2.

Then, dµ(xn, yn) =
2
√

2
N+1

(√
n2 + 1− n

)
→ 0 as n→ ∞. Instead, d(xn, yn) =

√
2, so there

is no C > 0 such that d(xn, yn) ≤ Cdµ(xn, yn) for all n ∈ N.

2. The infinite dimensional version of the example above is provided by the case when (X, d) is
an (infinite dimensional) separable Hilbert space. Let {ei : i ∈ N} be an orthonormal basis. It
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is also shown in [18] that G = {0} ∪ {ei : i ∈ N} is a metric generating system. We can use
the measure on G given by

µ =
1
2

δ0 +
∞

∑
i=1

1
2i+1 δei ,

so the new metric in X is

dµ(x, y) =
∫
G

∣∣d(x, a)− d(y, a)
∣∣dµ

=
1
2

∣∣‖x‖ − ‖y‖∣∣+ ∞

∑
i=1

1
2i+1

∣∣d(x, ei)− d(y, ei)
∣∣.

3.2. Applications: Metric Coordinates-Based Extensions of Lipschitz Operators

Let us show how the results on metric coordinates systems can be applied to obtain
explicit formulas for Lipschitz extension of Lipschitz maps.

Let us recall the context we have fixed in the previous section. Suppose G is a compact
metric generating system for a metric space M, and µ ∈ M(G) = C(G)∗ a probability
measure. Recall that

(1) d∞(x, y) = supa∈G
∣∣d(x, a)− d(y, a)

∣∣, x, y ∈ M,
(2) dµ(x, y) =

∫
G
∣∣d(x, a)− d(y, a)

∣∣dµ(a), x, y ∈ M.

According to the characterization theorems for metric ∞−bounded and metric
1−summing Lipschitz maps, when the identity map satisfies any of the inequalities that
characterize both clases of maps the information on

(
d(x, a)

)
a∈G is enough to determine

the point x ∈ M. We have already shown that, if the identity map is metric summing, we
have for a probability measure µ and a certain constant R > 0,

R d(x, y) ≤ dµ(x, y) ≤ d∞(x, y) ≤ d(x, y), x, y ∈ M.

This fact implies that if the identity map id : M→ M is ∞-bounded (metric summing),
any Lipschitz map from M to another metric space, T : M → N, is ∞-bounded (metric
summing).

The question now is: given a metric space (M, d) with a compact metric generating system
G, a Lipschitz map T : (G, d)→ (N, ρ), can we obtain an extension T̂ : (M, d)→ (N, ρ) that is
∞-bounded or metric summing?

Following the idea in Lemma 1, we consider T(G) as a metric generating system of
T(M).

Lemma 2. Let (M, d) be a metric space and G a compact metric generating system for it. Let
µ ∈ M(G) be a probability measure. Then the operators

m∞
T : T(G)→ `∞(G)

T(b) 7→ m∞
T (T(b)) =

(
m∞

T,a(T(b))
)

a∈G =
(
ρ(T(b), T(a))

)
a∈G

and

mµ
T : T(G)→ L1(µ)

T(b) 7→ mµ

T,(·)(T(b)) = ρ(T(b), T(·))

are well-defined and Lipschitz, with constant less or equal to 1.

Proof. First note that the definitions depends only on T(b) and not on b, so there is no
problem of wrong definition if there are different b, c ∈ G such that T(b) = T(c). Now, since
G is a compact set and the function a 7→ ρ(T(a), T(b)) is continuous for each fixed b ∈ G,
these functions are all of them bounded. So, both m∞

T (T(b)) and mµ
T(T(b)) are well-defined
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(to see this for the second case, note also that these functions are integrable, since they are
continuous functions and µ ∈ C(G)∗ ).

Now, take b1, b2 ∈ G. Then∥∥m∞
T (T(b1))−m∞

T (T(b2))
∥∥

∞ = sup
c∈G

∣∣∣ρ(T(c), T(b1))− ρ(T(c), T(b2))
∣∣∣

≤ ρ(T(b1), T(b2))

On the other hand,∥∥mµ
T(T(b1))−mµ

T(T(b2))
∥∥

L1(µ)
=
∫
G

∣∣ρ(T(b1), T(c))− ρ(T(b2), T(c))
∣∣ dµ(c)

≤
∫
G

ρ(T(b1), T(b2)) dµ(c) = ρ(T(b1), T(b2)) µ(G) = ρ(T(b1), T(b2)).

Consequently, both functions are 1−Lipschitz.

Let (M, d) be a metric space with a compact generating system G and H a subset
of M (notice that G is also a metric generating system of H). Given a Lipschitz map
T : (H, d) → (N, ρ), if T is ∞-bounded with constant Q, for a fixed a ∈ G we define the
McShane type formula

m̂∞
T,a(x) := sup

b∈H

{
ρ(T(a), T(b))−Q sup

c∈G

∣∣d(b, c)− d(x, c)
∣∣}, x ∈ M.

If T is metric summing with constant C, for a fixed a ∈ G we consider also the formula

m̂µ
T,a(x) := sup

b∈H

{
ρ(T(a), T(b))− C

∫
G

∣∣d(b, c)− d(x, c)
∣∣ dµ(c)

}
, x ∈ M.

Note that in these formulas (as in the rest of the section) not all the metric information
on (M, d) is used, but only the related to its metric generating system: using the notation of
Section 2, Dist = {d(a, x) : a ∈ G, x ∈ M}.

Let us prove first that these functions provide well-defined extensions m̂∞
T,a : M→ R

and m̂µ
T,a : M→ R.

Lemma 3. Let (M, d) be a metric space with a compact generating system G, H a subset of M and
T : (H, d)→ (N, ρ) a Lipschitz map.

1. If T is ∞-bounded with constant Q, then for each a ∈ G, m̂∞
T,a is well defined, and

(a) for every b ∈ H, m̂∞
T,a(b) = ρ(T(a), T(b)),

(b) for every x, y ∈ M∣∣m̂∞
T,a(x)− m̂∞

T,a(y)
∣∣ ≤ Q sup

c∈G

∣∣d(b, c)− d(x, c)
∣∣ ≤ Q d(x, y).

2. If T is metric summing with constant C and associated measure µ, then for each a ∈ G, m̂µ
T,a

is well defined, and

(a) for every b ∈ H, m̂µ
T,a(b) = ρ(T(a), T(b)),

(b) for every x, y ∈ M,

∣∣m̂µ
T,a(x)− m̂µ

T,a(y)
∣∣ ≤ C

∫
G

∣∣d(b, c)− d(x, c)
∣∣ dµ(c) ≤ C d(x, y).

Proof. The proofs of these inequalities are given by standard computations. For the aim of
completeness let us show some of them.
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(1) To show that m̂∞
T,a is well-defined, it is enough to prove that for a fixed x ∈ M,

the set {ρ(T(a), T(b))− Q supc∈G
∣∣d(b, c)− d(x, c)

∣∣ : b ∈ H} is upper bounded. As T is
∞-bounded, for any b ∈ H,

ρ(T(a), T(b))−Q sup
c∈G

∣∣d(b, c)− d(x, c)
∣∣

≤ Q sup
c∈G

∣∣d(a, c)− d(b, c)
∣∣−Q sup

c∈G

∣∣d(b, c)− d(x, c)
∣∣

≤ Q sup
c∈G

∣∣d(a, c)− d(x, c)
∣∣ ≤ d(a, x) < +∞

Let us prove (a). Fix b ∈ H, Then

ρ(T(a), T(b)) = ρ(T(a), T(b))−Q sup
c∈G

∣∣d(b, c)− d(b, c)
∣∣

≤ sup
b0∈H

{
ρ(T(a), T(b0))−Q sup

c∈G

∣∣d(b0, c)− d(b, c)
∣∣}.

On the other hand, for b0 ∈ G,

ρ(T(a), T(b0) ≤ ρ(T(a), T(b)) + ρ(T(b0), T(b))

≤ ρ(T(a), T(b)) + Q sup
c∈G

∣∣d(b0, c)− d(b, c)
∣∣,

and so m̂∞
T,a(b) ≤ ρ(T(a), T(b)).

Now let us show the proof of (b) for the function m̂µ
T,a. Let x, y ∈ M. Then

|m̂µ
T,a(x)− m̂µ

T,a(y)| ≤ sup
b∈G

∣∣∣ρ(T(a), T(b))− ρ(T(a), T(b))

−Q
∫
G

∣∣d(b, c)− d(x, c)
∣∣ dµ(c) + Q

∫
G

∣∣d(b, c)− d(y, c)
∣∣ dµ(c)

∣∣∣
≤ Q

∫
G

∣∣∣ ∣∣d(b, c)− d(x, c)
∣∣− ∣∣d(b, c)− d(y, c)

∣∣ ∣∣∣ dµ(c)

≤ Q
∫
G

∣∣d(x, c)− d(y, c)
∣∣dµ(c).

Observe that the bounds on the statement (b) of Lemma 2 are uniform on a ∈ G. This
fact will allow us to consider all these functions together (for all such elements a ∈ G)
taking values on `∞(G) or L1(µ), depending on the case.

Theorem 3. Let (M, d) be a metric space with a compact generating system G, H a subset of M
and T : (H, d)→ (N, ρ) a Lipschitz map.

1. If T is ∞-bounded, then there exists a ∞-bounded extension T̂∞ of m∞
T ◦ T preserving its

Lipschitz constant and such that the following diagram commute

H

i
��

T // T(H)

m∞
T
��

⊂ (N, ρ)

M
T̂∞

// `∞(G)

2. If T is metric summing, then there exists a metric summing extension T̂µ of mµ
T ◦ T preserving

its Lipschitz constant and such that the following diagram commute
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H

i
��

T // T(H)

mµ
T
��

⊂ (N, ρ)

M
T̂µ

// L1(G, µ)

Moreover, the formulas below can be used for the extensions:

T̂∞(x) :=
(
m̂∞

T,a(x)
)

a∈G ∈ `∞(G), T̂µ(x) := m̂µ

T,(·)(x) ∈ L1(G, µ).

Proof. Lemma 2 gives that both the maps m∞
T ◦ T (and mµ

T ◦ T) preserve the ∞-bounded
(and metric summing) condition of T.

By the construction we have shown in the previous lemmas, we have that

m∞
T (T(b)) =

(
ρ(T(a), T(b))

)
a∈G = T̂∞(b)

(part (1) of Lemma 3), and

mµ

T,(·)(T(b)) = ρ(T(b), T(·)) = m̂µ

T,(·)(b) = T̂µ(b)

for each b ∈ G (part (2) of Lemma 3). Therefore, the diagram commutes.
On the other hand, it has been proved in Lemma 3 that the pointwise components of

the sequence/function that appear in T̂∞(x) or T̂µ(x) satisfy the boundedness requirements
that are needed. Indeed, using the inequalities given there, we obtain for every x, y ∈ M,

‖T̂∞(x)− T̂∞(y)‖∞ = sup
a∈G

∣∣m̂∞
T,a(x)− m̂∞

T,a(y)
∣∣ ≤ Q d(x, y)

and
‖T̂µ(x)− T̂µ(y)‖L1(µ) =

∫
G

∣∣m̂µ
T,a(x)− m̂µ

T,a(y)
∣∣dµ(a) ≤ C d(x, y).

Therefore, the extensions preserve the Lipschitz constants.

These factorizations recall similar situations in the linear setting. For example, integral
operators are characterized in the context of the (linear) operator ideals by a factorization
of the canonical extension of the original operator to L∞ (see, for example, ([20], Ch. 5), see
also [7]).

When the metric space (N, ρ) is (`∞, ‖ · ‖) (or (L1(µ), ‖ · ‖)) we obtain direct extension
results. Let us finish the paper by writing the corresponding corollaries.

Corollary 4. Let (M, d) be a metric space with a compact generating system G and H a subset
of M. Given a ∞-bounded map T : (H, d) → (`∞, ‖ · ‖∞), there exists a ∞-bounded extension
T̂∞ : M→ `∞ preserving the Lipschitz constant.

Corollary 5. Let (M, d) be a metric space with a compact generating system G and H a subset
of M. Given a metric summing map T : (H, d) → (L1(µ), ‖ · ‖), there exists a metric summing
extension T̂µ : M→ L1(µ) preserving the Lipschitz constant.

4. Conclusions

We have introduced a new framework for the conceptualization of extensions and
representations of Lipschitz maps, based on the notion of enriched metric space, which
considers any additional structures that are added to the metric space (e.g., algebraic
relations and graph structures). In the first part of the article, together with other examples,
we have shown how our results apply in the case of Lipschitz operators on Euclidean spaces.

In the second part of the paper, we focus on how Lipschitz operators can be extended
and represented under the assumption of the existence of a metric coordinate system, which
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we formalize by the notion of a metric generating system. We mimic the ideas underlying
the representation of linear maps over finite dimensional spaces by means of their bases.
Under some boundedness or summability requirements, we show that the related Lipschitz
operators allow some factorization and extension results, which can be understood as
representation theorems. Thus, once a certain domination inequality (defined for a metric-
generating system) holds for a Lipschitz operator, we show that the Lipschitz inequality
can be improved with a `∞−norm or an L1−norm instead of the original distance. When
these dominations hold for the identity map, this provides Lipschitz isomorphisms from
the metric space to a metric subspace of `∞ or L1.
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