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Abstract: In 1989, Chartrand, Oellermann, Tian and Zou introduced the Steiner distance for graphs.
This is a natural generalization of the classical graph distance concept. Let Γ be a connected graph
of order at least 2, and S ⊆ V(Γ). Then, the minimum size among all the connected subgraphs
whose vertex sets contain S is the Steiner distance dΓ(S) among the vertices of S. The Steiner k-
eccentricity ek(v) of a vertex v of Γ is defined by ek(v) = max{dΓ(S) | S ⊆ V(Γ), |S| = k, and v ∈ S},
where n and k are two integers, with 2 ≤ k ≤ n, and the Steiner k-diameter of Γ is defined by
sdiamk(Γ) = max{ek(v) | v ∈ V(Γ)}. In this paper, we present an algorithm to derive the Steiner
distance of a graph; in addition, we obtain a relationship between the Steiner k-diameter of a graph
and its line graph. We study various properties of the Steiner diameter through a combinatorial
approach. Moreover, we characterize graph Γ when sdiamk(Γ) is given, and we determine sdiamk(Γ)
for some special graphs. We also discuss some of the applications of Steiner diameter, including one
in education networks.
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1. Introduction

In this paper, all the graphs are assumed to be undirected, finite and simple. The
degree of a vertex v in graph Γ is denoted by degΓ(v). We denote by ∆(Γ) and δ(Γ) the
maximum and minimum degrees of the vertices of Γ, respectively. A subdivision of Γ is a
graph obtained from Γ by replacing edges with pairwise internally disjointed paths. We
write Γ = kH when Γ is the disjointed union of k copies of a graph H. As usual, by Cn, Pn,
K1, n−1 and Kn, we denote, respectively, the cycle, path, star, and complete graph of order
n. We also denote a complement graph of Γ by Γ. The connectivity κ of a graph Γ is the
minimum size of a vertex set V such that Γ− V is disconnected. The edge connectivity λ
of a graph Γ is the minimum size of an edge set E such that Γ− E is disconnected. The
line graph of Γ is the graph L(Γ) with vertex set E(Γ), where two elements e, f ∈ V(L(Γ))
are adjacent in L(Γ) if and only if they correspond to two edges in Γ sharing a common
endpoint. Let L0(Γ) = Γ and L1(Γ) = L(Γ). Then for ` ≥ 2, the `-th iterated line graph
L`(Γ) is defined by L(L`−1(Γ)). We skip the definitions of other standard graph-theoretical
notions, which can be found in, e.g., [1–4].

1.1. The Generalized Concept of Distance

One of the most fundamental ideas in graph-theoretic subjects is distance. Let Γ
be a connected graph with x, y ∈ V(Γ). Then the length of a shortest path between
x and y is the distance d(x, y). The eccentricity e(v) of any vertex v in Γ is defined by
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e(v) = max{d(u, v) | u ∈ V(Γ)}. Moreover, the diameter diam(Γ) and radius rad(Γ) of Γ are
defined by diam(Γ) = max{e(v) | v ∈ V(Γ)} and rad(Γ) = min{e(v) | v ∈ V(Γ)}. These
two graph invariants are related by the inequalities rad(Γ) ≤ diam(Γ) ≤ 2 rad(Γ). The
center C(Γ) of a connected graph Γ is defined by C(Γ) = {u ∈ V(Γ) | e(u) = rad(Γ)}.

The minimum size of a connected subgraph containing two vertices x and y in a
connected graph Γ is equal to the distance between these two vertices x and y. This
observation suggests a generalization of distance. The Steiner distance of a graph, first
proposed in 1989 by Chartrand, Oellermann, Tian and Zou [5], is a natural and nice
generalization of the concept of classical graph distance. An S-Steiner tree, or a Steiner tree
connecting S (or simply, an S-tree), is a tree T = (V′, E′) of Γ, S ⊆ V′ for a graph Γ = (V, E)
and a set S ⊆ V(Γ) (|S| ≥ 2). Let S be a nonempty set of vertices of a connected graph Γ.
Then the Steiner distance dΓ(S) among the vertices of S (or simply the distance of S) is the
minimum size among all connected subgraphs whose vertex sets contain S. Note that if
G is a connected subgraph of Γ such that S ⊆ V(G) and |E(G)| = dΓ(S), then G is a tree.
Observe that dΓ(S) = min{e(T) | S ⊆ V(T)}, where T is a subtree of Γ. In particular, if
S = {x, y}, then dΓ(S) = d(x, y). If there is no S-Steiner tree in Γ, then we assume that
dΓ(S) = ∞. For its basic mathematical properties including related results, see [6–9].

Observation 1. Let Γ be a graph of order n with integer k such that 2 ≤ k ≤ n. If S ⊆ V(Γ) and
|S| = k, then dΓ(S) ≥ k− 1.

Let k and n be two integers such that 2 ≤ k ≤ n. The Steiner k-eccentricity ek(u)
of a vertex u of Γ is defined by ek(u) = max{dΓ(S) | S ⊆ V(Γ), |S| = k, and u ∈ S}.
(If there are two graphs in the context, then we use eΓ

k (u) instead of ek(u).) The Steiner
k-radius of Γ is sradk(Γ) = min{ek(u) | u ∈ V(Γ)}, while the Steiner k-diameter of Γ is
sdiamk(Γ) = max{ek(u) | u ∈ V(Γ)}. Note that for every connected graph Γ, e2(u) = e(u)
for all u ∈ V(Γ), and hence, sdiam2(Γ) = diam(Γ) and srad2(Γ) = rad(Γ). Let Γ1 be
a graph in Figure 1. For any S ⊂ V(Γ1) and |S| = 3, obviously, dΓ1(S) ≤ 4. If we
take S = {u, v, x}, then the Steiner tree of Γ1 is Γ2 (see Figure 1), and hence, we have
srad3(Γ1) = 4. Moreover, each vertex of the graph Γ3 in Figure 1 is labeled with its Steiner
3-eccentricity, so that sdiam3(Γ3) = 6.

Γ1 Γ2 Γ3

Figure 1. Three graphs Γ1, Γ2, and Γ3.

Observation 2. Let k and n be two integers, with 2 ≤ k ≤ n.
(1) If H is a spanning subgraph of Γ, then sdiamk(Γ) ≤ sdiamk(H).
(2) For a connected graph Γ, sdiamk(Γ) ≤ sdiamk+1(Γ).

1.2. Background and Recent Progress

In 1971, Hakimi [10] and Levi [11] introduced the Steiner tree problem in graphs. For an
undirected and unweighted graph Γ, the problem is to find a minimal connected subgraph
that contains the vertices in S, where S ⊆ V(Γ). More specifically, the determination of a
Steiner tree in a graph is a discrete analogue of the well-known geometric Steiner problem:
Find the shortest possible network of line segments interconnecting a set of given points
in Euclidean space. Researchers have studied the computational part of this problem and
have found it an NP-hard problem for general graphs (see [4]).
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Chartrand, Okamoto and Zhang [12] presented the following result.

Theorem 1 ([12]). Let Γ be a connected graph of order n with integer k such that 2 ≤ k ≤ n. Then
k− 1 ≤ sdiamk(Γ) ≤ n− 1. Moreover, the upper and lower bounds are sharp.

Mao et al. [13] studied the problem of determining the minimum size of a graph of
given order, Steiner diameter and maximum degree. Mao et al. [14] studied the Steiner
distance of Cartesian and lexicographic product graphs. Dankelmann et al. [15] presented
an upper bound on sdiamk(Γ): sdiamk(Γ) ≤ 3n

δ+1 + 3n, where n is the order, and δ is the
minimum degree of Γ. Mao [16] gave the upper and lower bounds for the Steiner diameter
of graphs.

The Steiner k-center Ck(Γ) (k ≥ 2) of a connected graph Γ is the subgraph induced
by the vertices of minimum k-eccentricity in Γ. According to Oellermann and Tian [17],
every graph is the k-center of another graph. The Steiner k-median of Γ is the subgraph of Γ
induced by the vertices of Γ of minimum Steiner k-distance. We refer interested readers
to [17–19] for further discussions of Steiner medians and Steiner centers.

Dankelmann, Oellermann and Swart [20] introduced the average Steiner distance µk(Γ)
of a graph Γ. It is defined as

µk(Γ) =
(

n
k

)−1

∑
S⊆V(Γ),|S|=k

dΓ(S).

For mathematical properties on average Steiner distance, see [20,21] and the references
therein.

Let Γ be a k-connected graph, and x, y ∈ V(Γ). Let Pk(x, y) be a family of k vertex-
disjoint paths between x and y, i.e., Pk(x, y) = {Pi, 1 ≤ i ≤ k}. Let pi (1 ≤ i ≤ k) be the
number of edges of path Pi such that p1 ≤ p2 ≤ · · · ≤ pk. The k-distance dk(x, y) between
vertices x and y is the minimum pk among all Pk(x, y), and the k-diameter dk(Γ) of Γ is
defined as the maximum k-distance dk(x, y) over all pairs x, y of vertices of Γ. The concept
of k-diameter emerges rather naturally when one looks at the performance of routing
algorithms. Several authors (Chung [22], Du, Lyuu and Hsu [23], Hsu [24,25], Meyer and
Pradhan [26]) have studied and discussed applications of such notions as k-diameter to
network routing in distributed and parallel processing.

In [27], Mao et al. obtained the following results, which are used later.

Lemma 1 ([27]). Let Γ be a graph of order n. Then Γ is connected if and only if sdiamn(Γ) = n− 1.

Lemma 2 ([27]). Let Γ be a connected graph with n vertices. Then
(1) Γ is 2-connected if and only if sdiamn−1(Γ) = n− 2;
(2) Γ contains at least one cut vertex if and only if sdiamn−1(Γ) = n− 1.

Lemma 3 ([27]). Let Γ be a connected graph with n (n ≥ 4) vertices and connectivity κ. Then
(1) κ(Γ) ≥ 3 if and only if sdiamn−2(Γ) = n− 3;
(2) κ(Γ) = 2 or Γ contains only one cut vertex if and only if sdiamn−2(Γ) = n− 2;
(3) there are at least two cut vertices in Γ if and only if sdiamn−2(Γ) = n− 1.

Lemma 4 ([27]). Let Γ be a connected graph with n vertices and connectivity κ. Then
(1) there are at least three cut vertices in Γ if and only if sdiamn−3(Γ) = n− 1;
(2) κ(Γ) ≥ 4 if and only if sdiamn−3(Γ) = n− 4.
(3) If κ(Γ) = 3, then sdiamn−3(Γ) = n− 3.

1.3. Three Problems

Let Ai (1 ≤ i ≤ 4) be the graphs shown in Figure 2.
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Figure 2. The forbidden subgraphs Ai (1 ≤ i ≤ 4).

In [28], Ramane et al. obtained the following results.

Theorem 2 ([28]). Let Γ be a graph with diam(Γ) ≤ 2. If Γ does not contain Ai (1 ≤ i ≤ 3) as
its induced subgraph, then diam(L(Γ)) ≤ 2.

Theorem 3 ([28]). Let Γ be a graph with diam(Γ) ≤ 2. If Γ does not contain Ai (1 ≤ i ≤ 4) as
its induced subgraph, then L(Γ) does not contain Ai (1 ≤ i ≤ 4) as its induced subgraph.

Theorem 4 ([28]). Let Γ be a graph with diam(Γ) ≤ 2. If Γ does not contain Ai (1 ≤ i ≤ 4) as
its induced subgraph, then for ` ≥ 1,

(1) diam(L`(Γ)) ≤ 2;
(2) L`(Γ) does not contain Ai (1 ≤ i ≤ 4) as its induced subgraph.

In this paper, to better understand this notion of the Steiner diameter of a graph and
its associated line graphs, we propose and study the following problems.

Problem 1. Let Γ be a graph with sdiamk(Γ) ≤ k, and ` is an integer. Find some induced
subgraphs such that if Γ does not contain such induced subgraphs, then sdiamk(L`(Γ)) ≤ k.

Problem 2. Find some induced subgraphs that characterize sdiamk(L(Γ)).

The following observation is immediate from Theorem 1.

Observation 3. Let Γ be a connected graph with m edges. Then

k− 1 ≤ sdiamk(L(Γ)) ≤ m− 1.

In 1979, Bauer and Tindell [29] studied graphs with prescribed connectivity and
line-graph connectivity.

Theorem 5 ([29]). For each s, t, 1 < s < t, there is a graph Γs,t such that κ(Γs,t) = s and
κ(L(Γs,t)) = t.

Li and Mao [30] investigated this problem for generalized connectivity. In this paper,
we consider the same problem for distance-edge-monitoring numbers.

Problem 3. For each s, t, 2 ≤ s ≤ t, is there a graph Γs,t such that sdiamk(Γs,t) = s and
sdiamk(L(Γs,t)) = t?

The rest of the paper is organized as follows. In Section 2, we present an algorithm
to derive the Steiner distance of graph Γ. In Section 3, we obtain a relationship between
the Steiner k-diameter of a graph and its line graph and provide a solution to Problem
1. In Section 4, we characterize the graphs Γ when sdiamk(Γ) is given and provide an
initial solution to Problem 2. In Section 5, we determine sdiamk(Γ) for some special
graphs Γ, including cycles, paths, complete graphs, fan graphs and friendship graphs, and
provide a solution to Problem 3; and finally, in Section 6, we discuss some applications of
these aforementioned results, as well as the combinatorial approach that we applied in
our studies.
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2. A Steiner Tree Construction Algorithm

As pointed out in [31], this Steiner problem in networks was originally formulated
in [10], where a straightforward algorithm was suggested: a solution to this problem can
be found by the enumeration of the minimum spanning trees (MSTs) of subnetworks of
Γ(V, E) induced by subsets W of V such that Z ⊆W ⊆ V. Although |E| log |V| algorithms
for the MST problem do exist [32,33], it is well known that there are an exponential number
of subsets in V. Thus, this straightforward algorithm takes an exponential amount of time
to finish. Many algorithms following different approaches, together with heuristics, for a
more general problem when the involved graph is weighted, i.e., all the edges come with
positive weights, have been presented in, e.g., [31]. Although some of these approaches do
lead to a polynomial solution for some special classes of graphs/networks, they all lead
to exponential algorithms in the general case. Indeed, the problem of finding the Steiner
distance of a set of vertices, the Steiner Problem, is NP-complete [3,34]. On the other hand, to
expose a constructive nature for finding this important quantity, we describe an alternative
algorithm to find the Steiner distance for a given S ⊆ V in a graph Γ(V, E).

Calling any graph with just one vertex trivial, non-trivial otherwise [1], we start with
the following well-known result.

Lemma 5 ([1]). Every non-trivial tree has at least two leaves.

Corollary 1. A graph Γ(V, E) is a tree iff, for some vertices u, v ∈ V, (u, v) ∈ E, Γ(V, E)− {v}
is a tree, and v is a leaf.

Proof. The sufficiency follows from Lemma 5. Let v be one of the two leaves, Γ(V, E)−{v}
has to be both connected and cycle free, otherwise, it would contradict the assumption that
Γ is a tree itself. Regarding the necessity, assume Γ(V, E)− {v} is a tree; then by definition
of a tree, it is connected and contains no cycle. It is clear that with the additional edge
connecting u and v, Γ is still connected and cycle free, and is thus a tree.

Given a graph Γ(V, E), ∅ ⊂ W ⊆ V, the following Algorithm 1 Tree(W, E) returns
true if vertices in W form a tree in Γ. Let W be {w0, w1, . . . , wm−1}, m ≥ 1.

Algorithm 1: Algorithm Tree(W, E)
1. If m = 1
2. //An isolated vertex is a tree
3. return True
4. Else
5. For i ≥ 0 && i ≤ m− 1
6. If Tree(W − wi, E)
7. For j ≥ 0 && j ≤ m− 1 && j 6= i
8. If wi is adjacent to only one wj
9. // wi is a leaf in W
10. return True
11. //No such a leaf exists
12. return False

In terms of complexity, let T(m) be the number of checks we need to do in Line 8 or
the constant operation that we need to do in Line 1. It is clear that T(1) = 1. When m ≥ 1,
with the worst-case scenario, we have to go through a loop m times in Line 5; for each loop,
we have to recursively call Tree(W − wi, E), for which we have to go through another loop
in Line 7 m− 1 times. Hence,

T(m) = m(m− 1)T(m− 1)
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It is thus easy to see that

T(m) = m(m− 1)T(m− 1) = m(m− 1)2(m− 2)T(m− 2) = · · · = [m!]2/m.

By the following Stirling’s approximation,

n! =
√

2πn
(n

e

)n
(

1 + Θ
(

1
n

))
,

where e refers to the natural logarithm 2.71828. . . , we may conclude that T(m) = Θ((m/e)m).
We are now ready to present a Steiner algorithm in Algorithm 2, by definition,

to construct a Steiner tree in a graph Γ(V, E). We notice the remark that we quoted in
Section 1.1, “. . . if Γ is a connected subgraph of Γ such that S ⊆ V(Γ) and |E(Γ)| = dΓ(S),
then G is a tree. Obviously, if S = {u, v}, then dΓ(S) (= d(u, v)) is simply the classical
distance between u and v.” [14].

Algorithm 2: Steiner algorithm
0. Given Γ(V, E), and S ⊆ V
1. St = ∞
2. // Initially set St to infinite, by definition in the DMTC paper
3. for i ≥ 0 && i ≤ |V| − |S|
4. // With the number of the vertices to be added.
5. // Since we want to get the minimum size, we start with 0 and go up.
6. //We quit in Line 12 as soon as we find a Steiner tree.
7. Choose a subset S1, |S1| = i, S1 is a subset of V-S
8. // Notice that the number of s1 is (|V−S|

i ).
9. If Tree(S ∪ S1, E) //If the so-chosen set S ∪ S1 is a tree, we
10. //are done, and the size of this tree is |S ∪ S1| − 1.
11. St = |S ∪ S1| − 1
12. break
13. return St
14. //If none of the vertex subsets satisfy the condition in 9,
15. we return ∞.

When applying the Steiner algorithm to Γ1 as shown in Section 1.1, we start by picking
I = 0 in Line 3; S = ∅ in Line 7 since Tree(S, E) returns True (In Tree(S, E)), m = 2; let
w0 = u, w1 = v; Tree({u}, E) returns True; and since v is only adjacent to u, we are done. St
is set to 1 in Line 11, and it then breaks in Line 12 and returns 1 in Line 13.

In terms of complexity, the best scenario is that the loop in Line 3 runs only once; i.e.,
when S itself is a Steiner tree with edges in G, then its complexity is the same as that of
Tree(S, E), i.e., Θ(|S|/e|S|).

The worst case is that Γ is a Steiner tree itself, or it does not contain any Steiner tree, in
which case the algorithm will have to go through all the subsets of V \ S. In this worst case,
the inner loop in Line 2 and the outside loop in Line 7 would cost altogether 2|V|\|S|T(|V|)(=
O(|V||V|)). Since, as mentioned earlier, this Steiner problem is NP-complete, there is no
way to significantly improve the efficiency of such an algorithm.

3. Steiner Diameter of a Graph and Its Line Graph

In this section, we address Problems 1 and 2, as suggested in Section 1.3. Chartrand
and Steeart [35] investigated the relation between the connectivity and edge-connectivity
of a graph and its line graph.

Lemma 6 ([35]). Let Γ be a connected graph with connectivity κ and edge-connectivity λ. Then
(1) λ(Γ) ≤ κ(L(Γ)) if λ(Γ) ≥ 2;
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(2) λ(L(Γ)) ≥ 2λ(Γ)− 2;
(3) κ(L(L(Γ))) ≥ 2κ(Γ)− 2.

The following result is immediate from Theorem 1.

Proposition 1. Let n, k be two integers with k = n or k = n− 1. Additionally, let Γ be a connected
graph of order n, and Γ is not a tree. Then sdiamk(Γ) ≤ k, and sdiamk(L(Γ)) ≥ k− 1.

Proof. Since Γ is a connected graph of order n, we have L(Γ) is a connected graph with
|V(L(Γ))| = |E(Γ)| ≥ n. It follows that n − 1 ≤ sdiamn(L(Γ)) ≤ |V(L(Γ))| − 1. From
Theorem 1, we have n− 2 ≤ sdiamn−1(Γ) ≤ n− 1, and sdiamn(Γ) = n− 1.

For k = n− 2, we have the following result.

Proposition 2. Let Γ be a connected graph of order n with edge-connectivity λ and integer k such
that n− 2 ≤ k ≤ n.

(1) For λ(Γ) ≥ 2, then sdiamn−2(L(Γ)) ≤ n− 2.
(2) If λ(Γ) = 1, there exists only one cut edge in Γ; then sdiamn−2(L(Γ)) = n− 2.
(3) If λ(Γ) = 1 and there exist at least two cut edges, then sdiamn−2(L(Γ)) = n− 1.

Proof. (1) For k = n− 2, since λ(Γ) ≥ 2, by Lemma 6 (1), we have κ(L(Γ)) ≥ λ(Γ) ≥ 2.
Using this result with Lemmas 3 (1) and (2), we obtain sdiamn−2(L(Γ)) ≤ n− 2.

(2) Suppose λ(Γ) = 1 and there exists only one cut edge in Γ. Then we have
κ(Γ) = 1, and there exists only one cut vertex in L(Γ). From (2) of Lemma 3, we have
sdiamn−2(L(Γ)) = n− 2, as desired.

(3) Suppose λ(Γ) = 1 and there exist at least two cut edges in Γ. Then there exist
at least two cut vertices in L(Γ). From Lemma 3(3), we have sdiamn−2(L(Γ)) = n− 1, as
desired.

Proposition 3. Let Γ be a connected graph with n vertices and edge connectivity λ. If λ(Γ) ≥ 3,
then sdiamn−3(L(Γ)) ≤ n− 3. Moreover, the bound is sharp.

Proof. Since λ(Γ) ≥ 3, it follows from (1) of Lemma 6 that κ(L(Γ)) ≥ λ(Γ) ≥ 3. If
κ(L(Γ)) = 3, then from Lemma 4 (3), we have sdiamn−3(L(Γ)) = n − 3, as desired.
Otherwise, κ(L(Γ)) ≥ 4. From Lemma 4 (2), we have sdiamn−3(L(Γ)) = n − 4. This
completes the proof of the result.

Moreover, if we take Γ = G (see Figure 3), then we obtain κ(Γ) = κ(L(Γ)) = 3. It
follows from Lemma 4 (3) that we have sdiamn−3(L(Γ)) = n− 3, as desired.

G L(G)

Figure 3. Graph G and its line graph L(G).

We now focus our attention on the case of k = 3. We now introduce nine graphs (see
Figure 4), which are used later.
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Figure 4. Graphs Fi (1 ≤ i ≤ 9).

• Let F1 be a path of order 6;
• Let F2 be the graph obtained by identifying a vertex of degree 2 in the 3-vertex path

with one end vertex of the 4-vertex path;
• Let F3 be the graph obtained by identifying a vertex of a cycle with one end vertex of

the 3-vertex path and identifying the other vertex of this cycle with one end vertex of
the 2-vertex path;

• Let F4 be the graph obtained by identifying a vertex of a triangle with one end vertex
of the 4-vertex path;

• Let F5 be the graph obtained by identifying a vertex of a 4-vertex cycle with one end
vertex of the 3-vertex path;

• Let F6 be the graph obtained by identifying a vertex of degree 3 in K−4 with one end
vertex of the 3-vertex path, where K−4 denotes the graph obtained from K4 by deleting
one edge;

• Let F7 be the graph obtained by identifying a vertex of degree 2 of F−7 with one vertex
of the 2-vertex path, where F−7 is the graph obtained by identifying a vertex of a
triangle with one vertex of another triangle;

• Let F8 be the graph obtained by identifying a vertex of 4-vertex cycle with one vertex
of a triangle;

• Let F9 be the graph obtained by identifying a vertex of degree 3 in K−4 with one vertex
of a triangle, where K−4 denotes the graph obtained from K4 by deleting one edge.

The following result provides a solution to Problem 1; that is, given a graph Γ with
sdiamk(Γ) ≤ k, we want to find some induced subgraphs such that if Γ does not contain
such induced subgraphs, then sdiamk(L`(Γ)) ≤ k.

Theorem 6. Let Γ be a connected graph with sdiam3(Γ) ≤ 3. If Γ contains neither F2 nor 3P2 as
its induced subgraph, then sdiam3(L(Γ)) ≤ 3.

Proof. Let e1, e2, . . . , em be the edges of a graph Γ. These are all the vertices of L(Γ). Let
S = {ei, ej, ek}, where ei, ej, ek ∈ V(L(Γ)) = {e1, e2, . . . , em}. Note that ei, ej, ek are three
edges in Γ. First, we assume that Γ[S] is connected. This means that if one of them, say ei, is
adjacent to the other two edges, then vertex ei is adjacent to both vertex ej and vertex ek in
L(Γ). Thus, the tree T induced by the edges in {eiej, eiek} is an S-Steiner tree in L(Γ), which
implies dL(Γ)(S) ≤ 2, as desired.

Next, we assume that Γ[S] is disconnected. We now may assume that Γ[S] = P3 ∪ P2 or
Γ[S] = 3P2. Since Γ does not contain 3P2 as its induced subgraph, we only need to consider
the case Γ[S] = P3 ∪ P2. Let ei be adjacent to ej in Γ, and let ek be adjacent to neither ei nor ej
in Γ. Set ei = xy, ej = yz and ek = uv. Suppose that one vertex in {x, y, z} is adjacent to one
vertex in {u, v}. Without loss of generality, let e′ = xu ∈ E(Γ). Then the tree T induced by
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the edges in {eiej, eie′, eke′} is an S-Steiner tree in L(Γ), and hence dL(Γ)(S) ≤ 3, as desired.
Suppose that none of {x, y, z} are adjacent to one vertex in {u, v}. Since sdiam3(Γ) ≤ 3, it
follows that there exists a vertex w ∈ V(Γ) such that w is adjacent to one vertex in {x, y, z}
and w is adjacent to one vertex in {u, v}. By symmetry, we may assume that xw, uw ∈ E(Γ)
or yw, uw ∈ E(Γ). Table 1 shows the edges between w and one element in {x, y, z, u, v}. By
Figure 4, subgraphs Fi (1 ≤ i ≤ 9) induced by the vertices in {w, x, y, z, u, v} are shown in
Table 1. Note that F1 and Fi (3 ≤ i ≤ 9) contains 3P2 as its subgraph. If Γ contains neither
F2 nor 3P2 as its induced subgraph, then sdiam3(L(Γ)) ≤ 3.

Table 1. Edges between w and vertices in {x, y, z, u, v} of Γ and Γ.

E(Γ) E(Γ)

wx, wu wz, wz, wv F1

wy, uw wx, wz, wv F2

wx, wy, wu wz, wv F3

wx, wu, wv wy, wz F4

wx, wz, wu wy, wv F5

wx, wy, wz, wu wv F6

wx, wy, wu, wv wz F7

wx, wz, wu, wv wy F8

wx, wy, wz, wu, wv F9

4. Line Graphs with Steiner Diameter

The following observation is immediate.

Observation 4. Let Γ be a connected graph with n (n ≥ 5) vertices and m edges. Then
sdiamk(L(Γ)) = k − 1 if and only if for any S ⊆ E(Γ) and |S| = k, the subgraph induced
by the edges in S is connected.

Proposition 4. Let Γ be a connected graph with n vertices, and 2 ≤ k ≤ n− 2. Then sdiamk(L(Γ))
= k− 1 if and only if Γ = K1,n−1.

Proof. If Γ = K1,n−1 for 2 ≤ k ≤ n − 2, then sdiamk(L(Γ)) = k − 1. Conversely, let
sdiamk(L(Γ)) = k− 1. We have to prove that Γ = K1,n−1. Since Γ is connected, it follows
that Γ contains a spanning tree, say T. If T is not a star, then there exists a non-leaf edge
e. We choose k edges from different components of T − e. Then the subgraph induced by
these k edges is not connected, contradicting Observation 4. Thus T is a star. Note that Γ is
a graph obtained from T by adding some edges. Suppose that u is the center of T. We claim
that Γ is a star. Otherwise, let vw be an edge of Γ− T. Then T + vw− uv is a spanning tree
but is not a star, which is a contradiction. This completes the proof of the result.

Proposition 5. Let Γ be a unicycle graph of order n with integer s (3 ≤ s ≤ n). Then
sdiamn−1(L(Γ)) = n − 2 if and only if Γ = C∗s , where C∗s is a cycle Cs plus n − s hanging
edges into the cycle randomly.

Proof. If Γ is C∗s , then it follows from Observation 4 that sdiamn−1(L(Γ)) = n− 2. Con-
versely, let sdiamn−1(L(Γ)) = n− 2. Since Γ is a unicyclic graph, it follows that Γ contains a
cycle, say Cs. We claim that the edge e ∈ E(Γ)−V(Cs) must be a pendant edge. Otherwise,
we can find a path P3 : vivjvk, and vi ∈ V(Cs). Then there exists a non-leaf edge e = vivj.
We choose n− 1 edges from E(Γ)− e. Then the subgraph induced by these n− 1 edges is
not connected, contradicting Observation 4. Thus, we have Γ = C∗s .
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Proposition 6. Let Γ be a connected graph with size m and dΓ(v) ≥ 2 for all v ∈ V(Γ). Then
sdiamm−1(L(Γ)) = m− 2 if and only if λ(Γ) ≥ 2.

Proof. From Lemma 2, sdiamm−1(L(Γ)) = m − 2 if and only if L(Γ) is 2-connected. If
λ(Γ) ≥ 2, then it follows from Lemma 6 that κ(L(Γ)) ≥ λ(Γ) ≥ 2, and so sdiamm−1(L(Γ)) =
m− 2.

Conversely, let sdiamm−1(L(Γ)) = m− 2; thus κ(L(Γ)) = 2. If there exists a cut edge
e in Γ, it follows that e is a cut vertex in L(Γ), which means that κ(L(Γ)) = 1, which is a
contraction. Hence, λ(Γ) ≥ 2.

The following result provides a first step to address Problem 2, i.e., finding some
induced subgraphs that characterize sdiamk(L(Γ)) when sdiam3(L(Γ)) = 2.

Corollary 2. Let Γ be a connected graph with n ≥ 3 vertices. Then sdiam3(L(Γ)) = 2 if and only
if Γ satisfies one of the following conditions:

• Γ = C3 for n = 3;
• Γ ∈ {C4, P4, K−4 } for n = 4;
• Γ = K1,n−1 for n ≥ 5.

5. Results for Some Special Graphs

For any graph Γ with positive integer k, we now explore the relationship between
diam(Γ) and sdiamk(Γ) as follows:

Lemma 7. For any graph Γ with positive integer k (2 ≤ k ≤ n), we have

sdiamk(Γ) ≤ (k− 1) diam(Γ)

with equality if and only if Γ = Kn or k = 2.

Proof. For Γ = Kn, diam(Γ) = 1 and sdiamk(Γ) = k − 1, and hence sdiamk(Γ) = (k −
1) diam(Γ); the equality holds. We already mentioned in Section 1.1, that sdiam2(Γ) =
diam(Γ). For k = 2, the equality thus also holds. Otherwise, Γ 6= Kn and k ≥ 3. For any
u, v ∈ V(Γ), we have dΓ(u, v) ≤ diam(Γ). Let S ⊆ V(Γ) be any set of vertices with |S| = k.
First, we have to prove that

dΓ(S) < (k− 1) diam(Γ). (1)

Let T be a spanning tree of graph Γ. For k = 3, dΓ(S) ≤ dT(S) < 2 diam(Γ) as Γ 6= Kn.
The strict inequality (1) holds. We now assume that k ≥ 4. We prove the result (1) by
mathematical induction on k. Assume that the result in (1) holds for k and prove it for
k + 1. For this, let S′ ⊆ V(Γ) be any set of vertices with |S′| = k + 1 such that S′\S = {v}.
Then, there exists a vertex w in S such that dΓ(S′) = dΓ(S) + dΓ(v, w). Therefore, by the
mathematical induction hypothesis with the above result, we obtain

dΓ(S′) = dΓ(S) + dΓ(v, w) < (k− 1) diam(Γ) + diam(Γ) = k diam(Γ)

as dΓ(v, w) ≤ diam(Γ). Hence, the result (1) holds by induction when k ≥ 3 and Γ 6= Kn. It
follows that sdiamk(Γ) ≤ (k− 1) diam(Γ) with equality if and only if Γ = Kn or k = 2.

Theorem 7. Let k, n be two integers.
(1) Let Γ be a path Pn, and 2 ≤ k ≤ n− 1, sdiamk(L(Γ)) = n− 2.

(2) Let Γ be a cycle Cn, and 2 ≤ k ≤ n, sdiamk(L(Γ)) =
⌊

n(k−1)
k

⌋
.

(3) Let Γ be a star Sn, and 2 ≤ k ≤ n− 1, sdiamk(L(Γ)) = k− 1.

Proof. (1) Let V(Γ) = {v1, v2, . . . , vn} and E(Γ) = {e1, e2, . . . , en−1 | ei = vivi+1}. By the
definition of a line graph V(L(Γ)) = E(Γ). By Observation 3, we have sdiamk(L(Γ)) ≤
n− 2. We can assume that S ⊆ V(L(Γ)) is a set of vertices with |S| = k ≥ 2 such that
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e1, en−1 ∈ S. Then, we have dL(Γ)(S) = n− 2. It follows that sdiamk(L(Γ)) ≥ dL(Γ)(S) =
n− 2 and hence sdiamk(L(Γ)) = n− 2.

(2) Since L(Cn) ∼= Cn, we obtain sdiamk(L(Γ)) =
⌊

n(k−1)
k

⌋
.

(3) Since L(Sn) ∼= Kn−1, we obtain sdiamk(L(Γ)) = k− 1.

From Theorem 7 (2), we have the following observation.

Observation 5. Let Γ = Cn be a cycle, and also let n, `, k (2 ≤ k ≤ n) be positive integers. Then

sdiamk(L`(Cn)) = sdiamk(Cn).

Proof. From Theorem 7 (2), we have sdiamk(L(Cn)) =
⌊

n(k−1)
k

⌋
= sdiamk(Cn). Thus,

we have

sdiamk(L`(Cn)) = sdiamk(L`−1(Cn)) = · · · = sdiamk(L(Cn)) = sdiamk(Cn).

The friendship graph, Frn, can be constructed by joining n copies of the complete graph
K3 with a common vertex, which is called the universal vertex of Frn.

Theorem 8. Let Frn be a friendship graph with two positive integers k and n. Then

sdiamk(Frn) =

{
k if 2 ≤ k ≤ 2n,
k− 1 if k = 2n + 1.

Proof. Let Γ = Frn. Further, let V(Γ) = {v0, v1, u1, . . . , vn, un} and E(Γ) = {v0vi, v0ui | 1 ≤
i ≤ n} ∪ {viui | 1 ≤ i ≤ n}, where v0 is its universal vertex. We consider the following three
cases:

Case 1: k = 2. Let S = {vi, vj} or S = {vi, uj} or S = {ui, uj}, where i 6= j. If 1 ≤ i 6= j ≤ n,
then dΓ(S) = 2. Otherwise, S = {ui, vi} (1 ≤ i ≤ n) or S = {v0, vj} (1 ≤ j ≤ n) or
S = {v0, uj} (1 ≤ j ≤ n). Then dΓ(S) = 1. Hence, sdiam2(Γ) = 2.

Case 2: 3 ≤ k ≤ 2n. Let S = {w |w ∈ V(Γ) − {v0}} such that |S| = k. Then, the
subgraph Tk induced by the edges in E(Tk) = {v0w |w ∈ S} is an S-Steiner tree; hence,
dΓ(S) = |E(Tk)| = k, and so sdiamk(Γ) ≥ k.

For any S ⊆ V(Γ), if v0 /∈ S, then the subgraph Tk induced by the edges in E(Tk) =
{v0w |w ∈ V(Γ)− {v0}} is an S-Steiner tree, and hence sdiamk(Γ) ≤ |S| = k. If v0 ∈ S,
then the subgraph Tk induced by the edges in E(Tk) = {v0w |w ∈ S − {v0}}, and so
d(S) = |S− {v0}| = k− 1; hence sdiamk(Γ) ≤ k. Therefore, sdiamk(Γ) = k.

Case 3: k = 2n + 1. Then, it follows from Theorem 1 that sdiamk((Γ)) = k− 1.

Theorem 9. Let k, n be two positive integers. Then,

sdiamk(L(Frn)) =



2k− 1 if 2 ≤ k ≤ n,

k + 3n− 2
2

if n + 1 ≤ k ≤ 3n− 2 and k− n is even,

k + 3n− 3
2

if n + 1 ≤ k ≤ 3n− 3 and k− n is odd,

k− 1 if 3n− 1 ≤ k ≤ 3n.
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Proof. Let Γ = L(Frn), V(Γ) = {v1, u1, . . . , vn, un, w1, w2, . . . , wn} and E(Γ) = {vivj,
uiuj | 1 ≤ i < j ≤ n} ∪ {viuj | 1 ≤ i, j ≤ n} ∪ {wivi, wiui | 1 ≤ i ≤ n}. For any
wi, wj, vs, vt ∈ V(Γ), we have dΓ(vs, vt) = 1, dΓ(wi, wj) = 3, and

dΓ(wi, vj) = dΓ(wi, uj) =

{
1 if i = j,
2 if i 6= j.

(2)

We consider the following cases:

Case 1: 2 ≤ k ≤ n. First we assume that there is a set S with |S| = k such that S ∩
{v1, u1, . . . , vn, un} 6= ∅. Then, dΓ(S) ≤ 2(k− 1).

Next, we assume that S ∩ {v1, u1, . . . , vn, un} = ∅; that is, S = {wi | 1 ≤ i ≤ k}. It
follows from (2) that dΓ(S) = 3 + 2(k− 2) = 2k− 1, and hence sdiamk(Γ) = 2k− 1.

Case 2: n + 1 ≤ k ≤ 3n − 2, and k − n is even. Let k−n
2 = t. For any S ⊆ V(Γ) with

|S| = k, let D = S ∩ {v1, u1, . . . , vn, un}, W1 = {wi | {ui, vi}
⋂

D 6= ∅, wi ∈ S− D} and
W2 = {wi | {ui, vi}

⋂
D = ∅, wi ∈ S − D}. One can easily see that |S| = |D| + |W1| +

|W2| = k = n + 2t. Clearly, dΓ(D) = |D| − 1, and |W1|+ |W2| ≤ n. Since |S| = k = n + 2t,
we have |D| ≥ 2t, and hence, |W1| ≥ t. Therefore |W2| ≤ n− t. Since k ≥ n + 1, it follows
that there exists a vertex ui ∈ D or vi ∈ D. If wj ∈ S and uj, vj /∈ D where j 6= i, then
from (2), we have dΓ(wi, uj) = 2 or dΓ(wi, vj) = 2. If ui ∈ D or vi ∈ D, then, dΓ(wi, ui) = 1.
Thus we obtain

dΓ(S) = (|D| − 1) + |W1|+ 2|W2| = n + 2t− 1 + |W2| ≤ 2n + t− 1 =
k + 3n− 2

2
.

Since S is any subset in V(Γ) with |S| = k, we have sdiamk(Γ) ≤
k + 3n− 2

2
.

Let S = {vj, uj | 1 ≤ j ≤ t} ∪ {wi | 1 ≤ i ≤ n}. Then dΓ(S) = (2t− 1) + t + 2(n− t) =

t + 2n − 1 =
k + 3n− 2

2
, and therefore sdiamk(Γ) ≥

k + 3n− 2
2

. Hence, sdiamk(Γ) =

k + 3n− 2
2

.

Case 3: n + 1 ≤ k ≤ 3n− 3 and k− n is odd. Let k−n−1
2 = t. For any S ⊆ V(Γ) and |S| = k

and k ≥ n + 1, there exists a vertex ui ∈ S or vi ∈ S. Similarly, as in the proof of Case 1, we
define D, W1 and W2. One can obtain easily that |S| = |D|+ |W1|+ |W2| = k = n + 2t + 1,
dΓ(D) = |D| − 1, |W1| + |W2| ≤ n, |D| ≥ 2t + 1, |W1| ≥ t + 1 and |W2| ≤ n − t − 1.
From (2), we obtain

dΓ(S) = (|D| − 1) + |W1|+ 2|W2| = n + 2t + |W2| ≤ 2n + t− 1 =
k + 3n− 3

2
.

Therefore, sdiamk(Γ) ≤
k + 3n− 3

2
.

Let S = {vi, ui | 1 ≤ i ≤ t} ∪ {wi | 1 ≤ i ≤ n} ∪ {ut+1}. Then, dΓ(S) = 2t + (t + 1) +

2(n− t− 1) =
3n + k− 3

2
, and hence sdiamk(Γ) =

3n + k− 3
2

.

Case 4: 3n− 1 ≤ k ≤ 3n. Since κ(Γ) = 2, it follows from Lemmas 2 and 3 that sdiamk(Γ) =
k− 1.

Theorem 10. Let K2,n (n ≥ 2) be a complete bipartite graph. Then,

sdiamk(L(K2,n)) =

{
k if 2 ≤ k ≤ n,
k− 1 if n + 1 ≤ k ≤ 2n.
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Proof. Let V(L(K2,n)) = U ∪ V and E(L(K2,n)) =
⋃

1≤i<j≤n
uiuj

⋃
1≤i<j≤n

vivj
⋃

1≤i≤n
uivi,

where V = {v1, v2, . . . , vn} and U = {u1, u2, . . . , un}. For any S ⊆ V(L(K2,n)), let
U1 = U ∩ S and V1 = V ∩ S, where |U1| = s, |V1| = t and s + t = k.

Case 1: 2 ≤ k ≤ n. First, we assume that there is no i (1 ≤ i ≤ n) such that ui ∈ U1 and
vi ∈ V1. Without loss of generality, we can assume that if S = {u1, u2, . . . , ui, vi+1, . . . , vk}
(|S| = k), there is a Steiner tree, T, obtained from L(K2,n) such that E(T) =

⋃
1≤j≤i−1

uiuj⋃
i+2≤j≤k

vi+1vj
⋃ {uiui+1, ui+1vi+1}. It follows that dΓ(S) = k.

Next, we assume that there exists i (1 ≤ i ≤ n) such that ui ∈ U1 and vi ∈ V1. Then,
we find a Steiner tree T such that E(T) =

⋃
vj∈V1−{vi}

vivj
⋃

uj∈U1−{ui}
uiuj

⋃ {viui}. Thus,

dΓ(S) = (s− 1) + (t− 1) + 1 = k− 1. It follows that for S ⊆ V(L(K2,n)) with 2 ≤ |S| ≤ n,
we have dΓ(S) ≤ k, and hence, sdiamk(L(K2,n)) = k.

Case 2: n + 1 ≤ k ≤ 2n. By the Nestle principle, there exists an i (1 ≤ i ≤ n) such that
ui ∈ U1 and vi ∈ V1. Similar to Case 1, ui ∈ U1, vi ∈ V1, and hence dΓ(S) ≤ k− 1, which
means sdiamk(L(K2,n)) ≤ k− 1. From Observation 3, sdiamk(L(K2,n)) ≥ k− 1, and hence,
sdiamk(L(K2,n)) = k− 1.

Theorem 11. Let Kn be a complete graph of order n with positive integer k. Then

sdiamk(L(Kn)) =


2(k− 1) if 2 ≤ k ≤ b n

2 c,

k if k = (n
2)− 2n + 4,

k− 1 if (n
2)− 2n + 5 ≤ k ≤ (n

2).

Let b n
2 c < k ≤ (n

2)− 2n + 3. Further, let t be a positive integer such that nt = 2(t− 1) t + b n
2 c,

where nt < k ≤ nt+1. Then sdiamk(L(Kn)) ≥ b n
2 c+ k− 2t− 1.

Proof. Let Γ = L(Kn). Then V(Γ) = E(Kn). For any edge e1, e2 ∈ E(Kn), we have

dΓ(e1, e2) =

{
1 if e1, e2 are incident in Γ,
2 otherwise.

Let M be a perfect matching or almost perfect matching in Kn. Then |M| = b n
2 c.

Case 1: 2 ≤ k ≤ b n
2 c. Let S ⊆ M with |S| = k. Recall that a Steiner tree connecting

S is defined as a subgraph T(V′, E′) of Γ, which is a subtree satisfying S ⊆ V′. Then
dΓ(S) = 2 (k− 1), and hence, sdiamk(Γ) ≥ 2 (k− 1).

One can easily see that diam(Γ) = 2. Together with Lemma 7, we obtain sdiamk(Γ) ≤
2(k− 1). Hence, sdiamk(Γ) = 2(k− 1).

Case 2: k = (n
2)− 2n + 4. Let V(Kn) = {v1, . . . , vn}. We denote by N[vivj] = {vivk, vjv` |

1 ≤ k, ` ≤ n; k, ` /∈ {i, j}}, 1 ≤ i 6= j ≤ n. Let C ⊂ V(Γ) be a subset of Γ with |C| = 2n− 4.
First, we assume that C = N[vivj], 1 ≤ i 6= j ≤ n. Then C is a vertex cut of Γ. Let
S = V(Γ)− C. Then dΓ(S) = |S| = k.

Next, we assume that C 6= N[vivj], 1 ≤ i 6= j ≤ n. For any S1 = V(Γ)− C ⊂ V(Γ)
with |S1| = k, one can easily obtain that dΓ(S1) = k− 1. Then sdiamk(Γ) = k.

Case 3: (n
2)− 2n + 5 ≤ k ≤ (n

2). We have κ(Γ) = 2(n− 2), and hence, Γ[S] is connected for
any S = V(Γ)− C, where C ⊂ V(Γ) and |C| < κ(Γ). Therefore, Γ contains a spanning tree
T of order |S|, and hence, sdiamk(Γ) = k− 1.

We now assume that b n
2 c < k ≤ (n

2)− 2n+ 3 and nt = 2(t− 1) t+ b n
2 c, where nt < k ≤

nt+1. Let M = {e1, e2, . . . , et, et+1, . . . , eb n
2 c}. We denote by E([Kn[{e1, . . . , et}]]) the edge
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set of the subgraph induced by the edges in {e1, . . . , et}. Let EKn [{et+1}, {e1, e2, . . . , et}] be
the set of edges from {et+1} to {e1, e2, . . . , et} in Kn.

Let pt be the number of edges in M ∪ E[Kn[{e1, . . . , et}]]. Then pt − pt−1 = 4(t− 1)
and p1 = |M| = b n

2 c. It follows that

pt = pt−1 + 4(t− 1) = pt−2 + 4(t− 2) + 4(t− 1)

= · · · · · ·
= p1 + 4.1 + 4.2 + · · ·+ 4(t− 2) + 4(t− 1)

=
⌊n

2

⌋
+ 2 t (t− 1).

Thus, we have pt = 2(t− 1)t + b n
2 c = nt. Since pt = nt < k ≤ nt+1 = pt+1, then

we consider a set S = M ∪ E[Kn[{e1, . . . , et}]] ∪ EKn [{et+1}, {e1, . . . , et}], where |S| = k and
|EKn [{et+1}, {e1, . . . , et}]| = k− nt. By Observation 4, we have

dG(S) = 2
(⌊n

2

⌋
− (t + 1)

)
+
(

k−
(n

2
− (t + 1)

)
− 1
)
= k +

⌊n
2

⌋
− t− 2,

and hence sdiamk(L(Kn)) ≥ b n
2 c+ k− t− 2. This completes the proof of the theorem.

A general fan graph Fn1,n2 is defined as the graph join Kn1 ∨ Pn2 . We denote fan graph
F1,n−1 = K1 ∨ Pn−1 by Fn.

Theorem 12. Let Fn be a fan graph of order n with positive integer k. Then

sdiamk(Fn) =

{
k if 2 ≤ k ≤ n− 2,
k− 1 if n− 1 ≤ k ≤ n.

Proof. Let V(Fn) = {v0, v1, · · · , vn−1} and E(Fn) = {v0vi | 1 ≤ i ≤ n− 1} ∪ {vivi+1 | 1 ≤
i ≤ n− 2}.

Case 1: 2 ≤ k ≤ n− 2. Let S ⊆ V(Fn) with |S| = k. First, we assume that v0 /∈ S. Let
S = {vi1 , vi2 , . . . , vik}, where 1 ≤ ij ≤ n− 1 (1 ≤ j ≤ k). Then, the subgraph induced by
the edges in E(Tk) = {v0vx | vx ∈ S} is an S-Steiner tree of Fn, and hence dFn(S) = |S| = k.

Next, we assume that v0 ∈ S. In this case, let S = {v0, vi1 , . . . , vik−1
}, where 1 ≤ ij ≤

n− 1 (1 ≤ j ≤ k− 1). Then, the subgraph induced by the edges in E(Tk) = {v0vx | vx ∈
S− {v0}} is an S-Steiner tree of Fn, and hence, dFn(S) = |S| − 1 = k− 1. From the above
result, one can easily see that ek(v) = k for v ∈ S − {v0}, and ek(v0) = k − 1. Hence,
sdiamk(Fn) = k for 2 ≤ k ≤ n− 2.

Case 2: k = n − 1. First, we assume that S = V(Fn) − {vi} for 1 ≤ i ≤ n − 1. Then,
the subgraph induced by the edges in E(Tn−1) = {v0vi | vi ∈ S} is an S-Steiner tree, and
hence, sdiamn−1(Fn) ≤ |E(Tn−1)| = n − 2. Next, we assume that S = V(Fn) − {v0}.
Then, the subgraph induced by the edges in E(Tn−1) = {vivi+1 | 1 ≤ i ≤ n − 2} is an
S-Steiner tree, and hence, sdiamn−1(Fn) ≤ |E(Tn−1)| = n− 2. From Theorem 1, we have
sdiamn−1((Fn)) ≥ n− 2, and hence, sdiamn−1(Fn) = n− 2.

Case 3: k = n. Then it follows from Lemma 1 that sdiamn(Fn) = n− 1.

Theorem 13. Let Fn be a fan graph of order n (≥ 5) with positive integer k. Then

sdiamk(L(Fn)) =


2k− 1 if 2 ≤ k ≤ d n−2

3 e,
k if k = 2n− 6,
k− 1 if 2n− 5 ≤ k ≤ 2n− 3.
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Proof. Let L(Fn) = Γ. Additionally, let V(Γ) = {v1, v2, . . . , vn−1, w1, w2, . . . , wn−2} and
E(Fn) = {vivj | 1 ≤ i < j ≤ n − 1} ∪ {wivi, wivi+1 | 1 ≤ i ≤ n − 2} ∪ {wiwi+1 | 1 ≤ i ≤
n− 3}. For any wi, wj, vs, vt ∈ V(Γ), we have dΓ(vs, vt) = 1, and

dΓ(wi, wj) =


1 if |i− j| = 1,
2 if |i− j| = 2,
3 if |i− j| ≥ 3,

(3)

and

dΓ(wi, vt) =

{
1 if |t− i| ≤ 1,
2 otherwise.

(4)

Case 1: 2 ≤ k ≤ d n−2
3 e. Since n ≥ 5, we have diam(Γ) = 3.

First, we assume that there is a set S with |S| = k such that S∩ {v1, v2, . . . , vn−1} 6= ∅.
From (3) and (4), we obtain dΓ(S) ≤ 2(k− 1).

Next, we assume that S ∩ {v1, v2, . . . , vn−1} = ∅. Then, one can easily see that
dΓ(S) ≤ 1 + 2(k − 1) = 2k − 1. If we take S = {wi | i ≡ 1 (mod 3) and 1 ≤ i ≤ n− 2},
then we obtain dΓ(S) = 1 + 2(k− 1) = 2k− 1, and so sdiamk(Γ) = 2k− 1.

Case 2: k = 2n− 6. Since κ(Γ) = 3, it follows from Lemma 4 that sdiamk(Γ) = k.

Case 3: 2n − 5 ≤ k ≤ 2n − 3. Since κ(Γ) = 3, it follows from Lemmas 2 and 3 that
sdiamk(Γ) = k− 1.

We obtain the relation between the diameter of the line graph and the cardinal of
vertex set S as follows.

Observation 6. For any Γ and integer k, we have

k− 1 ≤ sdiamk(L(Γ)) ≤ (k− 1)(diam(L(Γ)).

Moreover, the bound is sharp.

Proof. From Observation 3 and Lemma 7, we have

k− 1 ≤ sdiamk(L(Γ)) ≤ (k− 1)(diam(L(Γ)).

We now address Problem 3 that we proposed in Section 1.3; that is, for integer s, t,
2 ≤ s ≤ t, is there a graph Γs,t such that sdiamk(Γs,t) = s and sdiamk(L(Γs,t)) = t?

In Table 2, we present some graphs Γ such that sdiamk(Γ) = s and sdiamk(L(Γ)) = t,
which starts to provide a solution to Problem 3; that is, for each s, t, 2 ≤ s ≤ t, is there a
graph Γs,t such that sdiamk(Γs,t) = s and sdiamk(L(Γs,t)) = t?

Table 2. sdiamk(Γs,t) = s and sdiamk(L(Γs,t)) = t.

Graph s t k

Cn s s 2 ≤ k ≤ n

Frn s 2s− 1 2 ≤ k ≤ d(n− 2)/3e
Kn s 2(s− 1) 2 ≤ k ≤ bn/2c
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We indeed have the following general observations. For any graph Γ, let u, v, w, z ∈
V(Γ) and uv, wz ∈ E(Γ). Then

dL(Γ)(uv, wz) =

{
0 if uv = wz,
1 + min{dΓ(u, w), dΓ(u, z), dΓ(v, w), dΓ(v, z)} otherwise.

(5)

Observation 7. Let Γ be a connected graph with uv ∈ E(Γ). Then

|eL(Γ)
k (uv)− eΓ

k (v)| ≤ 2(k− 1).

Proof. For any vertex v ∈ V(Γ), we can assume that S = {v, u1, . . . , uk−1} ⊂ V(Γ) such
that eΓ

k (v) = dΓ(S). Let S∗ = {ui ∈ S | uiy ∈ E(Γ)). Clearly, dL(Γ)(S∗)− dΓ(S) ≤ 2(k− 1),

and hence eL(Γ)
k (uv) ≤ eΓ

k (v) + 2(k− 1).

Observation 8. Let Γ be a graph of order n with positive integer k such that 2 ≤ k ≤ n. Then

0 ≤ | sdiamk(L(Γ))− sdiamk(Γ)| ≤ 2(k− 1).

Moreover, the lower bound is sharp.

Theorem 14. Let Γ be a graph of order n with size m (≥ n) and positive integer k such that
2 ≤ k ≤ n. Then

0 ≤ | sdiamk(L(Γ))− sdiamk(Γ)| ≤ m− k.

Moreover, the bound is sharp.

Proof. From Observation 3, we have k− 1 ≤ sdiamk(L(Γ)) ≤ m− 1. From Theorem 1, we
have k− 1 ≤ sdiamk(Γ) ≤ n− 1, and hence, sdiamk(L(Γ))− sdiamk(Γ) ≤ m− k.

Let Γ = Cn. From Observation 5, the lower bound is sharp. If k = n, then the upper
bound is sharp.

6. Applications

During an economic debate on social networking technologies in education, Vicki A.
Davis proposed the concept of education networks [36,37], where Steiner trees may find
application. For instance, one may want to connect certain kinds of educational resources
in a subnetwork that uses the smallest number of communication links. To do this, one
needs a Steiner tree for the vertices of the subnetwork corresponding to the educational
resources that need to be connected.

Combinatorial thinking, also known as “connected thinking” or “combined thinking”,
is a way of thinking in which a number of seemingly unrelated things are connected so
that they become a new and inseparable whole. Combinatorial thinking is innovative,
contemporary and inheritable. Forms of combinatorial thinking include homogeneous
combination, heterogeneous combination, recombination combination, shared substitution
and concept combination.

Mathematics education researchers Rezaie and Gooya [38] speculated on the claim
that learning combinatorial concepts requires a special way of thinking, and by reviewing
the related literature in this area, they found that some researchers acknowledged this spec-
ulation and called it combinatorial thinking. In 2002, Graumann [39] regarded combinatorial
thinking as a tool for solving problems when he was experimenting with children doing
geometrical tasks.

As a more specific example related to the technical results that we report in this
paper, graph operations such as line graphs are motivated by the desire to “construct”
graphs with established properties to obtain new graphs that inherit those properties.
From Proposition 2, we can get an upper bound of sdiamn−2(Γ) ≤ n− 2 from the upper
bound of sdiamn−2(L(Γ)). One can also see from Theorem 6 that both sdiam3(Γ) ≤ 3
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and sdiam3(L(Γ)) ≤ 3 hold. The teaching of graph operations is thus a good example for
training combinatorial thinking ability.

7. Concluding Remarks

In this paper, we derived an algorithm to calculate the Steiner distance. Next, we
provided a solution to Problem 1: that is, given a graph Γ with sdiamk(Γ) ≤ k, we wanted
to find some induced subgraphs such that if Γ did not contain such induced subgraphs,
then sdiamk(L(Γ)) ≤ k, where k = 3. We also obtained a relationship between the Steiner
k-diameter of a graph and its line graph and studied various properties of the Steiner
diameter through a combinatorial approach. In addition, we obtained Steiner diameters for
some special graphs. Moreover, whether for each s, t, 2 ≤ s ≤ t, there exists a graph Γs,t
such that sdiamk(Γs,t) = s and sdiamk(L(Γs,t)) = t is still open; we got several results, as
shown in Table 2.
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