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Abstract: In order to solve the problem of intelligent management of cattle numbers in the pasture,
a dataset of cattle density estimation was established, and a multi-scale residual cattle density
estimation network was proposed to solve the problems of uneven distribution of cattle and large
scale variations caused by perspective changes in the same image. Multi-scale features are extracted
by multiple parallel dilated convolutions with different dilation rates. Meanwhile, aiming at the
“grid effect” caused by the use of dilated convolution, the residual structure is combined with a small
dilation rate convolution to eliminate the influence of the “grid effect”. Experiments were carried
out on the cattle dataset and dense population dataset, respectively. The experimental results show
that the proposed multi-scale residual cattle density estimation network achieves the lowest mean
absolute error (MAE) and means square error (RMSE) on the cattle dataset compared with other
density estimation methods. In ShanghaiTech, a dense population dataset, the density estimation
results of the multi-scale residual network are also optimal or suboptimal in MAE and RMSE.

Keywords: crowd density estimation; multi-scale residual networks; smart pasture dataset

MSC: 68T07

1. Introduction

In farm management, cattle numbers estimation is one of the most critical tasks in asset
valuation and pasture management. Precise cattle counts improve the efficiency of farming
during assessing assets. It also helps both companies and individuals to reduce unnecessary
losses as it detects theft in time [1]. In practice, cattle counting in farms can be challenging
because of different factors, such as cattle’s overlapping [2], scene transformation [3], and
environmental illumination changing [4]. The traditional method, e.g., counting by human,
is often very time consuming, labour intensive and error-prone [5].

Vision-based target counting has gained much attention in recent years. Many sce-
narios have utilised digital image processing methods for target counting, such as dense
crowd counting [6-11], crop target counting [12,13], cell counting [14], small target count-
ing [15]. However, visual-based counting technologies have been poorly studied in animal
husbandry and are mostly hardware-based methods.

Deep learning has made good progress in recent years for the crowd density estimation
problem [16]. Crowd density estimation aims to obtain a predicted density graph by
learning a mapping between the local features of an image and its corresponding density
graph. The density graph represents the distribution of the crowd and the number of people
at each pixel point. The estimated crowd size is finally obtained by integral and summing
the density graphs. In farm management, crowd density estimation based on convolutional
neural networks has achieved good performance in chicken [17] and pineapple flower
counting [18], but the application on cattle counting is still limited.
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Here we first clarify the problem as three main tasks: (1) uneven distribution of cattle,
(2) scale variations caused by perspective, (3) grid effect. Uneven distribution is one of the
most significant problems in crowd density estimation. In our collected pasture dataset,
cattle distribution varies in different scenes. Scale variations occur on both fish-eye cameras
and ordinary cameras; it requires a well-trained model to describe images that are more
flexible and robust. Grid effect is inevitable when our model superposes multiple dilated
convolutions to analyse the dataset. A high dilation rate can lead to ignorance of critical
features, which limits the model performance.

The cattle in image often have very different sizes, ranging from several pixels to
tens of pixels. This requires the network to be able to capture a large rang of scales. This
paper proposed a multi-scale residual cattle density estimate network called MSRNet,
which is built upon the blocks consisting of densely connected dilated convolutional layers.
Thus, it can output features having different receptive fields and capture cattle different
scales. The MSR block obtains multi-scale receptive fields by using multi-column dilated
convolution, and at the same time reduces the grid effect problem caused by continuous
dilated convolution, as shown in Figure 1. So using multiple parallels dilated convolution
to extract features is effective for the first two tasks. Using residual structure combined
with small dilation rate convolution can help mitigate the grid effect. We summarise our
contributions as follows:

*  Collect a novel herd image dataset in a variety of scenes and conditions.

*  Train a multi-scale residual cattle density estimate network (MSRNet) for cattle num-
ber estimation on both public dataset and collected dataset, and demonstrate the
interpretability.

e Identify three challenges on this dataset and utilize MSRNet to handle them. Conduct
extensive experimentation to demonstrate the performance.

Est: 20.7

Figure 1. Given a conceptual description from data collection to model training, in which the module
obtains multi-scale receptive fields by using multi-column dilated convolution to handle the problem
of scale variations of cattle.
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In addition, in contrast to traditional crowd density estimation, crowd datasets are
usually labeled with heads of people, while cattle dataset is labeled with body of cattle.
Since there is no public cattle dataset, we created a cattle density dataset and verify the
effectiveness of our method on this dataset.

The remainder of the paper is structured as follows. Section 2 reviews existing methods
to estimate cattle numbers and relative deep learning methods. In Section 3, we present
details for the proposed methodology, including dataset collection and multi-scale residual
cattle density estimation methods. After that, we demonstrate details about our dataset
and the experimental results in Section 4 and discuss possible future works. Finally, we
draw important conclusions in Section 5.

2. Related Work

The mainstream counting methods nowadays, both nationally and internationally,
are hardware-based. The informatization achievement in the livestock breeding process is
mainly based on electronic ear tags used as the core information carrier. However, there
are still lots of promotion problems, such as high maintenance costs and complicated
operations, in the livestock breeding industry. As a result, the large-scale application
is limited at present [5]. Moreover, wearing ear tags can also bring some harm to the
livestock itself, such as wound infection and calf panic [19]. There are three main types of
vision-based counting methods: detection-based methods, regression-based methods and
density-estimation-based methods.

2.1. Detection-Based Methods

Some researchers have used target detection methods to count livestock. Xu and
her colleagues [20] used images captured by a drone to detect targets and segment live-
stock through Mask-RCNN to achieve live cattle counting in pasture and farm scenarios.
Li et al. [21] used the YOLOv3 target detection algorithm combined with the Deep SORT
target tracking algorithm to achieve automatic counting of sheep based on the bilinear
counting method. All these methods mentioned above are only applicable to scenes where
the targets are relatively sparse.

2.2. Regression-Based Methods

However, in the actual scenario of pastureland, there are usually different perspective
variations in the images captured by the camera, resulting in large scale variations of
the cattle. Most of the time, the cattle are clustered together and heavily obscured when
the counting error of the target detection method is large. Researchers try to deploy
regression-based methods to learn the relations among extracted features from cropped
image patches, and then calculate the number of particular objects. Idrees et al. [6] proposed
a model to extract features by employing Fourier analysis and SIFT (Scale invariant feature
transform) [22] interest-point based counting.

2.3. Density Estimation-Based Methods

When executing the regression-based solution, one critical feature, called saliency;, is
overlooked which causes inaccurate results in local regions. Tian et al. [23] estimated the
number of pigs in a pen by predicting the density of pigs in the image, and this method was
more accurate for dense pig predictions compared to target detection but was inaccurate
for numbers over 10. Density estimation can be divided into multi-column networks and
single-column networks according to network structure. Multi-column networks refer to
models containing multiple convolution columns, with different columns corresponding
to different sizes of targets. Zhang et al first proposed the multi-column convolutional
structure network MCNN [7], which consists of three columns of convolutions, each with a
different size of the perceptual field to extract features at different scales. However, subse-
quent experiments found that the features extracted by this method were very redundant,
and the structure limited the performance. Li et al. [8] proposed CSRNet to increase the
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perceptual field by stacking the dilated convolutions without reducing the image resolu-
tion, which improved the prediction accuracy. Wan et al. [24] used an adjustment network
KDMG to dynamically adjust the supervised information for the problem of inaccurate
label information generation and achieved good results in crowd density estimation. Al-
though crowd density estimation networks are now better developed, very few studies
have attempted deep learning-based density estimation algorithms in livestock industries
such as cattle herding.

2.4. Common Public Datasets

Crowd counting and density estimation models based on deep learning highly rely
on the dataset. There are four most commonly used datasets: UCSD [25], UCF_CC_50 [6],
WorldExpo [26], ShanghaiTech_A and ShanghaiTech_B [7]. They contain 2000, 50, 3980,
482 and 716 image data, respectively. ShanghaiTech_A and ShanghaiTech_B are the largest
datasets so far in terms of the annotated heads for crowd counting. However, all these
datasets demonstrate human society scenarios, such as pedestrians on the sidewalk, public
rallies, and sports events. Shao and his colleagues [27] collected a cattle counting dataset in
2018. It contains 670 images taken by an unmanned aerial vehicle (UAV), and the total target
number is 218. But the data quantity and UAV scenario still limit the model application as
most pastures still use fixed-position cameras instead of UAVs.

This paper proposed a multi-scale residual cattle density estimate network to estimate
the number of cattle in a pasture. To address the problems of uneven distribution of
cattle density and large scale variation of cattle in the same image, we proposed a multi-
scale residual feature perception module that obtains a multi-scale perceptual field. It
overcomes the grid problem caused by continuous dilated convolution by using multi-
column dilated convolution. As there is no publicly available cattle herd dataset, we also
collected and introduced a cattle herd density dataset in this paper, and we conducted
extensive experimentation to demonstrate our model performance on this dataset. The
cattle dataset is available at https://github.com/menjure/Cattle-dataset, accessed on 5
August 2022.

3. Methodology

The fundamental idea of our approach is to deploy an end-to-end multi-scale residual
cattle density estimate network with denser scale diversity to cope with the large scale
variations and density level differences in both congested and sparse scenes. In this section,
we first introduce the generation of density maps, then we describe the architecture of
MSRNet, next we explain the loss function, and finally we present the collected dataset.

3.1. Formalization

The goal of our MSRNet model is to generate a density map according to the given
input pastures image. The task can be formalized as a mapping: F : X — D, where X is the
input image, D represents the output density map, respectively.

Different from the traditional regression methods that only return a crowd number, the
density map provides more information. The image data are labelled with cattle number
and position, and the density map will match the target distribution of the ground truth.

The performance of the networks depends heavily on the quality of the supervised
data. A high-quality density graph can help improve the performance of the density estima-
tion model in training. Generating a density graph consists of two steps: (1) cattle images
annotation, (2) converting the cattle image labels to a cattle density graph. Specifically, let a
cow at position x; be represented as §(x — x;). In this way, an annotated image marked as
N cows can be represented as a function below:

H(x) =} 6(x — xi). (1)
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In a real image, each cow is of a certain size range and corresponds to a small image area.
Setting the value of a pixel to 1 in the annotation file to represent this cow is unreasonable.
The Gaussian kernel function is a distributed bell-shaped line, and the closer the coordinates
are to the centre, the larger the value, and vice versa. So we use a Gaussian kernel function
to replace the pixel value of this central point with a weighted average of the pixel values
of the points around it. In this way, the weights of the pixel points within the blur radius
add up to 1. This method does not affect the total number of cattle in the resulting density
graph but also provides more realistic space location features of each cattle in the picture.
For each image i, the annotated image function is convolved with a Gaussian kernel to
obtain the density below:

D$' = Hi(x) - Go(x), )

where Df" "is the density supervisory information and ¢ is the Gaussian covariance.

The single-camera cattle density estimation is challenging because of the occlusion,
uneven distribution, scale variations, and grid effect. Here we introduced the collected
dataset below and described the multi-scale residual cattle density estimate network.
Specifically, we first presented the overall framework of the network. Then, there is a
detailed description of the multi-scale residual feature-aware module. In the end, we also
discussed the loss function used in this paper.

3.2. Multi-Scale Residual Cattle Density Estimation Methods
3.2.1. MSRNet Structure

In order to efficiently deal with the uneven distribution of cattle density and large
scale variation, a multi-scale residual network (MSRNet) is proposed. The proposed
MSRNet structure is illustrated in Figure 2, which consists of a front-end feature extraction
network and three back-end multi-scale feature sensing modules. In particular, the first
ten convolutional layers and three pooling layers of the conventional VGG-16 [28] network
are performed here, acting as the front-end feature extraction. The back-end consists of
three multi-scale residual feature-aware modules. First, MSRNet apply their multi-scale
perceptual fields to extract deeper semantic information, and then a density regression
head is applied to obtain the final predicted density graph. The final number of predictions
is obtained by integrating the predicted density graph.

3 3x3 Conv

* Dilation rate = 1
J . 3x3Conv
> * Dilation rate = 2

. 3x3 Conv
* Dilation rate =3

. Channel-wise
Summation

© : UpSample

P AP
:ﬁm‘ Qﬁ [

E——————— e

Figure 2. An illustration of our framework of MSRNet.

3.2.2. Multi-Scale Residual Feature Sensing Module (MSR)

The MSR module is proposed to extract more and deeper semantic information. Each
MSR module contains three dilated convolution layers and two conventional convolution
layers, as shown in Figure 2. Compared with the conventional convolution operation,



Mathematics 2022, 10, 3856

6 of 15

the dilated convolution, proposed by Yu et al. [29] for solving the image segmentation
problem, introduces a “dilation rate” hyperparameter to increase the perceptual field
without reducing the image resolution.

The examples of dilated convolution are shown in Figure 3. In particular, the dilated
convolution expands the receptive field by inserting holes into the normal convolution, the
convolution kernel is discontinuous and the features sampled are discrete and uncorrelated.
The larger dilation rate will lead to more features being lost. For example, as shown
in Figure 3a, the perceptual field is 3 x 3 when the dilation rate is 1, which is normal
convolution, and every pixel in the perceptual field is used. When the dilation rate is 2, the
receptive field is 5 x 5, as shown in Figure 3b, and only 9 pixels are involved. When the
dilation rate is 3, the field is 7 x 7, as shown in Figure 3c. The number of pixels used is
still 9. Although the dilated convolution reduces the pixels” usage rate, it would lose more
information. The identity shortcut connection between each residual block, is designed to
mitigate the pixels” loss effects.

(a)r=1 (b) r=2 (c)r=3
Figure 3. Dilated convolution receptive fields with different rates.

The channel dimension is first reduced by a 3 x 3 x 512 convolution, which helps
save the subsequent computational effort. The three side-by-side dilated convolutions are
used to extract multi-scale features, with a dilation rate of 1, 2 and 3. The dilation rate
of 1 indicates the normal convolution, which captures every detail of the image, while
the convolutions with a dilation rate of 2 and 3 capture a larger field of sensation and
obtain multi-scale features. By means of a constant mapping, the three extracted multi-scale
features are then added to the input forming a residual structure. That allows the loss of
pixel information caused by the holes to be supplemented to obtain the fused features.
Each dilated convolution is followed by a ReLu activation layer. Finally, the fused features
are further fused by a 3 x 3 x 512 convolution. Each module is connected to each other
densely, and each layer of the module is tightly connected to the other layers behind it so
that information from each layer can be passed to subsequent layers.

3.2.3. Loss Function

Euclidean loss was used to measure the estimation error between the estimated density
and the supervised density. Let a set of training sample data be X;, in whichi =1,2,...,N.
Then the density is Df” = MSR(X;,0). And the overall mean square error will be the
Euclidean loss function as below:

z

1

2
t

= — D' — D3|,
Ni H ! L2

Le ®)

Il
—_

where N is the batch size during the training. Using the Euclidean loss function to evaluate
the prediction gap at the pixel level will ignore the global and local correlation between the
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estimated density and the true density graph. Therefore, we combined multi-scale density
level consistency loss to measure Euclidean loss in both global and local contexts. The
density graph is divided into sub-regions of different sizes by a pooling operation, each
representing a different density level at a different location. And the network is optimised
by constraint with the corresponding true value. The multi-scale density level consistency
loss is defined as follows:

1 %i 1
Le=— 7’
‘ Nizlj:lka'

Pave(Diprer kj) _Pave(thr kj)

)

’
1

where S denotes the density levels of the divided density graph, Pz denotes the average
pooling level, and k; denotes the output size of the average pooling. In this work, the
density graph is divided into four levels, and the average pooling output sizes are 1 x 1,
2x2,4x4and 8 x 8. The 1 x 1 size output captures the global information while the
remaining three capture the local information. The loss function is defined as follows:

L=L,+ AL, (5)

where L. represents the Euclidean loss, L. is the multi-scale density level consistency loss,
and A is the weight hyperparameter that we use to balance the pixel-level and density-level
losses. Algorithm 1 provides the pseudo-code of MSRNet.

Algorithm 1 Multi-scale residual cattle density estimate network (MSRNet) algorithm

Input: The input data: X, and Xiest;
Output: The well-trained MSRNet model F : X — D;

1: Define the model function MSR and initialize parameters 6;
2: Define the loss function L = L, + AL;
3: The data augmentation from X;,;, to get Xy4in;
4: for i=1,2,..N do
5 for X; € Xtmin do
6 Calculate estimated density Dfm = MSR(X;,0);
7: Calculate ground truth Df"t = H;(X;) - G+(X;);
8 Calculate the loss = L(Dlm, Dl.gt);
9 Update 6 to minimize loss;
10:  end for
11:  for Y; € Xjest do
12: Calculate estimated density C!"* = MSR(Y;, );
13: iaflculate ground truth Cigt = H;(Y;) - Go(Y;);
14: end for
15 Calculate the MAE = & YN, |/ — C¥');
16 Caleulate the RMSE = \/ & TN, [C/" — C§'P%;
17: end for
18: Save the MSRNet model F;

3.3. Herd Image Data Collection

In order to evaluate our proposed MSRNet, a cattle dense dataset is also created.
Our proposed dataset is large and contains a variety of scenes and lighting conditions
that can represent the real situation of the pasture. Expressly, we set up smart cameras
in several pastures of Yibin and Qinghai. It took five months to monitor the daily life of
cattle in different periods, seasons, scenarios and weather conditions to get video data. The
scenarios include indoor and outdoor cattle pens, and this research includes various types
of surveillance cameras, such as fisheye cameras, ordinary cameras and UAV cameras. We
intercept video data from different time periods. The intercepted surveillance videos were
sampled in real-time and then selected. Data with diverse scenes and significant variations
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Scene Capacity: 3~10

in cattle movement were picked from the dataset. All in all, 850 images were finally selected
to build the density estimation dataset, which contains a total of 18,403 cattle. The number
of cattle per image varies from 3 to 129 cattle. Some of these samples are shown in Figure 4.
Among them, the data distribution of the above scenarios is shown in Figure 5. The fisheye
cameras accounted for the largest proportion of 500 pictures, and the scene with the number
of cattle in the range of 11~20 was the most, including 447 images.

I

11~20 21~30 31~50 51~80 81~129

Figure 4. Representative samples of the images in the collected pasture dataset.

Ordinary camera 3~10
UAV camera Day 11~20
20.7% Fisheye camera Night 9.29% 2130
2.94% 12% 31~50

20.47% -y 20.59% -
86% 2459/\ 51~80
B 81~129
14%
58.83% 52.59%
(a) Scene perspective distribution. (b) Day and night distribution. (c) Scene capacity distribution.

Figure 5. The data distribution of the above scenarios.

Different from the crowd counting dataset labeling process, the crowd counting
datasets use the head as the labeling center during the labeling process, because the
position of the head in the picture is obvious and easy to distinguish. Meanwhile, the cattle
herd dataset is caused by the complex perspective scene. The center of the label cannot be
determined; usually it is the belly of the cow, and in the case of severe occlusion, it is the
visible part of the cow, such as the head or the back of the cow. The cattle herd dataset is
compared with other population datasets as shown in the Table 1.
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Table 1. Statistics of different crowd counting datasets and cattle counting dataset.
Dataset Number Average Count Statistics
of Images Resolution Total Min Ave Max
UCSD [25] 2000 158 x 238 49,885 11 25 46
UCF_CC_50 [6] 50 2101 x 2888 63,974 94 1279 4543
WorldExpo [26] 3980 576 x 720 199,923 1 50 253
ShanghaiTech_A [7] 482 589 x 868 241,677 33 501 3139
ShanghaiTech_B [7] 716 768 x 1024 88,488 9 123 578
Cattle dataset 850 864 x 1317 18,403 3 22 129

A robust network should have the capability of coping with various complex scenarios.
The existence of challenges always brings many difficulties to the models, such as occlusion,
complex background, scale variation, perspective distortion, rotation, illumination varia-
tion, and non-uniform distribution. Moreover, the scenes of the images are from indoor
and outdoor settings, as well as in the wild. It is worth noting that these attributes are not
mutually exclusive. In other words, there may exist several attributes in one image. Some
samples are shown in Figure 6.

R X
(d) Perspective distortion (e) Rotation () Hlumination variation (g) Non uniform distribution

Figure 6. The examples of challenges in cattle counting.

4. Experiments
4.1. Setup

We evaluate our method in two different datasets including ShanghaiTech dataset
and our density estimation dataset. ShanghaiTech is a large-sized dense crowd density
estimation dataset. It contains two parts: ShanghaiTech_A and ShanghaiTech_B. Shang-
haiTech_A was collected randomly on the Internet with denser population distribution.
ShanghaiTech_B is collected from a commercial street in Shanghai where the number of
people per image is relatively sparse. The part A and B contains 482 and 716 images,
respectively, and there are 330,165 people annotated in it. Our cattle density estimation
dataset contains 850 images with 18,403 cattle in total. All data were divided into a training
set and a testing set in a ratio of 6:4, with 493 images in the training set and 357 images in
the testing set.

4.1.1. Model Training

Our fine-tuning model was based on the pre-trained VGG-16 model, with all new
layers initialised by a Gaussian distribution with a mean of 0 and a standard deviation of
0.01. The learning rate was 5 x 107, the weight decay rate was 5 x 10~ and the weight
hyperparameter A was 1000. The optimisation algorithm is an adaptive moment estimation



Mathematics 2022, 10, 3856

10 of 15

(Adam). We also adopted a set of data enhancement methods on the data during the
training process. All of them are listed below:

* Randomly cropping the image to four non-overlapping image blocks of 1/4 the size
of the image, or randomly cropping one image block of 1/4 the size of the image.

*  Randomly flipping the image block, the possibility is 0.5.

* Randomly using gamma correction on image data considering variations in illumina-
tion, the possibility is 0.3, and the parameters for gamma correction are [0.5, 1.5].

4.1.2. Evaluation Criteria

Instead of cropping the images during the testing phase, we fed the complete images
into the network. They generated density graphs accordingly. Then the network is evalu-
ated by the mean absolute error (MAE) and the root means square error (RMSE). Where
the MAE can well reflect the actual situation of the error between the predicted and true
values, and can be expressed by:

1 N
MAE:NZ

i=1

: (6)

pre gt
Ci o Ci

The RMSE represents the expected value of the squared difference between the predicted
value and the true value open square. It can evaluate the degree of change of the data. The
smaller the value of the RMSE, the better the accuracy of the prediction model describing
the experimental data. Its expression shows below:

N 2
7

1
RMSE = J N o|cr - )

i=1

where N represents the number of images in the test set, Cf " represents the predicted

number of cattle, and Cig ! means the true number of cattle.

All the experiments were conducted on a computer with an Nvidia Geforce RTX 3090
graphics card and an AMD Ryzen 9 3900X CPU. This computer also contains two 32GB of
memory working at 3600 mHz, and the operating system is CentOS7. Pytorch is adopted
for implementation because it is an open-source software framework. We experimentally
compared the error of the predicted cattle population with the real cattle population using
target detection and density estimation methods. Because of the good model structure
design and the joint loss function, the present network structure can be trained end-to-end.

4.2. Main Result

To demonstrate the effectiveness of the method in this paper, we compared the model
performance on both our created cattle dataset and a benchmark dataset about population
density estimation (ShanghaiTech).

4.2.1. Dataset Validity

We compared the results of all target detection methods, including density estimation
methods MCNN [7], CSRNet [8] and DSNet [9]. All the experiments are based on the cattle
population dataset. In particular, we set the same parameter for the density estimation
model. The MAE and RMSE metrics were also utilized to evaluate the counting accuracy
and the model’s robustness.

We demonstrate some of the prediction results of each model on the cattle dataset
in Figure 7. The first column is the original image data. The second column shows the
true value of the density graph. The third column is the density graph predicted by our
MSRNet, and the following columns are the density graph predicted by MCNN, CSRNet,
and DSNet, respectively. According to the prediction results, the prediction results of
our MSRNet are relatively close to the true values in all scenarios above. In terms of the
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(a) Row data

distribution of the predicted densities, MSRINet shows better performance to match the
distribution of the real density graph. In contrast, the MCNN is more easily disturbed
by the background and will identify some background information as cattle by mistake,
especially in the scene of the fisheye indoor camera, which will misidentify the cattle pen
wall as cattle. CSRNet cannot distinguish well between cattle and background for the night
and the highly overlapping situation, which means the robustness of the model is limited.
The individual differentiation of the predicted density graph proved that our MSRNet has a
clearer boundary differentiation for sparse scenes, even in the less differentiated black cattle
groups. In contrast, DSNet shows very unclear boundary information in black bull scenes.
All in all, the MSRNet proposed in this paper provides the most accurate prediction results,
and the predicted density distribution is closer to the ground truth. The adaptability to
various scenes is better compared with other methods. The boundary can be more clearly
distinguished for sparse scenes, and the background’s anti-interference ability is better.

Est:103.8

Est:28.3 Est:20.3 Est:58.9 - Est:20.8
(b) Density graph (c) MSRNet (d) MCNN (e) CSRNet (f) DSNet

Figure 7. Density prediction results of different scenarios.

The evaluation results of MAE and RMSE on the cattle dataset are listed in Table 2.
Compared to other methods, MSRNet achieved the lowest value on both MAE and RMSE.
It even shows a drop of about 12.2% in MAE and 14.2% in RMSE compared to DSNet,
which shows the second-best performance. In the cattle targets overlap scenario, the targets
detection method can cause many misdetections. MCNN learns features of different sizes
through three different convolution channels. CSRNet utilizes dilated convolution at the
back end of the network to keep the resolution of features constant but cannot adapt to large
scale variations problems. DSNet uses densely connected dilated convolution to maintain
continuous information transfer as well as multi-scale feature extraction. However, the
overly dense connections tend to lead to overfitting. As only a very small percentage of
training data contains 50~100 cattle, there is an accuracy plummet for DSNet on them. In
contrast, MSRNet achieves the best performance in both MAE and RMSE by extracting
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multi-scale features and adapting to the scale variation of the cattle population while
using residuals to resolve the grid effect brought about by the dilated convolution and
compensate for the lost pixel feature information. This experiment demonstrates that the
MSRNet can accurately count the cattle number in a cattle farm, with an overall average
error of around 1.85.

Table 2. Estimation errors on the cattle dataset.

Models MAE RMSE
MCNN [7] 6.57 10.25
CSRet [8] 11.57 14.61
DSNet [9] 2.14 3.31

MSRNet 1.85 2.64

4.2.2. Validity Test on ShanghaiTech Datasets

MSRNet not only predicts density better on cattle dataset but also achieves better
results in human population density estimation. The experimental results on these datasets
are shown in Table 3. MSRNet achieved the best performance according to MAE and RMSE
values on ShanghaiTech_A. We guess that in contrast to traditional crowd density estima-
tion, crowd datasets are usually labeled with the heads of people, while cattle datasets are
labeled with the body of cattle, and ShanghaiTech_B is sparser than ShanghaiTech_A, in
which the occlusion and scale changes of people are smaller, so it only achieved sub-optimal
performance in the ShanghaiTech_B. This experiment proves that MSRNet is highly adap-
tive and robust and can have good prediction results for completely different scenarios and
targets.

Table 3. Estimation error on the ShanghaiTech datasets.

Models ShanghaiTech_A ShanghaiTech_B
MAE RMSE MAE RMSE

MCNN [7] 110.2 173.2 26.4 33.4
ACSCP [10] 75.7 102.7 17.2 27.4
CSRNet [8] 68.2 115.0 10.6 16.0
SANet [11] 67.0 104.5 8.4 13.6
KDMG [24] 63.8 99.2 7.8 12.7

MSRNet 63.5 96.8 8.4 13.0

4.2.3. Ablation Experiments

We discuss the result of ablation experiments conducted to analyse the effect of differ-
ent components in MSRNet as well as weight of the multi-scale density level consistency
loss. Due to the presence of various complexities such as high density occlusion and
complex background, we perform the ablation experiments on the proposed cattle dataset.

We conduct the first ten convolutional layers and three pooling layers of the conven-
tional VGG-16 network as the backbone, and connect the last three convolutional layers
to be the base network. Then we add components incrementally such as the MSR block
and multi-scale density level consistency loss. Meanwhile, we try to use ResNet-50 [30] as
the backbone to extract a feature to observe whether it receives a better performance. All
the results of experiments are shown in Table 4. The VGG-16 with last three convolutional
layers as the base network achieves an MAE of 5.34. By adding the proposed MSR and
multi-scale density level consistency loss incrementally to enrich the base network, the
MAE decreases to 1.85, which improved by a big margin and achieves the best performance
compared with previous methods. When we try to replace the backbone network, such as
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the first 22 convolutional layers and the interlacing pooling layer of the ResNet-50 for the
experiment, however, we do not receive the expected results and only achieve an MAE of
8.64. The possible reason for this is that ResNet is proposed to solve the depth problem of
the convolutional neural network when dealing with large datasets, but the proposed cattle
dataset is less than the common public datasets, so there is a serious effect of overfitting.

Table 4. Estimation errors for different components.

Method MAE RMSE
VGG-16 5.34 8.86
VGG-16 + MSR 5.10 7.20
VGG-16 + MSR + L, 1.85 2.64
ResNet-50 + MSR + L, 8.64 12.65

In addition, we set the different values of weight in Equation (5) to analyse the
influence on the experiments and the results are shown in Table 5. Before we add the
multi-scale density level consistency loss, the proposed network only achieves an MAE
of 5.10. After we add the the consistency loss and set the value of weight to 10, the MAE
decreases to 2.02. As we increase the weight value gradually, the result shows the best
performance of MAE of 1.85 when the value of weight is 1000. However, as we continue to
increase the value of weight to 10,000, the MAE goes up instead of down.

Table 5. Estimation errors for different values of weight.

Value of Weight MAE RMSE
A=0(w/oLc) 5.10 7.20
A=10 2.02 2.88
A =100 1.87 2.84
A =1000 1.85 2.64
A =10,000 1.90 2.81

4.3. Discussion

This paper proposed a multi-scale residual cattle density estimate network to address
the problems of the large scale variation of cattle. We chose VGG-16 as the backbone
network to extract features and select MSR blocks for feature fusion. However, without
scale annotations, it is sub-optimal and error-prone to manually assign the predictions for
heads of different scales to specific feature levels. Song et al. [31] proposed a patch-wise
feature level selection strategy to identify the most appropriate feature level. Such a novel
strategy effectively exploits the multi-scale feature representations inside a multi-level
network, offering a new way to address the large challenging scale variation problem. We
wonder if it is possible to further fuse the multi-scale features of the backbone network
to identify the most suitable feature level for each scale, perhaps to achieve better results.
Introducing the geometrics method such as equivariant GNN and CNN also shows po-
tential. Cohen et al. [32] proposed an equivariant GNN for image rotation and Lagrave
et al. [33] demonstrated equivariant CNN in fish-eye image processing. We may try these
approaches in future research.

5. Conclusions

This paper first collected a cattle density estimation dataset and summarised the task
as uneven distribution, scale variation and grid effect. We proposed a multi-scale residual
cattle density estimation network to address them. The MSRNet model uses dilated con-
volution with different dilation rates to obtain multi-scale features. The residual structure
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to solve the problem of grid effect is caused by using dilated convolution. Experiments
show that the proposed method is more effective and accurate than traditional methods for
estimating herd density, with better model robustness. There is still potential improvement
in the estimation of the cattle, such as the generated supervised information. Since the ob-
jective of human crowd density estimation is different from that of cattle density estimation,
using the traditional Gaussian kernel to generate the supervised information is not suitable
for cattle, mainly because crowds are usually labelled with human heads. In contrast,
the shape of individual cattle is very different from that of human heads. Subsequent
improvements will be made in the direction of annotated information generation.
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