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Abstract: Our research objective is to improve the Huffman coding efficiency by adjusting the data
using a Poisson distribution, which avoids the undefined entropies too. The scientific value added by
our paper consists in the fact of minimizing the average length of the code words, which is greater
in the absence of applying the Poisson distribution. Huffman Coding is an error-free compression
method, designed to remove the coding redundancy, by yielding the smallest number of code symbols
per source symbol, which in practice can be represented by the intensity of an image or the output
of a mapping operation. We shall use the images from the PASCAL Visual Object Classes (VOC)
to evaluate our methods. In our work we use 10,102 randomly chosen images, such that half of
them are for training, while the other half is for testing. The VOC data sets display significant
variability regarding object size, orientation, pose, illumination, position and occlusion. The data
sets are composed by 20 object classes, respectively: aeroplane, bicycle, bird, boat, bottle, bus, car,
motorbike, train, sofa, table, chair, tv/monitor, potted plant, person, cat, cow, dog, horse and sheep.
The descriptors of different objects can be compared to give a measurement of their similarity. Image
similarity is an important concept in many applications. This paper is focused on the measure of
similarity in the computer science domain, more specifically information retrieval and data mining.
Our approach uses 64 descriptors for each image belonging to the training and test set, therefore
the number of symbols is 64. The data of our information source are different from a finite memory
source (Markov), where its output depends on a finite number of previous outputs. When dealing
with large volumes of data, an effective approach to increase the Information Retrieval speed is based
on using Neural Networks as an artificial intelligent technique.

Keywords: data compression; descriptors; probabilistic models; entropy; Huffman coding; coding
redundancy; coding efficiency; artificial intelligence

MSC: 68P30; 68Q30; 94A08; 94A15; 94A17; 94A24

1. Introduction

The assessment of similarity or distance between two information entities is crucial
for all information discovery tasks (whether Information Retrieval or Data mining). Appro-
priate measures are required for improving the quality of information selection and also
for reducing the time and processing costs [1].

Even if the concept of similarity originates from philosophy and psychology, its
relevance arises in almost every scientific [2]. This paper is focused on measuring similarity
in the computer science domain, i.e., Information Retrieval, in images, video, and to some
extent audio, respectively. In the paper domain, the similarity measure “is an algorithm
that determines the degree of agreement between entities.” [1].
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The approaches for computing similarity or dissimilarity between various object
representations can be classified [2] in:

(1) distance-based similarity measures
This class includes the following models: Euclidean distance, Minkowski distance,
Mahalanobis distance, Hamming distance, Manhattan/City block distance, Chebyshev
distance, Jaccard distance, Levenshtein distance, Dice’s coefficient, cosine similarity,
soundex distance.

(2) feature-based similarity measures (contrast model)
This method, proposed by Tversky in 1977, represents an alternate to distance-based
similarity measures, based on computing similarity by common features of compared
entities. Entities are more similar if they share more common features, while they are
dissimilar in the case of more distinctive features. The similarity between entities A
and B can be determined using the formula:

s(A, B) = αg(A ∩ B)− βg(A− B)− γg(B− A), (1)

where:

– α, β, γ are used to define the respective weights of associated values,
– g(A ∩ B) describes the common features in A and B,
– g(A− B) stands for the distinctive features of A
– g(B− A) means the distinctive features of the entity B.

(3) probabilistic similarity measures
For assessing the relevance among some complex data types, the following probabilis-
tic similarity measures are necessary: maximum likelihood estimation, maximum a
posteriori estimation.

(4) extended/ additional measures
Includes similarity measures based on fuzzy set theory [3], similarity measures based
on graph theory, similarity-based weighted nearest-neighbors [4], similarity-based
neural networks [5].

A lot of algorithms and techniques like Classification [6], Clustering, Regression [7],
Artificial Intelligence(AI), Neural Networks (NNs), Association Rules, Decision Trees, Ge-
netic Algorithm, Nearest Neighbor method etc., are attempted [2] for knowledge discovery
from databases.

The Artificial Neural Networks (ANNs) are widely used in various fields of engi-
neering and science. They generate useful tools in quantitative analysis, due to their
unique feature of approximating complex and non-linear equations. Their performance
and advantage consists in their ability to model both linear and non-linear relationships.

The Artificial Neural Networks are well-suited for a very broad class of nonlinear
approximations and mappings. An Artificial Neural Network (ANN) with nonlinear
activation functions is more effective than linear regression models in dealing with nonlin-
ear relationships.

ANNs are regarded as one of the important components in AI. They have been
studied [8] for many years with the goal of achieving human-like performance in many
branches, such as classification, clustering, and pattern recognition, speech and image
recognition and Information Retrieval [9] by modelling the human neural system.

IR “is different from data retrieval in databases using SQL queries because the data in
databases are highly structured and stored in relational tables, while information in text is
unstructured. There is no structured query language like SQL for text retrieval.” [10].

Gonzales and Woods [11] have developed Huffman Coding to remove coding redun-
dancy, by yielding the smallest number of code symbols per source symbol.

Burgerr and Burge [12] as well as Webb [13] have developed several algorithms for
Image Compression using Discrete Cosine Transformation.

The main objective of this paper consists in improving the performance of the Huffman
Coding algorithm by achieving a minimum average length of the code word. Our new
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approach is important for removing more effectively the Coding Redundancy in Digital
Image Processing.

The remainder of the paper is organized as follows. In Section 2 we discuss some
general aspects about the Poisson distribution and the data compression.

Then, in Section 3 we introduce and analyze an approach to reduce the documents,
entitled Discrete Cosine Transformation, in order to achieve the Latent Semantic Model.

We follow with the Fourier descriptor method in Section 4 to describe the shape of an
object by considering its boundaries.

We define some notions from the Information Theory in Section 5 as they are useful to
model the information generation like a probabilistic process.

The Section 6 presents the Huffman Coding, which is built to remove the coding
redundancy and to find the optimal code for an alphabet of symbols.

We introduce an experimental evaluation of the new model on the task of computing
image entropy, the average length of the code words and the Huffman coding efficiency
too in Section 7.

We conclude in Section 8 by highlighting that the scientific value added by our paper
consists in the fact of computing the average length of the code words in the case of
applying of the Poisson distribution.

2. Preliminaries
2.1. Discrete Random Variables and Distributions

By definition [14], a random variable X and its distribution are discrete if the possible
values of X denoted x1, x2, x3, . . . are finitely many or, at most, countably many values,
with the probabilities p1 = P(X = x1), p2 = P(X = x2), p3 = P(X = x3), . . ..

The Poisson Distribution

The Poisson distribution (named after S.D. Poisson) is the discrete distribution which
has infinite possible values and the probability function

P(k) =
λk

k!
e−λ, λ > 0. (2)

The Poisson distribution is similar with the binomial distribution in the mean in that it
is achieved as a limiting case of this distribution, for n→ ∞ and p→ 0, where the product
np = λ > 0 is kept constant. As it is used for a rare occurrence of an event, the Poisson
distribution is also called the distribution of the rare events that occur in order to achieve
success in a sequence of some independent Bernoulli samples.

This distribution is frequently encountered in the study of some phenomena in biology,
telecommunications, statistical quality control (when the probability of obtaining a defect
is very small), in the study of phenomena that present some agglomerations (in the theory
of threads of waiting).

The probability that of the n drawn balls, k are white is: [15]

P(k) = lim
n→∞

Pn(k) = lim
n→∞

Ck
n pkqn−k = lim

n→∞
Ck

n

(
λ

n

)k(
1− λ

n

)n−k
=

=
λk

k!
· lim

n→∞

n!
nk(n− k)!︸ ︷︷ ︸
=1

· lim
n→∞

(
1− λ

n

)n−k

︸ ︷︷ ︸
e−λ

,

namely it results in the Equation (2).
The simulation of X ∼ Po(λ) can be achieved [16,17]: using the Matlab generator,

using the inverse transform method, using a binomial distribution.
In [17] we generated a selection of volume 1000 on the random variable X, having

some continuous distributions (such as normal or exponential distribution) or discrete
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distributions (as the geometric or Poisson distribution). The methods used in the generation
of the random variables X are illustrated in the Table 1.

The means and the variances corresponding to the resulting selections will be com-
pared with the theoretical ones. In each case we build both the graphical histogram and
the probability density of X too. For example, the Figure 1 shows the histograms built
for X ∼ Geom(p), using three methods (Matlab generator, inverse transform method, by
counting the failures) and the probability density of X.

Figure 1. The histograms built for X ∼ Geom(p), using three methods.

The statistics associated to the concordance tests are also computed in the Table 1.

Table 1. The methods used to generate a selection of volume 1000 on the random variable X, having
some continuous and discrete distribution.

Random Simulation Mean Variance StatisticsVariable Method

χ2 Kolmogorov

Normal Matlab 2 1.9392 4 3.9472 54.3986 0.0143
Box-Muller 2 2.0216 4 4.1625 42.7415 0.0101

Rejection polar 2 2.0706 4 4.0830 28.4396 0.0176

Exponential Matlab 1 1.036 1 1.03 136.3055 0.0249
Inverse method 1 0.9657 1 0.9786 102.8223 0.0193

Gamma distribution 1 1.01 1 1.01 108.6551 0.0253

Geometric Matlab 2.3333 2.327 7.7778 7.4535 56.9155 0.05
Inverse method 2.3333 2.763 7.7778 7.6825 34.6667 0.0408

Counting the failures 2.3333 2.361 7.7778 7.7664 39.6033 0.0454

Poisson Matlab 1 0.999 1 0.964 21.1409 0.049
Binomial distribution 1 1.038 1 0.0977 39.0964 0.039

Example 1. Adjust the following empirical distribution, which is a discrete one, using the Poisson
distribution:

xi 0 1 2 3 4 5 6 7 8 9

P(xi) 0.16 0.217 0.27 0.18 0.11 0.03 0.1 0.002 0.001 0.002

The resulting Poisson distribution will be:
x 0 1 2 3 4 5 6 7 8 9

P(x) 0.0799 0.2019 0.2551 0.2149 0.1358 0.0686 0.0289 0.0104 0.0033 0.0009



Mathematics 2022, 10, 3847 5 of 29

2.2. Data Compression

The concept of data compression [11,18–28] means the reduction of that amount of data,
which is used to represent a given quantity of information.

The data represent the way in which the information is transmitted, such that different
amounts of data can be used to represent the same quantity of information.

For example, if n1 and n2 are the number of bits in two representations of the same
information, then the relative data redundancy RD ∈ (−∞, 1) of the representation with n1
bits can be defined as:

RD = 1− 1
CR

, (3)

where CR ∈ (0, ∞) signifies the compression ratio and has the expression:

CR =
n1

n2
. (4)

There are the following three types of redundancies [11] in the Digital Image Processing:

(A) Coding Redundancy- it is necessary to evaluate the optimal information coding by
the average length of the code words (Lavg) to remove this kind of redundancy:

Lavg =
L−1

∑
k=0

l(rk)pr(rk), (5)

where:

X L being the number of the intensity values associated to a an M× N image;
X MNLavg bits are necessary to represent the respective M× N image;
X the discrete random variable rk ∈ [0, L − 1] represents the intensities of that

M× N image;
X nk is the absolute frequency of the k- th intensity rk;
X l(rk), k ∈ 0, L− 1 means the number of bits that are used to represent each value

of rk;
X pr(rk) =

nk
MN is the probability of the occurrence of the rk value;

(B) Interpixel Redundancy one refers to a reduction of the redundancy associated with
spatially and temporally correlated pixels through mapping such as the run-lengths,
differences between adjacent pixels and so on; reversible mapping implies the recon-
struction without error;

(C) Psychovisual Redundancy is when certain information which has relatively less
importance for the perception of the image quality; it is different from the Coding
Redundancy and the Interpixel Redundancy by the fact that it is associated with the
real information, which can be removed by a quantization method.

3. Discrete Cosine Transformation

The appearance based approach constitutes [2] one of the various approaches used to
select the features from an image, by retaining the most important information of the image
and rejecting the redundant information. This class includes Principal Component Analysis
(PCA), Discrete Cosine Transformation (DCT) [29], Independent Component Analysis (ICA)
and Linear Discriminant Analysis (LDA).

In case of large document collections, the high dimension of the vector space matrix F
generates problems in the text document set representation and induces high computing
complexity in Information Retrieval.

The most often used methods for reducing the text document space dimension which
have been applied in Information Retrieval are: Singular Value Decomposition (SVD)
and PCA.
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Our approach is based on using the Discrete Cosine Transformation for reducing the
text documents. Thus, the set of keywords is reduced to the much smaller feature set. The
resulting model represents the Latent Semantic Model.

The DCT [30] represents an orthogonal transformation, similar with the PCA. The
elements of the transformation matrix are obtained using the following formula:

tmi =

√
2− δm−1

n
cos
(

π

n
(i− 1

2
(m− 1))

)
, (∀) i, m = 1, n, (6)

n being the size of the transformation and

δm =

{
1 if m = 1,
0 otherwise.

(7)

The DCT requires the transformation of the n dimensional vectors Xp, p = 1, N, where
N denotes the number of vectors that must be transformed), to the vectors Yp, (∀) p = 1, N,
using the formula:

Yp = T · Xp, (∀) p = 1, N, (8)

T = {tmi}i,m=1,n meaning the transformation matrix.
We have to choose, between all the components of the vectors Yp, p = 1, N, a number

of m components, corresponding to the positions which conduct to a mean square belonging
to the first m mean squares, in descending order, while the other n−m components will be
cancelled.

The vector Yp, p = 1, N, is defined through the formula (8):

Yp =

 yp1
...

ypn

.

The mean square of the transformed vectors is given by:

E(Y2
p) =

 E(y2
p1)

...
E(y2

pn)

, (9)

where

E(y2
pj) = y2

pj =
1
N

N

∑
p=1

y2
pj, (∀) j = 1, n.

The DCT application consists in determining the vectors Ŷp, p = 1, N corresponding
to the m components of the vectors Yp, p = 1, N that do not cancel.

Image Compression Algorithm Using Discrete Cosine Transformation

Digital image processing represents [11–13,31,32] a succession of hardware and soft-
ware processing steps, as well as the implementation of several theoretical methods.

The first step of this process involves the image acquisition. It requires an image sensor
for achieving a two-dimensional image, such as a video camera (for example, the Pinhole
Camera Model, one of the simplest camera models).

The analog signal (which is continuous in time and values) [33] resulted at the output
of the video camera, must be converted into a digital signal, for its processing using the
computer. This transformation involves the following steps [12]:
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Step 1 (Spatial sampling). This step aims to achieve the spatial sampling of the continuous
light distribution. The spatial sampling of an image represents the conversion
of the continuous signal to its discrete representation and it depends on the
geometry of the sensor elements associated to the acquisition device.

Step 2 (Temporal sampling). In this stage, the resulting discrete function is sampled in
the time domain to create a single image. The temporal sampling is achieved by
measuring at regular intervals the amount of light incident on each individual
sensor element.

Step 3 (Quantization of pixel values). This step aims to quantize the resulting values of
the image to a finite set of numeric values for storing and processing the image
values on the computer.

Definition 1 ([12]). A digital image I represents a two-dimensional function of natural coordinates
(u, v) ∈ N × N, which maps to a range of possible image values P, with the property that
I(u, v) ∈ P.

The pixel values are described by binary words of length k (which define the depth of
the image); therefore, a pixel can represent any of 2k different values.

As an illustration, the pixels of the grayscale images:

• are represented by using k = 8 bits (1 byte) per pixel;
• have the intensity values belonging to the set {0, 1, . . . , 255}, where the value 0 corre-

sponds to the minimum brightness (black) and 255 represents the maximum brightness
(white).

The result of performing the three steps Step 1–Step 3 is highlighted in a “description
of the image in the form of a two-dimensional, ordered matrix of integers” [12], illustrated
in the Figure 2.

Figure 2. Transformation of a continuous intensity function F(x, y) to a discrete digital image F(u, v).

CASIA Iris Image Database Ver 3.0 (or CASIA-IrisV3 for short) contains three subsets,
totally 22,051 iris images of more than 700 subjects.

Figure 3 displays a coordinate system for image processing, which is flipped in the
vertical direction, provided that the origin, defined by u = 0 and v = 0 lies in the upper
left corner.
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Figure 3. Image coordinates

Another advantage of DCT in image compression consists in not depending on the
input data.

The coordinates u, v represent the columns and rows of the image, respectively. For an
image with the resolution M× N, the maximum column number is umax = M− 1, while
the maximum row number is vmax = N − 1.

After achieving the digital image, it is necessary to preprocess it in order to improve it;
we can mention some examples of preprocessing image techniques:

1. image enhancement, which assumes the transformation of the images for highlighting
some hidden or obscure details, interest features, etc.;

2. image compression, performed for reducing the amount of data needed to represent a
given amount of information;

3. image restoration aims to correct those errors that appear at the image capture.

Among different methods for image compression, the DCT “achieves a good compro-
mise between the ability of information compacting and the computational complexity” [12].
Another advantage of using DCT in image compression consists in not depending on the
input data.

The DCT algorithm is used for the compression of 256× 256 matrix of integers X =
(xij)i,j=1,256, where xij ∈ {0, 1, . . . , 256}means the original pixel values. The Algorithm 1
consists in performing the following steps [2]:

We have performed the compression algorithm based on the DCT, using the Lena.bmp
image [2], which has 256× 256 pixels and 256 levels of grey; it is represented in the Figure 4.

The Table 2 and Figure 5 display the experimental results obtained by implementing
the DCT compression algorithm, in Matlab.

Table 2. Experimental results achieved by implementing the DCT compression algorithm.

Number of the Retained Coefficients
Performances of the DCT Compression Algorithm

PSNR MSE

m1 = 15 27.6054 10.6232
m1 = 9 25.3436 13.7836
m1 = 2 21.2242 22.1477
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Algorithm 1: DCT compression algorithm.

Step 1 Split the initial image into 8× 8 pixel blocks (1024 image blocks).
Step 2 Process each block by applying the DCT, using relation (8).
Step 3 The first nine coefficients for each transformed block are retained in a zigzag fashion and the rest of

(64− 9) the coefficients are cancelled (by making them equal to 0). This stage is illustrated in Figure 6.
Step 4 The inverse DCT is applied for each of the 1024 blocks resulted in the previous step.
Step 5 The compressed image represented by the matrix X̂ = (x̂ij)i,j=1,256 is achieved,

where x̂ij denotes the encoded pixel values. Then, the pixel values are converted into integer values.
Step 6 The performances of the DCT compression algorithm is evaluated in terms of the

Peak Signal-to-Noise Ratio (PSNR), given by [34,35]:

PSNR = 20 log10
255√
MSE

, (10)

where the Mean Squared Error (MSE) is defined as follows [34,35]:

MSE =
1

N × N

N

∑
i=1

N

∑
j=1

(xij − x̂ij)
2, (11)

where N × N means the total number of pixels in the image (in our case N = 256).

Figure 4. Image Lena.bmp (see https://www.cosy.sbg.ac.at/$\sim$pmeerw/Watermarking\/lena.
html, accessed on 14 July 2022).

(a) m1 = 15 (b) m1 = 9 (c) m1 = 2
Figure 5. Visual evaluation of the performances corresponding to the DCT compression algorithm.

https://www.cosy.sbg.ac.at/$\sim $pmeerw/Watermarking\ /lena.html
https://www.cosy.sbg.ac.at/$\sim $pmeerw/Watermarking\ /lena.html
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Figure 6. Zigzag fashion to retain the first nine coefficients.

4. Fourier Descriptors

The descriptors of different objects can be compared for achieving [36] a measurement
of their similarity [2].

The Fourier descriptors [37,38] show interesting properties in terms of the shape of an
object, by considering its boundaries.

Let γ be [2,35] a closed pattern, oriented counterclockwise, described by the parametric
representation: z(l) = (x(l), y(l)), where l denotes the length of a circular arc, along the
curve γ, starting from an origin and 0 ≤ l < L, where L means the length of the boundary.

A point lying on the boundary generates the complex function u(l) = x(l) + iy(l). We
note that u(l) is a periodic function, with period L.

Definition 2. The Fourier descriptors are the coefficients associated to the decomposition of the
function u(l) in a complex Fourier series.

By using a similar approach of implementing a Fourier series for building a specific
time signal, which consists of cosine/sine waves of different amplitude and frequency, “the
Fourier descriptor method uses a series of circles with different sizes and frequencies to
build up a two dimensional plot of a boundary” [36] corresponding to an object.

The Fourier descriptors are computed using the formula [2,35]:

an =
1
L

∫ L

0
u(l)e−i 2π

L nldl (12)

such that

u(l) =
∞

∑
n=−∞

an · ei 2π
L nl . (13)

In the case of a polygonal contour, depicted in the Figure 7, we will derive [2,35] an
equivalent formula to (12).

Figure 7. Polygonal contour.
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Denoting

λ =
‖Vk−1M‖
‖MVk‖

, (14)

namely (see the Figure 8):

Figure 8. Parametric representation of a segment.

λ =
l − lk−1

lk − l
, (15)

where M(xM, yM), Vk−1(xk−1, yk−1), Vk(xk, yk) and
l0 = 0,

lk =
k
∑

i=1
|Vi −Vi−1|;

(16)

from (12) it results:

an =
1
L

m

∑
k=1

∫ lk

lk−1

(xM(l) + iyM(l)) · e−i 2π
L nldl. (17)

From (14) we deduce: 
xM =

xk−1+λxk
1+λ ,

yM =
yk−1+λyk

1+λ .
(18)

We will regard each coordinate pair as a complex number, as illustrated in the Figure 9:

Figure 9. Treating a point M as a complex number.

Taking into consideration the previous assumption and relationships (18) and (15)
we get:

xM(l) + iyM(l) =
xk−1 +

l−lk−1
lk−l · xk

1 + l−lk−1
lk−l

+ i
yk−1 +

l−lk−1
lk−l · yk

1 + l−lk−1
lk−l
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=
(xk−1 + iyk−1)lk + l[(xk − xk−1) + i(yk − yk−1)]− (xk + iyk)lk−1

lk − lk−1

=
Vk−1lk + l(Vk −Vk−1)−Vklk−1

lk − lk−1
;

hence, the formula (17) will become:

an =
1
L

m

∑
k=1

1
lk − lk−1

∫ lk

lk−1

[Vk−1lk + l(Vk −Vk−1)−Vklk−1] · e−i 2π
L nldl

=
1
L

m

∑
k=1

1
lk − lk−1

∫ lk

lk−1

[Vk−1lk + l(Vk −Vk−1)−Vklk−1] · e−i 2π
L nldl =

an =
1
L

m

∑
k=1

1
lk − lk−1

[
(Vk−1lk −Vklk−1) ·

∫ lk

lk−1

e−i 2π
L nldl + (Vk −Vk−1) ·

∫ lk

lk−1

l · e−i 2π
L nldl︸ ︷︷ ︸

I

]
. (19)

By computing

I =
∫ lk

lk−1

l · e−i 2π
L nldl = − 1

i 2π
L n

(
lk · e−i 2π

L nlk − lk−1 · e−i 2π
L nlk−1

)
+

1( 2π
L n
)2

(
e−i 2π

L nlk − e−i 2π
L nlk−1

)
and substituting it into (19) we shall achieve:

an =
1
L

m

∑
k=1

1
lk − lk−1

· Tk, (20)

where

Tk = −
1

i 2π
L n

(Vk−1lk −Vklk−1) ·
(

e−i 2π
L nlk − e−i 2π

L nlk−1
)

− 1
i 2π

L n
(Vk −Vk−1) ·

(
lke−i 2π

L nlk − lk−1e−i 2π
L nlk−1

)
+

1( 2π
L n
)2 (Vk −Vk−1) ·

(
e−i 2π

L nlk − e−i 2π
L nlk−1

)
,

namely

Tk = −
1

i 2π
L n

[
Vk(lk − lk−1) · e−i 2π

L nlk −Vk−1(lk − lk−1) · e−i 2π
L nlk−1

]
+

1( 2π
L n
)2 (Vk −Vk−1) ·

(
e−i 2π

L nlk − e−i 2π
L nlk−1

)
. (21)

Therefore, on the basis of the relations (21) and (16) from which it results

lk − lk−1 = |Vk −Vk−1|, (∀) k = 1, m,

the formula (20), which allows us the computation of the Fourier descriptors will be:

an = − 1
2πin

m

∑
k=1

(
Vk · e−i 2π

L nlk −Vk−1 · e−i 2π
L nlk−1

)
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+
L

(2πn)2

m

∑
k=1

Vk −Vk−1
|Vk −Vk−1|

·
(

e−i 2π
L nlk − e−i 2π

L nlk−1
)

. (22)

The principal advantages of the Fourier Descriptor method for object recognition con-
sists in the invariance to translation, rotation and scale displayed by the Fourier descriptors
are [36].

5. Measuring Image Information
5.1. Entropy and Information

The fundamental premise in Information Theory is that the information generation can
be modeled like a probabilistic process [39–47]

Hence, an event E, which occurs with probability P(E) will contain I(E) information
units, where [11]:

I(E) = log
1

P(E)
= − log P(E).

There is the convention that the basis of the logarithm determines the unit used to
measure the information. In the case when the basis is equal with two, then the information
unit it is called a bit (binary digit).

Assuming a discrete set of symbols {a1, . . . , am}, having the associated probabilities
{P(a1), . . . , P(am)} we see that the entropy of the discrete distribution is [11]:

H(z) = −
m

∑
j=1

P(aj) log P(aj), (23)

where z = (P(a1), . . . , P(am))t.
We can note that the entropy from the Equation (23) just depends on the probabilities

of the symbols and it measures the randomness or unpredictability of the respective
symbols drawn from a given sequence; in fact, the entropy defines the average amount of
information that can be obtained by observing a single output of a primary source.

The information which is transferred to the receiver through an information transmis-
sion system is a random discrete set of symbols {b1, . . . , bn} too, with the corresponding
probabilities {P(b1), . . . , P(bn)}, where [11]:

P(bk) =
m

∑
j=1

P(bk|aj) · P(aj), (∀) k = 1, n. (24)

The Equation (24) can be written in the matrix form [11]:

v = Qz, (25)

where

• v = (P(b1), . . . , P(bn))t is the probability distribution of the output alphabet {b1, . . . , bn};
• the matrix Q = (qk,j) 1 ≤ k ≤ n

1 ≤ j ≤ m

means is associated with the information transmis-

sion system:

Q =


P(b1|a1) P(b1|a2) . . . P(b1|am)
P(b2|a1) P(b2|a2) . . . P(b2|am)

...
...

...
...

P(bn|a1) P(bn|a2) . . . P(bn|am)

, (26)

where

qk,j = P(bk|aj), (∀) j = 1, m, k = 1, n.
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One can define [11]:

(1) the conditional entropy:

H(z|v) = −
m

∑
j=1

n

∑
k=1

P(aj, bk) log P(aj|bk), (27)

where P(aj, bk) means the joint probability, namely the probability of bk occurring at
the same time that aj occurs:

P(aj, bk) = P(bk) · P(aj|bk). (28)

(2) the mutual information between z and v, which expresses the reduction of uncertainty
about z because of the knowledge of v:

I(z; v) = H(z)− H(z|v), (29)

namely

I(z; v) = −
m

∑
j=1

P(aj) log P(aj) +
m

∑
j=1

n

∑
k=1

P(aj, bk) log P(aj|bk) =

= −
m

∑
j=1

n

∑
k=1

P(aj, bk) log P(aj) +
m

∑
j=1

n

∑
k=1

P(aj, bk) log P(aj|bk) =

= −
m

∑
j=1

n

∑
k=1

P(aj, bk)
[

log P(aj)− log P(aj|bk)
]
=

=
m

∑
j=1

n

∑
k=1

P(aj, bk) log
P(aj|bk)

P(aj)
;

therefore

I(z; v) =
m

∑
j=1

n

∑
k=1

P(aj, bk) log
P(aj, bk)

P(aj) · P(bk)
. (30)

Taking into account the Bayes Rule [48]:

P(aj, bk) = P(aj) · P(bk|aj) = P(bk) · P(aj|bk)

and from the Equation (24) it will result that:

I(z; v) =
m

∑
j=1

n

∑
k=1

P(aj) · qkj log
qkj

m
∑

j=1
P(aj)qkj

. (31)

From the Equation (30) we can deduce that the minimum value of I(z; v) is 0 and can be
achieved in the case when the input and the output alphabet are mutually independent [48],
i.e.,

P(aj, bk) = P(aj) · P(bk).

5.2. The Case of the Binary Information Sources

Let a binary information source with the source alphabet A = {a1, a2} = {0, 1} and
let P(a1), P(a2) be the probabilities that the source to produce the symbols a1 and a2, such
that [11]:

P(a1) = pbs (32)
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P(a2) = 1− pbs = pbs. (33)

By using the Equation (23) it will result that the following entropy of the binary source [11]:

H(z) = −pbs log2 pbs − (1− pbs) log2(1− pbs),

where z = (pbs, 1− pbs)
t, i.e., one achieves the binary entropy function [11]:

H(z) = −pbs log2 pbs − pbs log2 pbs, (34)

having its maximum value (of 1 bit) when pbs =
1
2 .

If there is some noise during the data transmission then the matrix Q from the
Equation (26) can be defined as [11]:

Q =

(
1− pe pe

pe 1− pe

)
=

(
pe pe
pe pe

)
, (35)

pe being the probability of an error during the transmission of any symbol.
In the case when the output alphabet delivered at the receiver is the the set of symbols

B = {b1, b2} = {0, 1} one achieves that [11]:

v =

(
pbs pbs + pe pbs
pe pbs + pe pbs

)
, (36)

i.e., one can compute:

P(b1) = pe pbs + pe pbs (37)

P(b2) = pe pbs + pe pbs. (38)

Hence, on the basis of the formula (31), the mutual information between z and v will be:

I(z; v) = pbs pe log2
pe

pe pbs + pe pbs
+ pbs pe log2

pe

pe pbs + pe pbs
+

+pbs pe log2
pe

pe pbs + pe pbs
+ pe pbs log2

pe
pe pbs + pe pbs

=

= −(pbs pe + pbs pe) log2(pe pbs + pe pbs)− (pbs pe + pe pbs) log2(pbs pe + pe pbs)+

+pe(pbs + pbs) log2 pe + pe(pbs + pbs) log2 pe;

therefore [11]:

I(z; v) = Hbs(pbs pe + pe pbs)− Hbs(pe). (39)

From the Equation (39) one can notice that:

• I(z; v) = 0 when pbs has the value 0 or 1;
• the maximum value of I(z; v) is C = 1− Hbs(pe) (it means the maximum amount

of information that can be transferred, i.e., the capacity of the binary transmission
system = BST) and can be achieved when the symbols of the binary source are equally
likely to occur, namely pbs =

1
2 . For pe = 1 one obtains the maximum capacity of the

BST: C = 1−Hbs = 1, while for pe = 1/2 one deduces that C = 0, i.e., any information
can not be transferred through the BST.

5.3. The Noiseless Coding Theorem

Let be a zero-memory source (A, z), from the Equation (23), which is an information
source, having only statistically independent symbols. We suppose that the output of this
source is a n- tuple of symbols, then the output of the given zero-memory source is the set
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A′ = {α1, . . . , αmn} has mn possible values αi, each of them consisting in n symbols from
the alphabet A.

As there are the inequalities [11]:

log
1

P(αi)
≤ l(αi) < log

1
P(αi)

+ 1, (40)

where l(αi), introduced by the Equation (5) is the length of the coding word used to
represent αi, one achieves:

mn

∑
i=1

P(αi) log
1

P(αi)
≤

mn

∑
i=1

P(αi)l(αi) <
mn

∑
i=1

P(αi) log
1

P(αi)
+ 1; (41)

therefore [11]:

H(z′) ≤ L′avg < H(z′) + 1, (42)

where L′avg means the average number of code symbols required to represent all n-symbol
groups.

From the Equation (43) one deduces the Shannon’s first theorem (the noiseless cod-
ing theorem) [11], which claims that the output of a zero-memory source can be represented
with an average of H(z) information units per source symbol:

H(z′)
n
≤

L′avg

n
<

H(z′)
n

+
1
n

, (43)

namely:

H(z) ≤
L′avg

n
< H(z) +

1
n

(44)

or:

lim
n→∞

L′avg

n
= H(z). (45)

The Equation (45) proves that the expression
L′avg

n can be approximated with H(z) by
encoding infinitely long extensions corresponding to the single-symbol source.

The efficiency of the coding strategy is given by [11]:

η = n · H(z)
L′avg

. (46)

6. Huffman Coding

Huffman Coding [11] is an error-free compression method, designed to remove the
coding redundancy, by yielding the smallest number of code symbols per source symbol,
which in practice can be represented by the intensities of an image or the output of a
mapping operation.

The Huffman algorithm finds the optimal code for an alphabet of symbols, taking into
account the condition that the probabilities associated with the symbols have to be coded
one at a time.

The approach of Huffman consists in following:

Step 1 Approximate the given data with a Poisson distribution to avoid the undefined
entropies.

Step 2 Create a series of source reductions by sorting the probabilities of the respective
symbols in a descending order in order to combine the lowest probability symbols
into a single symbol, which replace them in the next source reduction. This
process can be repeated as long as a source with two symbols is not reached.
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Step 3 Code each reduced source, by starting with the smallest source and then go back
to the original source of this work, taking into account that the symbols 0 and 1
are the binary codes with minimal length for a two-symbol source.

The Huffman coding efficiency can be computed using the formula [11]:

η =
Lavg

H(z)
, (47)

Lavg being the average length of the code words, defined in the relation (5) and H(z) being
the entropy of the discrete distribution, introduced by the Equation (23).

7. Experimental Evaluation
7.1. Data Sets

We will use [2] the images from the PASCAL dataset for evaluating the performance
of our method using Matlab.

In this paper we have used 10,102 images from the VOC data sets, which contain
significant variability in terms of object size, orientation, pose, illumination, position and
occlusion.

The database consists of 20 object classes: aeroplane, bicycle, bird, boat, bottle, bus, car,
motorbike, train, sofa, table, chair, tv/monitor, potted plant, person, cat, cow, dog, horse
and sheep.

We have used The ColorDescriptor engine [49] for extracting the image descriptors
from all the images.

The Figure 10 shows 50 images from the VOC data base.
The performance of our method has been assessed using images from the PASCAL

dataset The Pascal VOC challenge represents [34] a benchmark in visual object category
recognition and detection, as it provides the vision and machine learning communities
with a standard data set of images and annotation.

Our approach uses 64 descriptors for each image belonging to the training and test set,
therefore the number of symbols is 64.

7.2. Experimental Results

For our experiments, we used the descriptors corresponding to some images from
the VOC data sets and after we approximated our data with a Poisson distribution, we
computed the image entropy, the average length of the code words and the Huffman coding
efficiency too. We have applied the following Algorithm:

Step 1 Approximate the given data with a Poisson distribution.
Step 2 Create a series of source reductions by sorting the probabilities of the respective

symbols in a descending order in order to combine the lowest probability symbols
into a single symbol, which replace them in the next source reduction. This
process can be repeated as long as a source with two symbols is not reached.

Step 3 Code each reduced source, by starting with the smallest source and then go back
the original source of this work, taking into account that the symbols 0 and 1 are
the binary codes with minimal length for a two-symbol source.

The achieved results are illustrated in the Tables 3–11.
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Figure 10. 50 images from the VOC data base.
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Table 3. The Huffman coding efficiency.

Image Entropy Lavg Coding Efficiency

4.6324 4.6534 0.9955

4.5401 4.5609 0.9955

4.5802 4.6005 0.9955

4.6037 4.6233 0.9957

4.5277 4.5461 0.9959



Mathematics 2022, 10, 3847 20 of 29

Table 4. The Huffman coding efficiency.

Image Entropy Lavg Coding Efficiency

4.5839 4.6039 0.9957

4.5681 4.5869 0.9959

4.4587 4.4823 0.9947

4.5221 4.5411 0.9958

4.4257 4.4527 0.9939
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Table 5. The Huffman coding efficiency.

Image Entropy Lavg Coding Efficiency

4.5509 4.5693 0.9959

4.5737 4.5927 0.9958

4.5484 4.5668 0.9959

4.4696 4.4928 0.9948

4.5567 4.5766 0.9956
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Table 6. The Huffman coding efficiency.

Image Entropy Lavg Coding Efficiency

4.462 4.4856 0.9947

4.5742 4.5934 0.9958

4.4407 4.4647 0.9946

4.5362 4.5563 0.9956

4.4566 4.4799 0.9948
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Table 7. The Huffman coding efficiency.

Image Entropy Lavg Coding Efficiency

4.5156 4.5368 0.9953

4.6350 4.6559 0.9955

4.6124 4.6331 0.9955

4.4597 4.4833 0.9947

4.4924 4.515 0.9949
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Table 8. The Huffman coding efficiency.

Image Entropy Lavg Coding Efficiency

4.4930 4.5153 0.9951

4.5541 4.5732 0.9958

4.5026 4.5219 0.9957

4.5691 4.5877 0.9959

4.541 4.5612 0.9955
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Table 9. The Huffman coding efficiency.

Image Entropy Lavg Coding Efficiency

4.5233 4.5422 0.9958

4.3961 4.4247 0.9935

4.6318 4.6529 0.9954

4.5837 4.6037 0.9957

4.5661 4.5853 0.9958
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Table 10. The Huffman coding efficiency.

Image Entropy Lavg Coding Efficiency

4.5921 4.6115 0.9957

4.6093 4.6299 0.9955

4.5063 4.5257 0.9957

4.5116 4.5322 0.9954

4.5825 4.6025 0.9957
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Table 11. The Huffman coding efficiency.

Image Entropy Lavg Coding Efficiency

4.3554 4.3880 0.9926

4.5911 4.6105 0.9958

4.4944 4.5159 0.9952

4.4516 4.4752 0.9947

4.3646 4.3958 0.9929

8. Conclusions

This paper proposes to improve the Huffman coding efficiency by adjusting the data
using a Poisson distribution, which avoids the undefined entropies too. The performance of
our method has been assessed in Matlab, by using a set of images from the PASCAL dataset.

The scientific value added of our paper consists in applying the Poisson distribution
in order to minimize the average length of the Huffman code words.
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The PASCAL VOC challenge represents [34] a benchmark in visual object category
recognition and detection as it provides the vision and machine learning communities with
a standard data set of images and annotation.

In this paper we have used 10,102 images from the VOC data sets, which contain
significant variability in terms of object size, orientation, pose, illumination, position
and occlusion.

The database consists of 20 object classes: aeroplane, bicycle, bird, boat, bottle, bus, car,
motorbike, train, sofa, table, chair, tv/monitor, potted plant, person, cat, cow, dog, horse
and sheep.

The data of our information source are different from a finite memory source (Markov),
where its output depends on a finite number of previous outputs.
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