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Abstract: Recent technologies such as artificial intelligence, machine learning, and big data are
essential for supporting healthcare monitoring systems, particularly for monitoring Monkeypox
confirmed cases. Infected and uninfected cases around the world have contributed to a growing
dataset, which is publicly available and can be used by artificial intelligence and machine learning
to predict the confirmed cases of Monkeypox at an early stage. Motivated by this, we propose in
this paper a new approach for accurate prediction of the Monkeypox confirmed cases based on an
optimized Long Short-Term Memory (LSTM) deep network. To fine-tune the hyper-parameters
of the LSTM-based deep network, we employed the Al-Biruni Earth Radius (BER) optimization
algorithm; thus, the proposed approach is denoted by BER-LSTM. Experimental results show the
effectiveness of the proposed approach when assessed using various evaluation criteria, such as Mean
Bias Error, which is recorded as (0.06) using BER-LSTM. To prove the superiority of the proposed
approach, six different machine learning models are included in the conducted experiments. In
addition, four different optimization algorithms are considered for comparison purposes. The results
of this comparison confirmed the superiority of the proposed approach. On the other hand, several
statistical tests are applied to analyze the stability and significance of the proposed approach. These
tests include one-way Analysis of Variance (ANOVA), Wilcoxon, and regression tests. The results of
these tests emphasize the robustness, significance, and efficiency of the proposed approach.
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1. Introduction

After the global impact of COVID-19 in 2020, numerous countries reported that
Monkeypox had emerged in 2022, presenting a new global health crisis. Even though the
effects of COVID-19 on the worldwide economy and healthcare have been felt for over
two years, a second recent viral outbreak is anticipated to emerge in the near future. The
“Monkeypox virus” is the second etiological agent. The Zoonotic Orthopoxvirus, closely
related to cowpox and smallpox, causes the contagious disease known as Monkeypox [1].
The Monkeypox is a member of the Poxviridae family and the Orthopoxvirus genus.
Monkeypox is not a recent discovery; it was initially identified in 1958 in Copenhagen.
When the virus was first identified in 1958 in monkeys in a Danish laboratory, it was
given the name Monkeypox [2]. Although rodents and monkeys are the primary carriers,
human-to-human transmission is also very common [3]. The first isolate was given the
name Monkeypox [4]. In 1970, the Democratic Republic of the Congo (DRC) reported
the first instance of zoonotic MPV transmission from animal to human [5]. Monkeypox
typically affects many people who live close to tropical rain forests in Central and Western
Africa. When a person comes into intimate touch with another infected individual, animal,
or object, the virus itself spreads. Direct bodily contact, animal bites, respiratory droplets,
or mucus from the eyes, nose, or mouth can all spread it [6]. Fever, physical aches, and
exhaustion are a few early signs of Monkeypox infection in patients, with a red bump on
the skin as the long-term result [7].

According to data collected thus far, Monkeypox is not nearly as contagious as COVID-
19; however, the number of reported cases is climbing. In 1990, only 50 cases of Monkeypox
were reported in West and Central Africa. By 2020, the number of reported incidents
had increased to five thousand. In the past, Monkeypox was thought to only be found in
Africa. However, in 2022, people in several countries outside Africa, including the United
States and Europe, were found to have the virus [8]. Consequently, a widespread sense of
excessive dread and fear is gradually developing among the general population; this is
frequently reflected in the opinions expressed by individuals on social media. According to
the Centers for Disease Control and Prevention (CDC) recommendations, there is currently
no effective treatment for the Monkeypox virus. Many countries’ healthcare systems and
experts are struggling under the pressure of a shortage of medical supplies due to a growing
patient population [9]. Therefore, gaining knowledge of the pandemic’s growth and making
accurate predictions regarding its future evolution is one of the most critical steps that can
be taken to stop its progression. This is especially true in nations such as India, with a
sizable population. The accuracy of forecasting patterns of the Monkeypox distribution can
assist in predicting the pandemic outbreak and help governments become better equipped
to tackle the pandemic. Additionally, precise forecasting can offer feedback on how well
the implemented policy works to reduce the burden on that nation’s healthcare system [10].
The government can then assess the effectiveness of mitigation plans and implement policy
regulations based on the predicted impact zones. For instance, researchers have effectively
anticipated the reproduction parameter of COVID-19 in Indonesia using mathematical
models such as the SIR and SEIR models, demonstrating the need for accurate forecasting
methods [11].

Artificial intelligence (AI) has shown promising results as a decision support system
to aid in detecting diseases and establishing accurate medical diagnoses in recent years,
among many other applications. Researchers and governments have concentrated on
machine learning (ML), a subset of AI that can learn from past data to solve a real-world
problem and make accurate predictions about the number of pandemic cases, which is
crucial for controlling the virus’s incubation and transmission. For example, in the COVID-
19 pandemic challenge, ML can forecast the COVID-19 breakout by assessing the virus’s
riskiness and then stepping up the level of the procedures used. When they utilize ML
to detect COVID-19, many countries have seen a decline in the virus’s propagation. In
summary, many academics have developed models and systems to predict diseases using
ML and deep learning (DL) approaches. ML algorithms are widely applicable in the field
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of medical analysis; for example, in the prediction of COVID-19 [12], the progression of
Alzheimer’s disease [13], brain tumor [14], breast cancer [15], and other diseases [16,17].
ML and DL are crucial in diagnosing diseases and finding solutions to health threats.

In this paper, we propose a new approach for boosting the prediction accuracy of
Monkeypox infections. The proposed approach is based on LSTM deep network, where
its parameters are optimized using BER optimization algorithm. The contributions of this
work can be summarized as follows:

• A new approach is proposed based on optimized LSTM prediction to improve the
accuracy of Monkeypox infection prediction.

• The proposed approach is compared with other ML models and optimization algo-
rithms, and the results are recorded.

• The recorded results are analyzed using statistical methods such as Wilcoxon’s rank-
sum test and one-way analysis of variance to evaluate the statistical difference and
significance of the proposed approach.

• The proposed approach can be generalized and tested for other datasets.

2. Related Works

ML and DL are crucial in diagnosing diseases and finding solutions to health issues.
Many academics have developed models and systems to predict different diseases using
ML and DL approaches. Alzheimer’s disease cannot be diagnosed with a specific test.
The clinical history, cognitive and laboratory tests, and electroencephalography (EEG)
should be used to make the diagnosis. Therefore, new methods are required to ensure
earlier and more precise diagnosis and to monitor treatment outcomes. With the goal of
distinguishing Alzheimer’s disease patients from controls, authors in [17] employed a ML
technique called support vector machine (SVM) to scour EEG epochs for distinguishing
features. A quantitative EEG (qEEG) processing method was created for automatically
differentiating patients with Alzheimer’s from healthy persons. The study that took each
patient’s diagnosis into account had high accuracy.

Diseases of the heart rank among the world’s top five leading causes of death in the
modern era. A significant problem in clinical data analysis is the prediction of cardiovas-
cular disease. With ML, it has been demonstrated that it is possible to make predictions
and judgments from the vast amount of data generated by the healthcare sector. The
use of ML approaches to predict cardiac disease is only partially explored in several re-
searches. A unique approach to improve the precision of cardiovascular disease prediction
by identifying key features using ML techniques was proposed by authors in [18]. The
prediction model is presented with a variety of feature combinations as well as a number
of well-established classification methods. It is usual practice to establish a diagnosis of
Parkinson’s disease (PD) on medical observations and an evaluation of clinical signs. This
evaluation often involves the definition of a wide range of motor symptoms. However,
there is a risk of misclassification with conventional diagnostic methods since they rely on
the evaluation of motions that can be subtle to human eyes. In order to diagnose PD, ML
also enables the combination of several modalities, such as magnetic resonance imaging
(MRI) and single-photon emission computed tomography (SPECT) data [19]. In order to
rely on these alternative measures to detect PD in preclinical stages or atypical forms, we
may discover pertinent traits that are not often used in the clinical diagnosis of PD by
applying ML algorithms.

A frequent clinical consequence that is linked to high morbidity and death is fatty
liver disease (FLD). The potential to develop a suitable plan for prevention, early diagnosis,
and therapy is given by an earlier prediction of FLD patients. Authors of [20] created a ML
model that could predict FLD and help doctors identify high-risk patients, establish a new
diagnosis, and prevent and manage FLD. To predict FLD, classification models including
logistic regression, random forest, naive Bayes, and artificial neural networks (ANN) were
created. The four models’ performance was compared using the area under the receiver
operating characteristic curve (ROC). To accurately predict fatty liver disease, authors
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in [20] created and analyzed four classification algorithms in this study. Nevertheless, the
random forest model performed better than other categorization methods. A random forest
model could be used in the clinical setting to help doctors categorize patients with fatty
livers for primary prevention, surveillance, early treatment, and management.

An increasing number of people worldwide are developing chronic kidney disease
(CKD), which significantly impacts overall health and well-being. In the beginning stages of
CKD, there are no noticeable symptoms; therefore, many people do not realize they have it.
When CKD is diagnosed in its earliest stages, patients can receive medication that slows the
disease’s progression. Due to their quick and precise recognition abilities, ML models can
successfully help therapists accomplish this goal. Authors in [21] suggested a ML approach
to CKD diagnosis. The University of California Irvine (UCI) [22] ML repository provided
the CKD dataset, which contains a significant number of missing values. Since patients
may overlook particular measurements for a variety of reasons, missing data are frequently
observed in real-world medical settings. Six ML algorithms were employed to create
models after completing the missing dataset. With a diagnosis accuracy rate of 99.75%,
random forest outperformed the other ML models. An integrated model was suggested
that combines logistic regression and random forest utilizing perceptron, which could
reach an average accuracy of 99.83% after ten simulations by assessing the established
models’ errors. We, therefore, hypothesized that this methodology would be applied
to clinical data for more complex disease diagnoses. Authors in [23] presented a novel
approach to ML that makes it possible to accurately diagnose coronary artery disease (CAD).
Ten classic ML methods were evaluated. Data standardization and preprocessing were
performed to increase the efficiency of these methods. Stratified ten-fold cross-validation
was combined with a genetic approach, particle swarm optimization, and was employed
for parallel feature selection and classifier parameter optimization. Results demonstrated
that the proposed method could significantly improve ML models’ accuracy for clinical
and research applications.

Recently, around the world, Monkeypox has become a rapidly spreading disease,
with outbreaks already being documented in 75 different nations outside of Africa. The
similarities between Monkeypox, chickenpox, and measles make early clinical diagnosis
difficult. Monitoring and quick identification of infected patients with Monkeypox may
be aided by computer-assisted detection of lesion morphology in circumstances when
confirmatory Polymerase Chain Reaction (PCR) assays are not easily accessible. When
enough training examples are available, DL techniques have been demonstrated to be
useful for automatically detecting skin lesions. There was already a knowledge gap among
medical experts worldwide due to the rarity of Monkeypox before the current outbreak.
The accomplishments of supervised ML in the detection of COVID-19 serve as inspiration
for scientists as they work to find a solution to this difficult problem. However, there is a
shortage of data on Monkeypox skin photos, causing a bottleneck in applying ML to the
detection of Monkeypox from patient skin photographs.

Authors in [24] presented the largest dataset of Monkeypox Skin Images in their
research. Photographs of healthy and infected skin were gathered through web scraping to
create a complete image database available to the public. Infected skin images included
those with measles, cowpox, chickenpox, smallpox, Monkeypox, and chickenpox. Authors
in [25] developed the Monkeypox Skin Lesion Dataset (MSLD), which includes pictures of
skin lesions caused by measles, chickenpox, and Monkeypox. Most photographs have been
gathered from websites, news portals, and case reports that are available to the general
public. In the first phase, a three-fold cross-validation experiment is set up, and the sample
size is increased through data augmentation. The second phase is categorizing diseases
such as Monkeypox using several pretrained DL models, including VGG-16, ResNet50,
and InceptionV3. ResNet50 achieves the highest overall accuracy. Authors in [26] proposed
image data collection and implementation based on a DL model for detecting Monkeypox
disease by using modified VGG16. The dataset was developed by gathering photos from
various open-source and internet resources, providing a safer approach to utilizing and
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disseminating such data for developing and deploying any ML model. The modified
VGG16 model was applied in two separate studies. According to their findings, this model
correctly recognizes patients with Monkeypox disease with high accuracy for both studies.
This model’s prediction and feature extraction helped to provide a deeper insight into
specific features of the Monkeypox virus.

3. The Proposed Methodology

The LSTM-based neural network is an effective approach to handling time series.
LSTM memory cells are responsible for facilitating efficient data transfer. Figure 1 depicts
the overall framework of the LSTM prediction model developed in this paper, which
consists of the following five functional modules: input layer, hidden layer, output layer,
network training, and network prediction. This framework is developed by taking into
account the data characteristics of finite sample points of Monkeypox infections time series
and the design principle of simplifying the deep neural network. The LSTM cells are used
to construct a single-layer neural network, which is then used to make predictions in the
network’s output layer.

Figure 1. The proposed methodology.

Once the prediction model has been specified, the optimizer is configured along
with a loss function adoption to optimize the parameters of the LSTM model. The BER
optimization algorithm is adopted to optimize the parameters of the LSTM model. Through
the use of the loss function, the error values are calculated to control the fine-tuning of the
model parameters. Once all of the settings have been adjusted, training data are collected
in batches and fed into the model for analysis in iterations. Algorithm 1 provides the
pseudocode for the proposed methodology.
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Algorithm 1 : The proposed prediction algorithm of Monkeypox confirmed cases.

1: Input Monkeypox dataset
2: Output Graph representing test and predicted values
3: Prerequisites Import required libraries
4: Globals:

E : Number of epochs
N : LSTM Network
G : TimeSeriesGenerator()
Batch size : N
split() : split given dataset into two parts

5: D ← read(data)
6: K ← G(traindata)
7: L← G(testdata)
8: Initialize layers, input shape, optimizer, and loss function to define N
9: for k = 1 to E do

10: Train(N, K)
11: end for
12: P← predictions(N, L)
13: Mean− Square− Error(testdata, P)
14: Graph(testdata, P)

3.1. LSTM

To represent a time series, recurrent neural networks (RNNs) have emerged as a
popular choice. To better predict future states at the output layer, RNNs implement a
context layer that works as memory. Elman RNNs have been used to describe temporal
sequences and dynamical systems, despite being just one of several RNN designs. Getting
started with RNN training has been difficult. RNNs have been trained using iterations of
the backpropagation technique called backpropagation-through-time (BPTT). To achieve
a more complex network design with states determined by time, BPTT uses gradient
descent with backpropagation of error. The time-evolving RNN looks a lot like a multilayer
perceptron with several discrete ”hidden“ layers. Learning long-term dependencies in the
face of disappearing and exploding gradients has been a significant challenge for BPTT
applied to basic RNNs. In response to this shortcoming, the LSTM network included a layer
of hidden memory cells to improve its ability to recall the long-term dependencies [27].
As can be seen in Figure 2, the memory cells are useful for keeping track of the long-term
relationships in data.

Traditional RNNs and LSTMs only use the context state from the past to predict
the future. In contrast, bidirectional RNNs (BD-RNNs) process data in both ways by
using two independent hidden layers that each transmit information to a single output
layer. As a result, two separate RNNs are combined in order to provide both forward and
backward sequence information at each time step. By repeatedly iterating the backward
layer from t = T to t = 1, and the forward layer from t = 1 to t = T, we are able to
calculate the forward hidden sequence hf, the backward hidden sequence hb, and the
output sequence y. Like BD-RNNs, BD-LSTM may retrieve long-term context or state from
both directions. A number of practical sequence processing issues, including phoneme
classification, continuous voice recognition, and speech synthesis, have benefited from
the use of BD-LSTM networks since their first proposal for word embedding in natural
language processing. Since it is important to keep track of future state information, BD-
LSTM networks take data in two directions—forward, from the present to the future, and
backward, from the future to the past—in order to do so. When the network is given two
hidden states that are joined at any one time, it can store data from both the past and the
future. The hidden state output ht is calculated in LSTM based on the following formulas:
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ft = σ(xtU f + ht−1W f )

it = σ(xtUi + ht−1Wi)

Ĉt = tanh(xtUc + ht−1Wc)

ot = σ(xtUo + ht−1Wo)

Ct = σ( ft ∗ Ct−1 + itĈt)

ht = tanh(Ct) ∗ ot

(1)

where at time t, it denotes the input gate, ft denotes the forget gate, and ot denotes the
output gate. The memory cell is referred to as c. The number of hidden units is denoted
by ht, and the input feature count is xt. Learning also involves adjusting the bias b and
weight matrices W and U. Keep in mind that the size of the concealed state determines the
dimensions dh of each gate. In this context, Ct refers to the present cell’s memory, while Ĉt
stands for the intermediate cell state. Initial conditions at time zero are specified by Co = 0
and ho = 0.

Figure 2. The structure of a neural network based on LSTM cells.
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3.2. Al-Biruni Earth Radius Optimization Algorithm

It is the goal of optimization algorithms to find the best possible solution to a problem
given limitations. When using the BER optimization algorithm, an individual from the pop-
ulation may be shown in the form of a S vector, S = S1, S2, ..., Sd ∈ R, where Sd is the size
of the search space and d is the parameter or feature in the optimization problem [28,29]. It
is suggested that the fitness function F be utilized in order to assess a person’s performance
up to a predetermined point. These steps of the optimization technique are used to search
populations for an optimal vector S∗ that optimizes the fitness. The method begins by
selecting a random group of people from the population (solutions). The fitness function,
the lower and higher limits for each solution, the dimension, and the population size are
all required before BER can begin the optimization process. The optimization algorithm
used to optimize the parameters of LSTM is depicted in Algorithm 2.

Algorithm 2 : BER optimization algorithm.

1: Initialize BER population Si(i = 1, 2, ..., d) with size d, iterations Maxiter, fitness func-
tion Fn, t = 1, BER parameters

2: Calculate fitness function Fn for each Si
3: Find best solution as S∗

4: while t ≤ Maxiter do
5: for (i = 1 : i < n1 + 1) do
6: Update r = h cos(x)

1−cos(x)
7: Calculate D = r1(S(t)− 1)
8: Update positions to head toward best solution as

S(t + 1) = S(t) + D(2r2 − 1)
9: end for

10: for (i = 1 : i < n2 + 1) do
11: Calculate D = r3(L(t)− S(t))
12: Update positions Elitism of best solution as

S(t + 1) = r2(S(t) + D)

13: Calculate k = 1 + 2×t2

Max2
iter

14: Update positions Investigating area around best solution as
S’(t + 1) = r(S∗(t) + k)

15: Compare S(t + 1) and S’(t + 1) to select best solution S∗

16: if best fitness is not changed for last two iterations then
17: Mutate solution as S(t + 1) = k ∗ z2 − h cos(x)

1−cos(x)
18: end if
19: end for
20: Update the fitness function Fn for each Si
21: Update BER parameters, t = t + 1
22: end while
23: Return S∗

3.2.1. Exploration Operation

Exploration is responsible for both identifying interesting regions of the search space
and avoiding local optimum stagnation via forward progress towards the optimal solution,
as will be explained more below.

• Moving towards the best solution : Using this strategy, the lone explorer in the group
will look for promising new areas to explore in the immediate vicinity of where it now
is. This is achieved by iteratively looking for a better choice (in terms of fitness) among
the many possible alternatives in the immediate area. To do so, the BER study makes
use of the following equations:

r = h
cos(x)

1− cos(x)
(2)
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D = r1(S(t)− 1) (3)

S(t + 1) = S(t) + D(2r2 − 1) (4)

where 0 < x ≤ 180, h is a number that is randomly selected from the range [0, 2], r1
and r2 are coefficient vectors whose values are measured by Equation (2), S(t) is the
solution vector at iteration t, and D is the diameter of the circle in which the search
agent will look for promising areas.

3.2.2. Exploitation Operation

It is the responsibility of the exploitation group to enhance already-in-place answers.
At the end of each cycle, the BER algorithm determines who has the highest fitness and
rewards them accordingly. Two distinct methods, described below, are used by the BER to
accomplish the goal of exploitation.

• Moving towards the best solution: To move in the direction of the best solution, the
following equation is employed.

S(t + 1) = r2(S(t) + D) (5)

D = r3(L(t)− S(t)) (6)

where r3 is a random vector calculated using Equation (2) that controls the movement
steps towards the best solution, S(t) is the solution vector at iteration t, L(t) is the best
solution vector, and D refers to the distance vector.

• Searching the area around the best solution: The area around the best answer is the
most promising option (leader). This leads some people to look for improvements by
exploring areas close to the optimal answer. The BER uses the following equation to
carry out the aforementioned procedure.

S’(t + 1) = r(S∗(t) + k) (7)

k = 1 +
2× t2

Max2
iter

(8)

where S∗(t) refers to the best solution. After comparing S(t + 1) and S′(t + 1), the
best solution S∗ can be selected. If the best fitness is not changed for the last two
iterations, the solution is mutated by the following equation:

S(t + 1) = k ∗ z2 − h
cos(x)

1− cos(x)
(9)

where z is a random number in the range [0, 1] and t is the iteration number.

3.2.3. Selection of the Best Solution

The BER selects the best one to use in the following cycle to guarantee that the solutions
are of high quality. However, multimodal functions may converge too quickly because
of the elitism approach’s increased efficiency [30–32]. The BER provides outstanding
exploration capabilities by using a mutation approach and looking around members of
the exploration group. Strong exploration capabilities allow the BER to delay convergence.
It is possible to see the BER pseudocode in Algorithm 2. We begin by feeding the BER
some information, such as the population size, mutation rate, and the number of iterations.
The BER then divides the participants into two groups: those who do exploratory work
and those who do exploitative work. During the iterative process of finding the optimal
solution, the BER algorithm dynamically adjusts the size of each group. Each team uses
two methods to perform their tasks. In between iterations, the BER shuffles the order of the
answers to guarantee variety and deep investigation. For example, a solution part of the
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exploration group in one iteration might move to the exploitation group in the next. The
elitist approach taken by the BER ensures that the leader is not replaced during the process.

4. Experimental Results

In this paper, we conducted a set of experiments to prove the effectiveness and
superiority of the proposed BER-LSTM approach in predicting Monkeypox cases. To
justify the achieved results, a set of ML models along with four optimization algorithms
were incorporated into the conducted experiments. The next sections present the dataset
employed in the conducted experiments, discuss the achieved results, and then conclude
the established comparisons.

Platform hardware specifications for the experiments performed are as follows: Intel
Core i7 CPU, GeForce RTX2070 Super GPU (graphics processing unit) with 8 GB of RAM,
and 16 GB of DDR4 RAM for general processing and data storage. Platform is Ubuntu
20.04 with CUDA 9.0, Cudnn 7.1, TensorFlow 1.15, Spider IDE with Python 3.7, and so on
for the software. In order to complete the model training process quickly, trials are run
with a batch size ≥16.

4.1. Dataset

The dataset employed in the conducted experiments is publicly available on
Kaggle [33]. The records of this dataset are updated daily to include the up-to-date con-
firmed cases around the world. Figure 3 shows the world map, with colored regions
showing spread infections of the Monkeypox virus. In addition, the timeline shown in
the plot in Figure 4 for the confirmed cases with respect to the date of the infections up to
the date of writing this article. As shown in this plot, the number of confirmed cases is
increasing, which demands an accurate prediction for helping governments to get ready
with the necessary precautions.

On the other hand, the Pearson correlation of the features recorded in the dataset is
shown in Figure 5. In this figure, there is a high correlation between the travel history and
the number of confirmed cases, which indicates the relevant features that affect the accurate
prediction of the confirmed cases.

Figure 3. The confirmed Monkeypox cases across the countries.
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Figure 4. The timeline of the confirmed cases to the date of this article.

Figure 5. Pearson’s correlation of features.

4.2. Configuration Parameters

To assess the proposed approach and prove its superiority, four optimization algo-
rithms were included in the conducted experiments to optimize the parameters of the
LSTM-based deep network. The configuration parameters of these optimization algorithms,
along with the proposed BER-based algorithm, are presented in Table 1. These parameters
are used to setup the operation of each algorithm to achieve the best prediction results.
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Table 1. Configuration parameters of the competing algorithms.

Algorithm Parameter Value

Al-Biruni Earth Radius (BER) Iterations 500
Number of runs 30
Mutation probability 0.5
Exploration percentage 70
K (decreases from 2 to 0) 1

Particle Swarm Optimization (PSO) [34] Acceleration constants [2, 12]
Inertia Wmax, Wmin [0.6, 0.9]
Particles 10
Iterations 80

Grey Wolf Optimizer (GWO) [35] a 2 to 0
Iterations 80
Wolves 10

Genetic Algorithm (GA) [36] Cross over 0.9
Mutation ratio 0.1
Selection mechanism Roulette wheel
Iterations 80
Agents 10

Whale Optimization Algorithm (WOA) [37] r [0, 1]
Iterations 80
Whales 10
a 2 to 0

4.3. Optimization of Parameters in LSTM

In this work, we adopted the BER algorithm to optimize the parameters (including
the number of hidden layers, hidden nodes, and the learning rate) of the neural network in
the LSTM model. In the BER algorithm, we set the number of iterations as 500, the number
of runs as 30, mutation probability as 0.5, exploration percentage as 20, and K as 1. Figure 6
exhibits the objective function value at each iteration step, and the algorithm finds the best
objective function value as 4.21 at the 15th iteration step. The set of upper bound and lower
bound of the search area for the three parameters are presented in Table 2.

Table 2. The optimized set of parameters of the LSTM model.

Learning Rate Hidden Nodes Hidden Layers

Lower bound 1× 10−5 1 1
Upper bound 1× 10−1 20 10
Optimized values 3× 10−2 7 2

Figure 6. Plot of the objective function values versus the number of iterations.
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4.4. Evaluation Criteria

The evaluation of the proposed approach is performed in terms of the metrics listed in
Table 3. This table presents the formulas used to calculate each metric. The metrics pre-
sented in the table are Root Mean Error (RMSE), Relative RMSE (RRMSE), Mean Absolute
Error (MAE), Mean Bias Error (MBE), Pearson’s correlation coefficient (r), Nash Sutcliffe
Efficiency (NSE), coefficient of determination (R2), determine agreement (WI), where N is
the number of observations in the dataset, (V̂n) and (Vn) are the nth estimated and observed
bandwidth, and (Vn) and ( ¯̂Vn) are the arithmetic means of the observed and estimated
values [38,39].

Table 3. Performance evaluation metrics [40].

Metric Value

RMSE
√

1
N ∑N

n=1(V̂n −Vn)2

RRMSE RMSE
∑N

n=1 V̂n
× 100

MAE 1
N ∑N

n=1 |V̂n −Vn|

NSE 1− ∑N
n=1(Vn−V̂n)2

∑N
n=1(Vn− ¯̂Vn)2

MBE 1
N ∑N

n=1(V̂n −Vn)

R2 1− ∑N
n=1(Vn−V̂n)2

∑N
n=1((∑

N
n=1 Vn)−Vn)

2

WI 1− ∑N
n=1 |V̂n−Vn |

∑N
n=1 |Vn−V̄n |+|V̂n− ¯̂Vn |

r ∑N
n=1(V̂n− ¯̂Vn)(Vn−V̄n)√(

∑N
n=1(V̂n− ¯̂Vn)2

)
(∑N

n=1(Vn−V̄n)2)

4.5. The Achieved Results

To evaluate the performance of the proposed approach, the evaluation metrics were
calculated for the prediction results achieved by the proposed BER-LSTM model and
six other models, namely, standard LSTM [41], bidirectional LSTM (BILSTM) [42], gated
recurrent unit (GRU) [43], multiple LSTMs [44], multiple BILSTMs [42], and convolutional
LSTMs (CONVLSTMs) [45]. The achieved results are presented in Table 4 using the
training set. As shown in this table, the values of all metrics using the proposed approach
outperform those achieved by the other six models. These results prove the superiority of
the proposed approach over the standard approaches in predicting confirmed Monkeypox
cases.

Table 4. Prediction results using the training set.

Model MSE RMSE MAE R2 RRMSE r MBE NSE

BER-LSTM (Proposed) 646.41 25.14 16.39 0.7 1.33 0.84 −3.75 0.65
LSTM 655.33 27.31 18.6 0.59 1.66 0.833 3.79 0.59
BILSTM 704.64 28.28 20.68 0.55 1.38 0.82 7.03 0.55
GRU 643.15 27.08 17.62 0.61 1.33 0.83 1.79 0.61
LSTMs 618.22 26.57 17.51 0.63 1.3 0.85 0.5 0.63
BILSTMs 637.8 26.97 16.9 0.61 1.32 0.83 −0.65 0.61
CONVLSTMs 728.28 28.73 17.41 0.53 1.41 0.8 0.72 0.53
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On the other hand, the achieved results using the testing set are presented in Table 5.
The evaluated value of MSE, for instance, using the proposed approach is (480.53), whereas
the best value of this metric using the other standard approaches was (503.24) based on
the BILSTMs. Similarly, the achieved values of the different evaluation metrics using the
proposed approach are better than those of the standard approaches when working on the
testing set of the Monkeypox cases.

Table 5. Prediction results using the test set.

Model MSE RMSE MAE R2 RRMSE r MBE NSE

BER-LSTM (Proposed) 480.53 20.82 15.25 0.73 1.36 0.83 0.06 0.61
LSTM 586.06 26.09 19.24 0.45 1.486 0.78 7.67 0.45
BILSTM 670.69 27.83 22 0.35 1.58 0.79 12.36 0.35
GRU 519.42 24.7 17.51 0.53 1.41 0.81 6.16 0.53
LSTMs 568.07 25.75 18.23 0.47 1.47 0.74 4.49 0.47
BILSTMs 503.24 24.34 16.72 0.55 1.39 0.81 4.12 0.55
CONVLSTMs 571.09 25.81 18.15 0.46 1.52 0.72 2.98 0.46

On the other hand, the proposed approach is studied from the statistical perspective,
and the results are shown in Table 6. The python packages and programs used in this
statistical analysis include SciPy, Matplotlib, OriginPro, and DataMelt, in addition to
SPSS. For a fair comparison, the results presented in this table were calculated using the
average of eight runs of the proposed approach, and the predictions of the results were
analyzed. A total of 20 iterations for each run, Maxiter in Algorithm 2, is used to ensure the
statistical significance of the proposed approach when compared with the other competing
approaches in the ANOVA and Wilcoxon rank-sum tests. The proposed approach is
compared with different algorithms, and the ANOVA test results are presented in Table 7
to determine the statistical significance of the differences between them. The dependent
variable in the ANOVA test is RMSE. The hypothesis testing is formulated here using two
hypotheses: the null hypothesis (H0: µA = µB = µC = µD = µE), where A is the BER-LSTM
algorithm, B is the PSO-LSTM algorithm, C is the GWO-LSTM algorithm, D is the GA-
LSTM algorithm, and E is the WOA-LSTM algorithm. The alternate hypothesis (H1: means
are not all equal).

Table 6. Statistical analysis of the achieved Monkeypox prediction results compared with the results
achieved by the other approaches.

BER-LSTM PSO-LSTM GWO-
LSTM GA-LSTM WOA-

LSTM

Num. values 8 8 8 8 8
Range 0 1.9 1.8 2 2.3
Maximum 20.82 22.8 23.1 23.9 24.2
Minimum 20.82 20.9 21.3 21.9 21.9
Mean 20.82 21.89 22.33 22.9 23.58
Median 20.82 21.9 22.3 22.9 23.9
Mean std. error 0 0.1797 0.179 0.189 0.2769
Std. dev. 0 0.5083 0.5064 0.5345 0.7833
25% Percentile 20.82 21.9 22.3 22.9 23.13
75% Percentile 20.82 21.9 22.6 22.9 24.05
Sum 166.6 175.1 178.6 183.2 188.6
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Table 7. Results of the one-way analysis of variance (ANOVA) test.

ANOVA Table SS DF MS F (DFn, DFd) p Value

Treatment (between columns) 34.77 4 8.694 F (4, 35) = 30.74 p < 0.0001
Residual (within columns) 9.899 35 0.2828 - -
Total 44.67 39 - - -

In addition, Wilcoxon’s rank-sum statistical analysis of the proposed algorithm in
comparison with other algorithms is shown in Table 8. Hypothesis testing is formulated by
two hypotheses: the null hypothesis (H0: µBER-LSTM = µPSO-LSTM, µBER-LSTM = µGWO-LSTM,
µBER-LSTM = µGA-LSTM, and µBER-LSTM = µWOA-LSTM); the alternate hypothesis (H1: means
are not all equal). The dependent variable in the Wilcoxon’s rank-sum test is RMSE. This
shows the superiority and indicates the statistical significance of the BER-LSTM algorithm;
p-value < 0.05 demonstrating the significant superiority. Thus, the alternate hypothesis H1
is accepted.

Table 8. Results of Wilcoxon’s signed rank test for the BER-LSTM and compared algorithms.

µBER-LSTM =
µPSO-LSTM

µBER-LSTM =
µGWO-LSTM

µBER-LSTM = µGA-LSTM µBER-LSTM =
µWOA-LSTM

p value (two tailed) 0.0078 0.0078 0.0078 0.0078
Exact or estimate? Exact Exact Exact Exact
Significant (alpha = 0.05)? Yes Yes Yes Yes

When it comes to the reliability and effectiveness of the currently implemented features,
regression testing bears the primary responsibility. To ensure that the proposed approach
remains robust in terms of ongoing updates to the feature values, regression testing is
performed after a series of updates to feature values. Modifications to the features might
cause unintended consequences, such as broken features or reliance on a faulty dependency.
The regression test results of the BER-LSTM with respect to compared methods are shown
in Table 9. As shown in this table, the regression testing shows a reliable performance of
the proposed BER-LSTM algorithm.

Table 9. Regression test results of the BER-LSTM with respect to compared methods.

PSO-LSTM GWO-LSTM GA-LSTM WOA-LSTM

Gaussian Ambiguous Ambiguous Ambiguous Ambiguous
Best-fit values
Amplitude 21.89 22.33 22.9 23.58
Mean 20.82 20.82 20.82 20.82
SD 2.465 × 1032 2.465 ×1032 2.465 ×1032 2.465 × 1032

95% CI (profile likelihood)
Std (Very wide) (Very wide) (Very wide) (Very wide)
Mean (Very wide) (Very wide) (Very wide) (Very wide)
Goodness of Fit
Degrees of Freedom 5 5 5 5
R squared 0 0 0 0
Sum of Squares 1.809 1.795 2 4.295
Sy.x 0.6015 0.5992 0.6325 0.9268
Constraints
SD SD > 0 SD > 0 SD > 0 SD > 0

Tukey’s honest significant test (HSD), also known as the Tukey test, is a post hoc
statistical test used to determine if there is a statistically significant difference between
the means of two sets of data. Once an ANOVA has found a significant difference in the
means of three or more sets of data, this test is carried out based on the standardized
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range distribution. The average RMSE with the Tukey test is shown in Figure 7. In this
figure, the proposed approach could achieve the smallest value of RMSE, which reflects its
effectiveness in predicting the Monkeypox cases robustly.

Figure 7. The average RMSE with Tukey test for the BER-LSTM and compared algorithms.

The visual plots depicted in Figure 8, on the other hand, highlight the performance
of the proposed approach in predicting the Monkeypox cases. In this figure, four plots
are shown, namely, residual, homoscedasticity, quartile–quartile (QQ), and heatmap plots.
Typically, this is performed by charting the quantiles of each distribution and evaluating
the differences between them. Distributions of QQ points are shown to roughly follow the
straight line in the illustration. As a result, the linear relationship between the observed
and predicted residuals supports the claimed effectiveness of the advised BER-LSTM. The
depicted results confirm the superiority and effectiveness of the proposed approach.

Figure 8. Visual analysis of the results achieved by the BER-LSTM and compared algorithms.

The histogram of RMSE values for the BER-LSTM and compared algorithms is shown
in Figure 9. A sample ROC curve based on the proposed BER-LSTM approach versus
one of the competing approaches, namely, PSO-LSTM, is shown in Figure 10. This curve
confirms the superiority and effectiveness of the proposed approach.
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Figure 9. Histogram of RMSE values for the BER-LSTM and compared algorithms.

Figure 10. ROC curve for the BER-LSTM and PSO-LSTM algorithms.

One more experiment was conducted to show the smooth convergence time of the
algorithm parameters versus the other competing algorithms. The results of this experiment
are depicted in Figure 11. These results confirm the superiority of the proposed algorithm
in predicting the Monkeypox cases efficiently.

Figure 11. Smoothness of convergence time of BER-LSTM parameters with respect to other methods.

5. Conclusions

Using a publicly available and daily updated Monkeypox dataset, this research pro-
posed a new approach to accurately predict the confirmed cases of Monkeypox infection.
The proposed approach is based on optimizing the parameters of the LSTM-based deep
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network using the BER optimization algorithm. The better balance between exploration
and exploitation of the BER algorithm allows for better optimization of the network pa-
rameters, thus achieving better performance. Eight evaluation criteria were considered to
assess the performance of the proposed approach. The recorded values of these criteria
show the effectiveness of the proposed approach. In addition, to prove the superiority
of the proposed approach, six different ML models and four optimization methods were
included in the conducted experiments. On the other hand, the statistical significance of
the proposed approach was studied using ANOVA, Wilcoxon, and regression tests. The
recorded results of these tests confirmed the proposed approach’s robustness, significance,
and effectiveness. The limitation of the proposed approach is that when tested on a large
dataset, the balance between exploration and exploitation processes of the optimization
algorithm consumes time. This limitation is currently under investigation to be considered
in future work on the BER optimization algorithm.
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