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Abstract: We consider a multi-server production inventory system with an unlimited waiting line.
Arrivals occur according to a non-homogeneous Poisson process and exponentially distributed service
time. At the service completion epoch, one unit of an item in the on-hand inventory decreases with
probability δ, and the customer leaves the system without taking the item with probability (1− δ).
The production inventory system adopts an (s, S) policy where the processing of inventory requires
a positive random amount of time. The production time for a unit item is phase-type distributed.
Furthermore, assume that an emergency replenishment of one item with zero lead time takes place
when the on-hand inventory level decreases to zero. The emergency replenishment is incorporated
in the system to ensure customer satisfaction. We derive the stationary distribution of the system
and some main performance measures, such as the distribution of the production on/off time in
a cycle and the mean emergency replenishment cycle time. Numerical experiments are conducted
to illustrate the system performance. A cost function is constructed, and we examine the optimal
number of servers to be employed. Furthermore, we numerically calculate the optimal values of the
production starting level and maximum inventory level.

Keywords: (s, S) production inventory system; non-homogeneous Poisson process; multi-server;
emergency replenishment; cost function

MSC: 60K25; 90B22

1. Introduction

Consider a c-server (c ≥ 2) queuing inventory model with an inventory-level depen-
dent Poisson arrival of customers. The service provided by each server has a duration
that is exponentially distributed with parameter µ. On the completion of a service, the
customer is served an item with probability δ. With probability 1− δ = δ̂, the customer
is not served the item. The replenishment of inventory is through a production process
that is controlled by the (s, S) policy. To produce one unit of an item, the time required is
phase-type distributed with representation (β, T) of order m. This production time can
be interpreted as the time until the underlying Markov chain {ζ(t), t ≥ 0}, with a finite
state space {1, 2, . . . , m, m + 1}, reaches the single absorbing state m + 1, conditioned on
the fact that the initial state of this process is selected as one of the states {1, 2, . . . , m}
according to the initial probability vector β = (β1, . . . , βm). The transition rates within the
set {1, 2, . . . , m} are defined by the generator T, and the transition rates into the absorbing
state are given by T0 = −Te.

The mean production of the item is calculated by η′ = −βT−1e (see Neuts [1]).
All distributions involved are assumed to be independent of each other. When the on-
hand inventory drops to zero, one unit of the same is purchased locally (emergency
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replenishment) at a higher cost, to avoid customer loss. The time required for this is
assumed to be negligible. This system is analyzed in the equilibrium state (a condition
whose existence is established in the sequel). The objective of the proposed model is to
minimize the total cost by determining the optimal number of servers and the optimal
(s, S) policy.

As an example of the model: consider customers arriving at a car show room; a
few of them decide to buy the car at the end of the advisors description of the vehicle.
The remaining customers leave without buying the car. Further, as a justification for our
assumption for an inventory-level dependent customer arrival rate, we notice the tendency
among customers of products to queue up for an item when it is scarce with the hope
that they will receive the item served within the next few replenishments. On the other
end, we can cite the following situation that is commonly seen: when an item has a good
brand name and is available without much of a delay, customers throng the shop where it
is available, even when the waiting line is long.

Another example for the model described: If the item is abundantly available, cus-
tomers are confident in receiving the item even when the queue size is large. On the other
hand, if the item is scarce, naturally customers will be discouraged from joining the system.
This is the reason for our assumption of an “inventory-level-dependent arrival rate” rather
than “arrival rate” depending on the customers already present. In addition, it may be
noted that if the arrival rate depends on the number of customers already present, then the
present analysis needs drastic changes—either one has to resort to a truncation procedure to
achieve a LIQBD process or go for analysis of the asymptotic quasi-Toeplitz Markov chain.

The rest of the article is organized as follows. Section 2 is the literature review. Section 3 pro-
vides our notations, assumptions and system analysis. Some important performance measures,
including the distribution of the production on (or off) time and mean emergency replenishment
time are also given in Section 3. Section 4 provides a numerical example, sensitivity analysis
and some graphical illustrations. Finally, our conclusions are given in Section 5.

2. Literature Review

Queuing inventory has its origin in Melikov et al. [2] and Sigman and Levy [3]. These
were followed by a spate of articles by Berman et al. [4–6]. In none of these did the
authors attempt to derive the product-form solution. The first attempt to obtain a product-
form solution was by Schwarz et al. [7] for the (s, S), (r, Q) and random reorder point
control policies.

The crucial assumption leading to the product-form solution is that, on inventory level
dropping to zero during the replenishment lead time, no new customer is admitted to the
system until the next replenishment materializes. Safari et al. [8] extends Schwarz et al. [7]
to arbitrarily distributed lead time. Baek and Moon [9] is another paper providing a product-
form solution. In their research paper, Krishnamoorthy and Raju (see [10]) introduced the
concept of a local purchase in a (s, S) inventory system.

Yue et al. [11] investigated the results on a multi-server queuing inventory system with
non-homogeneous Poisson arrivals, including the inventory-level-dependent arrival of
customers. When the inventory level depletes to zero, one item is replenished immediately
with zero lead time. They obtained a stability condition and computed the stationary
distribution of the system. Furthermore, they derived the total cost function and illustrated
numerical examples of an optimal (s, S) policy.

Haughton and Isotupa [12] analyzed an inventory system with lost sales with regular
and emergency orders. They assumed that the lead time of regular orders and emergency
orders were, respectively, stochastic and deterministic. There were higher costs per item for
the emergency order. They compared the total costs for this system to a system without
emergency order. Recently Yue and Qin [13] analyzed a production system with service
time and a production vacation of random duration.

Refer the recent survey paper by Krishnamoorthy et al. [14] for more detailed reports
on inventory with a positive service time and production-inventory system.
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3. Model Description
3.1. Notations

In the sequel, we need the following notations and abbreviations:

• e = Column vector of 1 s of appropriate order.
• 0 = Column vector of 0 s of appropriate order.
• I = Identity matrix of appropriate order.
• O = Zero matrix of appropriate order.
• CTMC : Continuous time Markov chain.
• LIQBD : Level independent quasi-birth and death process.
• PH : Phase-type distribution.
• MAP : Markovian Arrival Process.

3.2. Assumptions

Consider an (s, S) production inventory system with c-servers. Demands occur ac-
cording to a non-homogeneous Poisson process with rate λj, which is dependent on the
on-hand inventory level j, 1 ≤ j ≤ S and λ1 ≤ λ2 ≤ · · · ≤ λS. It takes an exponentially
distributed time with parameter µ, to serve each customer. The on-hand inventory de-
creases by one unit with probability δ at the moment of a service completion and with
probability δ̂ = (1− δ), the customer leaves the system without taking the item at the
service completion epoch.

When the on-hand inventory depletes to s, the production process is switched on. Each
production is of one unit and production process is kept in the on mode until the inventory
level becomes S. It takes phase-type distributed with representation (β, T) of order m to
produce one item. The mean production of the item is calculated by

η′ = −βT−1e. (1)

Further, each server serves independently of the others. The arrival, service and
production processes are independent of each other.

In order to prevent the loss of demands when the inventory level equal to zero, an
emergency replenishment policy is adopted in the system. When the on-hand inventory
depletes to zero, one item is replenished immediately with zero lead time. Thus, there is
no loss of demand in this model with the emergency replenishment policy in place. The
production system is such that it takes negligible time for the item produced to reach the
retail shop. Furthermore, we assume that c < s. The warehouse has limited capacity as we
assume that S has an upper bound—say, M. Hence, c < s < S ≤M.

The structure of the system under study is given in Figure 1.

Figure 1. Picture representation of the model.
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3.3. Analysis

Let N(t), I(t) and J(t) denote, respectively, the number of customers in the system,
the number of items in the inventory, phase of production at time t. For any time t, define

C(t) =
{

0, if production is off
1 production is on.

The production process is in on mode where 1 ≤ I(t) ≤ s and is in off mode if I(t) = S.
However, when the inventory level lies between s + 1 and S− 1, the production can be in
on or off mode.

The behavior of the system under study can be described by the irreducible contin-
uous time Markov chain (CTMC) Ω = {(N(t), I(t), C(t), J(t)), t ≥ 0}, which is a level-
independent quasi-birth and death process (LIQBD) with state space

{(n, i, 0)/n ≥ 0, s + 1 ≤ i ≤ S}
⋃
{(n, i, 1, j)/n ≥ 0, 1 ≤ i ≤ S− 1, 1 ≤ j ≤ m}.

To define CTMC Ω, it is necessary to write down, for any pair of above states, the
intensity of the transitions between those states. Thus, the infinitesimal generator of the
process Ω is given by

Q =




A(0)
1 A0

A(1)
2 A(1)

1 A0

A(2)
2 A(2)

1 A0
. . . . . . . . .

A(c−1)
2 A(c−1)

1 A0

A(c)
2 A(c)

1 A0

A(c)
2 A(c)

1 A0
. . . . . . . . .




(2)

where A(i)
2 , 1 ≤ i ≤ c; A(i)

1 , 0 ≤ i ≤ c; A0 are square matrices of order (S− 1)m + S− s and

A0 =




λ1 I
. . .

λs I
λs+1 I

. . .
λS−1 I

λS




,

A(n)
2 =




µn1 I
δµn2 I δ̂µn2 I

. . . . . .
δµns−1 I δ̂µns−1 I

δµns I δ̂µns I
∆ns+1 ∆̂ns+1

. . . . . .
∆nS−1 ∆̂nS−1

∆nS δ̂µnS




with
µni = min{n, i, c}µ, 1 ≤ i ≤ S, n ≥ 1.
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Now, consider for 1 ≤ n ≤ c,

µni =

{
min{n, i}µ, 1 ≤ i ≤ c
nµ, c + 1 ≤ i ≤ S

and for n > c, we have

µni =

{
min{c, i}µ, 1 ≤ i ≤ c
cµ, c + 1 ≤ i ≤ S

∆ns+1 =

(
δµns+1β
δµns+1 I

)
,

∆ni =

(
δµni 0

0 δµni I

)
, s + 2 ≤ i ≤ S− 1,

∆nS =
(

δµnS 0
)
,

∆̂ni =

(
δ̂µni 0

0 δ̂µni I

)
, s + 1 ≤ i ≤ S− 1,

A(n)
1 =




θn1 T0β

θn2 T0β

. . .
. . .

θns−1 T0β

θns N1
Θns+1 N2

Θns+2 N2
. . .

. . .
ΘnS−2 N2

ΘnS−1 N3
θnS




with
θ0i = (T − λi I), 1 ≤ i ≤ s,

Θ0i =

( −λi 0
0 (T − λi I)

)
, s + 1 ≤ i ≤ S− 1,

θ0S = −λS,

θni = T − (λi + µni)I, 1 ≤ i ≤ s,

Θni =

( −(λi + µni) 0
0 T − (λi + µni)I

)
, s + 1 ≤ i ≤ S− 1,

θnS = −(λS + µnS),

N1 =
(

0 T0β
)
, N2 =

(
0 0
0 T0β

)
, N3 =

(
0
T0

)
.

3.4. Stability Condition

Let φ = (φ1, φ2, . . . , φS) be the steady state probability vector of A = A0 + A(c)
1 + A(c)

2 .
Then,

φA = 0, φe = 1.

The Markov chain is stable if and only if (see Neuts [1]) the left drift rate exceeds the
right drift rate. Thus,

φA0e < φA(c)
2 e. (3)
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From the relation φA = 0, we have

φi = φ1

i−1

∏
j=1
Mj, 2 ≤ i ≤ S

where

Mi =





−K[Hi+1 +Mi+1Fi+2]
−1 1 ≤ i ≤ s− 1

−K1[Hi+1 +Mi+1Fi+2]
−1 i = s

−K2[Hi+1 +Mi+1Fi+2]
−1 s + 1 ≤ i ≤ S− 2

−K3H−1
i+1 i = S− 1

with

Fi =
(

δµci I
)
; 2 ≤ i ≤ s, Fs+1 =

(
δµcs+1β
δµcs+1 I

)
,

Fi =

(
δµci 0

0 δµci I

)
, s + 2 ≤ i ≤ S− 1,

FS =
(

δµcS 0
)
,

K =
(

T0β
)
, K1 =

(
0 T0β

)
, K2 =

(
0 0
0 T0β

)
, K3 =

(
0
T0

)
,

H1 = T, Hi = (T − δµci I), 2 ≤ i ≤ s,

Hi =

( −δµci 0
0 (T − δµci I)

)
, s + 1 ≤ i ≤ S− 1, HS = δµcS

From the relation (3), we have the stability condition as

φ

[
λ1 +

S

∑
i=2

λi

i−1

∏
j=1
Mj

]
e < φ

[
µc1 +

S

∑
i=2

i−1

∏
j=1
MjEi +

S

∑
i=2

i−1

∏
j=1
MjFi

]
e (4)

with

Ei =

(
δ̂µci 0

0 δ̂µci I

)
, s + 1 ≤ i ≤ S− 1, Ei = δ̂µci I, 2 ≤ i ≤ s, ES = δ̂µcS.

3.5. Steady State Probability Vector

Assuming that (3) is satisfied, we briefly outline the computation of the steady state
system state probability. Let y = (y0, y1, y2, . . . ) be the steady-state probability vector of
Q. Then,

yQ = 0, ye = 1. (5)

We see that y, under the assumption that the stability condition (3) holds, is obtained
as (see Theorem 3.1.1 of Neuts [1])

yc−1+i = yc−1Ri, for i ≥ 1 (6)

where R is the minimal non-negative solution to the matrix quadratic equation

R2 A(c)
2 + RA(c)

1 + A0 = O (7)

and the boundary equations are given by

y0 A(0)
1 + y1 A(1)

2 = 0,
yi−1 A0 + yi A

(i)
1 + yi+1 A(i+1)

2 = 0, 1 ≤ i ≤ c− 2
yc−2 A0 + yc−1

[
A(c−1)

1 + RA(c)
2

]
= 0.
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The normalizing condition ye = 1 gives

y0

[
I +

c−2

∑
i=1

i

∏
j=1

Rj +
c−1

∏
j=1

Rj(I − R)−1

]
e = 1 (8)

where
Rc−1 = −A0

[
A(c−1)

1 + RA(c)
2

]−1
,

Ri = −A0

[
A(i)

1 + Ri+1 A(i+1)
2

]−1
, 1 ≤ i ≤ c− 2.

(9)

3.6. Performance Measures

In this section, we obtain expressions for a few additional system performance measures.

• The expected number of customers in the system:

EN =
∞

∑
n=1

n

[
S−1

∑
i=1

m

∑
j=1

yn(i, 1, j) +
S

∑
i=s+1

yn(i, 0)

]
. (10)

• The expected number of items in the inventory:

EI =
∞

∑
n=0

[
S−1

∑
i=1

m

∑
j=1

iyn(i, 1, j) +
S

∑
i=s+1

iyn(i, 0)

]
. (11)

• The expected production rate:

EPR =
1
η′

∞

∑
n=0

S−1

∑
i=1

m

∑
j=1

yn(i, 1, j) (12)

where η′ is given in (1).
• The expected rate at which the production process is switched on:

Eon = δµ

[
c

∑
n=1

nyn(s + 1, 0) + c
∞

∑
n=c+1

yn(s + 1, 0)

]
. (13)

• The expected rate at which the production process is switched off:

Eo f f =
1
η′

∞

∑
n=0

m

∑
j=1

yn(S− 1, 1, j). (14)

• The expected rate at which the emergency replenishment occurs:

EER = δµ
∞

∑
n=1

m

∑
j=1

yn(1, 1, j) (15)

• The mean number of busy servers:

EBS =
c

∑
n=1

[
c

∑
i=1

m

∑
j=1

min{n, i}yn(i, 1, j) + n

(
S−1

∑
i=c+1

m

∑
j=1

yn(i, 1, j) +
S

∑
i=s+1

yn(i, 0)

)]

+
∞

∑
n=c+1

[
c

∑
i=1

m

∑
j=1

min{c, i}yn(i, 1, j) + c

(
S−1

∑
i=c+1

m

∑
j=1

yn(i, 1, j) +
S

∑
i=s+1

yn(i, 0)

)]
.

(16)
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3.7. Special Case

We investigate the problem discussed in the previous section for the case of expo-
nentially distributed production time. The purpose of simplifying the assumptions is to
investigate the system.

When the on-hand inventory depletes to s, the production process is switched on.
Each production is of one unit, and the production process is kept in the on mode until
the inventory level becomes S. It takes an exponentially distributed with parameter η to
produce one item. The remainder of the assumptions are the same as in Section 3.2.

Thus, the CTMC Ω = {(N(t), I(t), C(t)), t ≥ 0} is a level independent quasi-birth
and death process (LIQBD) with state space

{(n, i, 0)/n ≥ 0, s + 1 ≤ i ≤ S}
⋃
{(n, i, 1)/n ≥ 0, 1 ≤ i ≤ S− 1}.

The infinitesimal generator of the process Ω is given in (2) where A0, A(i)
2 , 1 ≤ i ≤

c; A(i)
1 , 0 ≤ i ≤ c; A0 are square matrices of order 2S− (s + 1) and

A0 =




λ1
. . .

λs
λs+1 I

. . .
λS−1 I

λS




,

A(n)
2 =




µn1
δµn2 δ̂µn2

. . . . . .
δµns−1 δ̂µns−1

δµns δ̂µns
∆ns+1 ∆̂ns+1

. . . . . .
∆nS−1 ∆̂nS−1

∆nS δ̂µnS




with
µni = min{n, i, c}µ, 1 ≤ i ≤ S, n ≥ 1.

Now, consider for 1 ≤ n ≤ c,

µni =

{
min{n, i}µ, 1 ≤ i ≤ c
nµ, c + 1 ≤ i ≤ S

and for n > c, we have

µni =

{
min{c, i}µ, 1 ≤ i ≤ c
cµ, c + 1 ≤ i ≤ S

∆ns+1 =

(
δµns+1
δµns+1

)
,

∆ni =

(
δµni 0

0 δµni

)
, s + 2 ≤ i ≤ S− 1,

∆nS =
(

δµnS 0
)
,
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∆̂ni =

(
δ̂µni 0

0 δ̂µni

)
, s + 1 ≤ i ≤ S− 1,

A(n)
1 =




θn1 η

θn2 η

. . .
. . .

θns−1 η

θns N1
Θns+1 N2

Θns+2 N2
. . .

. . .
ΘnS−2 N2

ΘnS−1 N3
θnS




with
θ0i = −(η + λi), 1 ≤ i ≤ s,

Θ0i =

( −λi 0
0 −(η + λi)

)
, s + 1 ≤ i ≤ S− 1,

θ0S = −λS,

θni = −(η + λi + µni), 1 ≤ i ≤ s,

Θni =

( −(λi + µni) 0
0 −(η + λi + µni)

)
, s + 1 ≤ i ≤ S− 1,

θnS = −(λS + µnS),

N1 =
(

0 η
)
, N2 =

(
0 0
0 η

)
, N3 =

(
0
η

)
.

3.7.1. Stability Condition

Theorem 1. The system (see Section 3.7) under study is stable if and only if

S−1

∑
i=1

λi
µ

π(i, 1) +
S

∑
i=s+1

λi
µ

π(i, 0) <
c

∑
i=1

iπ(i, 1) + c

(
S−1

∑
i=c+1

π(i, 1) + (S− s)π(S, 0)

)
(17)

where
π(i, 0) = π(S, 0) s + 1 ≤ i ≤ S− 1

π(i, 1) =





αiπ(S, 0) s + 1 ≤ i ≤ S− 1

αsas−iπ(S, 0) c ≤ i ≤ s

αsβias−cπ(S, 0) 1 ≤ i ≤ c− 1

(18)

and

π(S, 0) =

[
(S− s) +

S−1

∑
i=s+1

αi + αs

(
as−c

c−1

∑
i=1

βi +
s

∑
i=c

as−i

)]−1

(19)
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with

a =

(
cδµ

η

)
,

αi =
S−i

∑
j=1

(
cδµ

η

)j
, s ≤ i ≤ S− 1,

βi =
c

∏
j=i+1

(
jδµ

η

)
, 1 ≤ i ≤ c− 1.

Proof. Define A = A0 + A(c)
1 + A(c)

2 .
Define π = (π(1, 1), . . . , π(s, 1), π(s + 1, 0), π(s + 1, 1), . . . , π(S − 1, 0), π(S − 1, 1),

π(S, 0)) as the steady state probability vector of the Markov chain whose infinitesimal
generator is A. Then, we have

πA = 0, πe = 1.

From the relation πA = 0, we have
−ηπ(1, 1) + 2δµπ(2, 1) = 0,

ηπ(i− 1, 1)− (η + iδµ)π(i, 1) + (i + 1)δµπ(i + 1, 1) = 0, 2 ≤ i ≤ c− 1
ηπ(i− 1, 1)− (η + cδµ)π(i, 1) + cδµπ(i + 1, 1) = 0, c ≤ i ≤ s− 1

ηπ(s− 1, 1)− (η + cδµ)π(s, 1) + cδµ(π(s + 1, 0) + π(s + 1, 1)) = 0,
−cδµπ(i, 0) + cδµπ(i + 1, 0) = 0, s + 1 ≤ i ≤ S− 1

ηπ(i− 1, 1)− (η + cδµ)π(i, 1) + cδµπ(i + 1, 1) = 0, s + 1 ≤ i ≤ S− 2
ηπ(S− 2, 1)− (η + cδµ)π(S− 1, 1) = 0,

ηπ(S− 1, 1)− cδµπ(S, 0) = 0.

(20)

Solving the above set of equations, we obtain π(i, 1) for 1 ≤ i ≤ S− 1 and π(i, 0) for
s + 1 ≤ i ≤ S− 1, which is expressed in (18).

The unknown probability π(S, 0) can be found from the normalizing condition

S−1

∑
i=1

π(i, 1) +
S

∑
i=s+1

π(i, 0) = 1

and is expressed in (19).
The Markov chain is stable if and only if (see Theorem 3.1.1 of Neuts [1]) the left drift

rate exceeds the right drift rate. Thus,

πA0e < πA(c)
2 e, (21)

which implies the inequality (17).

3.7.2. Steady State Probability Vector

Assuming that (17) is satisfied, let x = (x0, x1, x2, . . . ) be the steady-state probability
vector of Q. Then,

xQ = 0, xe = 1. (22)

Under the assumption that the stability condition (17) holds,

xc−1+i = xc−1Ri, for i ≥ 1 (23)

where R is the minimal non-negative solution to the matrix quadratic equation

R2 A(c)
2 + RA(c)

1 + A0 = O (24)
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and the boundary equations are given by

x0 A(0)
1 + x1 A(1)

2 = 0,
xi−1 A0 + xi A

(i)
1 + xi+1 A(i+1)

2 = 0, 1 ≤ i ≤ c− 2
xc−2 A0 + xc−1

[
A(c−1)

1 + RA(c)
2

]
= 0.

The normalizing condition xe = 1 gives

x0

[
I +

c−2

∑
i=1

i

∏
j=1

Rj +
c−1

∏
j=1

Rj(I − R)−1

]
e = 1 (25)

where
Rc−1 = −A0

[
A(c−1)

1 + RA(c)
2

]−1
,

Ri = −A0

[
A(i)

1 + Ri+1 A(i+1)
2

]−1
, 1 ≤ i ≤ c− 2.

(26)

Next, we proceed to derive certain system characteristics that shed light on its performance.
Given ε > 0, there exists an N sufficiently large such that

N

∑
n=0

xne > 1− ε.

Except for heavy traffic, the above approximation is near to the exact value.

3.7.3. Analysis of the Emergency Replenishment Cycle

The emergency cycle time T is the time length between two adjacent emergency
replenishment epochs. Once the last remaining item in the inventory is taken away, an
emergency replenishment will occur. Thus, a new item will be instantly purchased and
brought to the inventory because it is assumed that there is no lead time for an emergency
replenishment. Therefore, the state I(t) = 0 can be seen as a virtual (instantaneous) state.

Now, consider the Markov chain {(N(t), I(t), C(t)), t ≥ 0} with state space {(n, i, 1),
0 ≤ n ≤ N, 1 ≤ i ≤ S− 1}⋃{(n, i, 0), 0 ≤ n ≤ N, s + 1 ≤ i ≤ S}⋃{0} where {0} denotes
the absorbing state. Thus, an emergency replenishment cycle time T is the first passage
time from the state (n, 1, 1), 0 ≤ n ≤ N to the absorbing state {0}.

Let αN = (ξ0, ξ1, . . . , ξN) where

ξn =
(xn(1, 1), 0, . . . , 0)

N

∑
n=0

xn(1, 1)

, 0 ≤ n ≤ N.

This can be taken as the initial probability vector of an emergency replenishment
cycle time T. Thus, there is only one item at the beginning of an emergency replenishment
cycle time T. The first passage time from the state (n, 1, 1) to {0} follows a phase-type
distribution with representation (αN,WN). The corresponding infinitesimal generator is

of the form
( WN W0

N
0 0

)
whereWN is a matrix of order (N + 1)(2S− (s + 1)) and is

given by
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WN =




A(0)
1 A0

Ã(1)
2 A(1)

1 A0

Ã(2)
2 A(2)

1 A0
. . .

. . .
. . .

Ã(c−1)
2 A(c−1)

1 A0

Ã(c)
2 A(c)

1 A0

Ã(c)
2 A(c)

1 A0
. . .

. . .
. . .

Ã(c)
2 A(c)

1 A0

Ã(c)
2 Ã(c)

1




, W0
N =




0
A0

A0

...
A0

A0

A0

...
A0

A0




(27)

with

A0 =




µ
0
...
0


, and for 1 ≤ n ≤ c,

Ã(n)
2 =




0
δµn2 δ̂µn2

. . . . . .
δµns−1 δ̂µns−1

δµns δ̂µns
∆ns+1 ∆̂ns+1

. . . . . .
∆nS−1 ∆̂nS−1

∆nS δ̂µnS




,

Ã(c)
1 =




θ′c1 η

θ′c2 η

. . .
. . .

θ′cs−1 η

θ′cs N1
Θ′cs+1 N2

Θ′cs+2 N2
. . .

. . .
Θ′cS−2 N2

Θ′cS−1 N3
θ′cS




where
θ′ci = −(η + µci), 1 ≤ i ≤ s,

Θ′ci =

( −cµ 0
0 −(η + cµ)

)
, s + 1 ≤ i ≤ S− 1,

θ′nS = −cµ.

Remaining matrices are given in Section 3.2.
From page 46 of Neuts [1], the expectation of the emergency replenishment cycle time

is given by
E(N)

T = −αNW−1
N e.

As N → ∞, E(N)
T → ET .
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3.7.4. Distribution of the Production on Time in a Cycle

The production process is switched on at a service completion epoch T0, which started
with s + 1 items in the inventory and the production process in off mode. The production
process, once turned on, is turned off only at an epoch T1 at which the number of items in
the inventory reaches the maximum level S. A production on cycle starts with the switching
on of the production process as the inventory level reaches s from above and terminates
with the inventory reaching S.

We analyze the length T(= T1 − T0) of the production on cycle as the time until
absorption in a Markov chain {(N(t), I(t)), t ≥ 0} with state space {(n, i), 0 ≤ n ≤ N, 1 ≤
i ≤ S− 1}⋃{S} where {S} denotes the absorbing state, which represents switching the
production process off. Thus, the production on cycle time from the state (n, s) to the
absorbing state {S} follows a phase-type distribution with representation (βN,YN) where
βN = (ζ0, ζ1, . . . , ζN) with

ζn(i) =





nµxn+1(s + 1, 0)

E(N)
on

, for 0 ≤ n ≤ c− 1 with i = s

cµxn+1(s + 1, 0)

E(N)
on

, for c ≤ n ≤ N − 1 with i = s

0, for n = N with 1 ≤ i ≤ S− 1 or 0 ≤ n ≤ N − 1 with i 6= s

where E(N)
on = µ

[
c

∑
n=1

nxn(s + 1, 0) + c
N

∑
n=c+1

xn(s + 1, 0)

]
. Thus, the infinitesimal generator

is of the form
( YN Y0

N
0 0

)
where YN is a matrix of order (N + 1)(S− 1) and is given by

YN =




D(0)
1 D0

D(1)
2 D(1)

1 D0

D(2)
2 D(2)

1 D0
. . .

. . .
. . .

D(c−1)
2 D(c−1)

1 D0

D(c)
2 D(c)

1 D0

D(c)
2 D(c)

1 D0
. . .

. . .
. . .

D(c)
2 D(c)

1 D0

D(c)
2 D̃(c)

1




, Y0
N =




D0

D0

D0

...
D0

D0

D0

...
D0

D0




(28)

where

D0 =




0
...
0
η


, D0 =




λ1
λ2

. . .
λS−1


,

D(0)
1 =




ν1 η
ν2 η

. . . . . .
νS−2 η

νS−1




, νi = −(λi + η), 1 ≤ i ≤ S− 1

D(n)
2 =




µn1
δµn2 δ̂µn2

. . . . . .
δµn2 δ̂µn2

δµn2




, 1 ≤ n ≤ c
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D(n)
1 =




νn1 η
νn2 η

. . . . . .
νnS−2 η

νnS−1




, νni = −(λi +µni + η), 1 ≤ n ≤ c, 1 ≤ i ≤ S− 1

D̃(c)
1 =




ν′c1 η
ν′c2 η

. . . . . .
ν′cS−2 η

ν′cS−1




, ν′ci = −(µci + η), 1 ≤ i ≤ S− 1.

Thus, the expected length of production on time in a cycle is given by

E(N)
T (on) = −βNY−1

N e.

3.7.5. Distribution of the Production off Time in a Cycle

The production process is switched off at an epoch T0 when the inventory level touches
S. The production process, once turned off, is turned on only at future epoch T1 at which
the number of items in the inventory decreases to s. We analyze the length T(= T1 − T0) of
the production off cycle as the time until absorption in a Markov chain {(N(t), I(t)), t ≥ 0}
with state space {(n, i), 0 ≤ n ≤ N, s + 1 ≤ i ≤ S}⋃{s} where {s} denotes the absorbing
state, which represents switching the production process on. The infinitesimal generator of

this Markov chain is of the form
( ZN Z0

N
0 0

)
whereZN is a matrix of order (N+ 1)(S− s)

and is given by

ZN =




E(0)
1 E0

E(1)
2 E(1)

1 E0

E(2)
2 E(2)

1 E0
. . .

. . .
. . .

E(c−1)
2 E(c−1)

1 E0

E(c)
2 E(c)

1 E0

E(c)
2 E(c)

1 E0
. . .

. . .
. . .

E(c)
2 E(c)

1 E0

E(c)
2 Ẽ(c)

1




, Z0
N =




0
E0

1
E0

2
...

E0
c−1
E0

c
E0

c
...

E0
c

E0
c




(29)

where

E0
n =




δnµ
0
...
0


, 1 ≤ n ≤ c

E0 =




λs+1
λs+2

. . .
λS


,

E(n)
1 =




ν̂ns+1
ν̂ns+2

. . .
ν̂nS


, ν̂ni = −(λi + nµ), s + 1 ≤ i ≤ S, 1 ≤ n ≤ c
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E(n)
2 =




δ̂nµ

δnµ δ̂nµ
. . . . . .

δnµ δ̂nµ


, 1 ≤ n ≤ c

E(0)
1 =




−λs+1
−λs+2

. . .
−λS


, Ẽ(c)

1 =




−cµ
−cµ

. . .
−cµ


.

The production off cycle time T follows a phase-type distribution with representation
(γN,ZN) where γN = (τ0, τ1, . . . , τN) with

τn =
(0, . . . , 0, xn(S− 1, 1))

N

∑
n=0

xn(S− 1, 1)

, for 0 ≤ n ≤ N.

Thus, the expected length of production off cycle T is given by

E(N)
T (o f f ) = −γNZ−1

N e.

3.7.6. Additional Performance Measures

In this section, we obtain expressions for a few additional system performance measures.

• The expected number of customers in the system:

EN =
∞

∑
n=1

n

[
S−1

∑
i=1

xn(i, 1) +
S

∑
i=s+1

xn(i, 0)

]
. (30)

• The expected number of items in the inventory:

EI =
∞

∑
n=0

[
S−1

∑
i=1

ixn(i, 1) +
S

∑
i=s+1

ixn(i, 0)

]
. (31)

• The expected production rate:

EPR = η
∞

∑
n=0

S−1

∑
i=1

xn(i, 1). (32)

• The expected rate at which the production process is switched on:

Eon = µδ

[
c

∑
n=1

nxn(s + 1, 0) + c
∞

∑
n=c+1

xn(s + 1, 0)

]
. (33)

• The expected rate at which the production process is switched off:

Eo f f = η
∞

∑
n=0

xn(S− 1, 1). (34)

• The average emergency replenishment rate:

EER =
1

ET

∞

∑
n=1

xn(1, 1) (35)
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where ET is defined in Section 3.7.3.
• The mean number of busy servers:

EBS =
c

∑
n=1

[
c

∑
i=1

min{n, i}xn(i, 1) + n

(
S−1

∑
i=c+1

xn(i, 1) +
S

∑
i=s+1

xn(i, 0)

)]

+
∞

∑
n=c+1

[
c

∑
i=1

min{c, i}xn(i, 1) + c

(
S−1

∑
i=c+1

xn(i, 1) +
S

∑
i=s+1

xn(i, 0)

)]
.

(36)

3.8. An Optimization Problem

Based on the above performance measures, we constructed a cost function for deter-
mining the optimality of s, S and c.

Consider the following cost parameters:

hcust : holding cost of a customer per unit time.
hinv : holding cost of an item per unit time.
CPR : cost of ‘production on’ per unit time.

K : fixed cost for starting the production.
CER : cost of each emergency replenishment.
Cidle : cost incurred per idle server per time.

Cbusy : cost incurred per busy server per time.

Now, we have the cost per unit time given by

F (c, s, S) = hcustEN + hinvEI + CPREPR + KEon + CEREER + Cidle(c− EBS) + CbusyEBS

where EN , EI , EPR, Eon, EER and EBS are given in Sections 3.6 and 3.7.6.

4. Numerical Illustrations

Next, we proceed to a few numerical examples in order to bring out the system
behavior with respect to certain parameters. Here, demands occur according to a non-
homogeneous Poisson process with rate λj, which depends on the on-hand inventory level
j; 1 ≤ j ≤ S and λ1 ≤ λ2 ≤ · · · ≤ λS. We use

λj = λjγ, 1 ≤ j ≤ S (37)

where 0 ≤ γ ≤ 1 (see Alfares [15]). This is an increasing function of the on-hand inventory
level. If γ = 0, then the demand rate is homogeneous Poisson process with rate λ.

Choose γ = 0.1 in the following examples.

4.1. Example: Effect of λ

From Table 1, for the indicated input parameters, we note that the expected number of
customers in the system increases with the increase in the arrival rate. This results in the
fast depletion of inventory since the service rate is high. In turn, this results in an increased
production rate since the production unit has to be on for a longer time duration. As a
consequence, the emergency replenishment rate EER increases, and the mean number of busy
servers also increases.

Table 1. Effect of λ for (S, s, c, δ, µ, η) = (35, 12, 5, 0.8, 7, 2.6).

λ EN EI EPR Eon EER EBS

1 0.1949 23.2314 1.0913 0.0315 0.1949 0.0001
1.5 0.2912 22.4978 1.6307 0.0291 0.2912 0.0002
2 0.3840 20.5180 2.1476 0.0173 0.3838 0.0003

2.5 0.4611 14.2006 2.5228 0.0035 0.4576 0.0071
3 0.5341 6.9958 2.5974 0.0007 0.5065 0.0425

3.5 0.6433 4.3116 2.5981 0.0002 0.5630 0.0975
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4.2. Example: Effect of µ

A faster service rate ensures a reduced queue size and also a reduced inventory level
(see Table 2). This, in turn, makes the production unit work over a longer duration in a
cycle resulting in an increased production rate. Thus, emergency ordering rate drastically
decreases as well as the mean number of busy servers.

Table 2. Effect of µ for (S, s, c, δ, λ, η) = (35, 15, 5, 0.8, 6, 2.6).

µ EN EI EPR Eon EER EBS

5 2.5101 6.0240 2.4648 0.0171 1.2564 0.3058
6 2.0056 4.7143 2.5076 0.0133 1.0498 0.3308
7 1.6307 3.6792 2.5411 0.0093 0.8999 0.3365
8 1.3458 2.9702 2.5641 0.0061 0.7871 0.3271
9 1.1296 2.5288 2.5785 0.0038 0.6995 0.3094

10 0.9651 2.2678 2.5871 0.0024 0.6295 0.2888

4.3. Example: Effect of η

Table 3: An increased production rate ensures an increase in the availability of in-
ventory and hence a faster disposal of demands. It also results in an increased rate of
production and reduced ‘switching on’ of the production mechanism. However, reduced
‘switching on’ results in an increase in emergency replenishment. This, in turn, ensures a
reduction in the number of busy servers.

Table 3. Effect of η for (S, s, c, δ, λ, µ) = (33, 15, 3, 0.8, 5, 7).

η EN EI EPR Eon EER EBS

1.4 1.2910 4.1961 1.3475 0.0154 0.7459 0.3420
1.6 1.2559 4.2002 1.5435 0.0145 0.7498 0.3216
1.8 1.2223 4.2163 1.7404 0.0136 0.7539 0.3011
2 1.1899 4.2468 1.9380 0.0127 0.7582 0.2805

2.2 1.1590 4.2949 2.1364 0.0118 0.7628 0.2598
2.4 1.1294 4.3647 2.3354 0.0109 0.7678 0.2390

4.4. Example: Effect of δ

Table 4: δ is the probability of a customer being served one unit of inventoried item at the
end of their service. Interestingly, an increase in the value of δ initially results in a decrease in
the expected number of customers and then starts increasing with an increase in the value of δ.
Nevertheless, the expected inventory level continues decreasing drastically with the increase in
the value of δ. This is no surprise since the probability of a customer served the inventoried
item results in a decrease in the expected items held. The expected production rate (EPR) has
to increase. However, Eon decreases first and then increases because the production process
is over a longer duration. A reasonably high production rate ensures reduced emergency
purchases. The mean number of busy servers continues increasing.

Table 4. Effect of δ for (S, s, c, η, λ, µ) = (40, 15, 3, 2.6, 4, 7).

δ EN EI EPR Eon EER EBS

0.1 0.8100 27.7074 0.5731 0.0267 0.7918 0.0001
0.2 0.8082 27.1839 1.1214 0.0250 0.7902 0.0001
0.3 0.8050 26.3072 1.6633 0.0241 0.7873 0.0003
0.4 0.7957 23.9226 2.1781 0.0148 0.7783 0.0004
0.5 0.7620 15.9770 2.5265 0.0037 0.7393 0.0087
0.6 0.7388 8.0777 2.5752 0.0020 0.6814 0.0481
0.7 0.7534 5.4415 2.5717 0.0028 0.6504 0.0969
0.8 0.7776 4.3754 2.5681 0.0037 0.6331 0.1403
0.9 0.8020 3.8054 2.5659 0.0044 0.6219 0.1770
1 0.8247 3.4446 2.5647 0.0051 0.6139 0.2079
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4.5. Example: Effect of s and S on Various Performance Measures

Table 5 indicates that, by increasing the maximum level of inventory, the expected number
of customers can be brought down. This is because an increase in the inventory level results
in a larger number of services. On the other hand, an increase in the value of S results in an
increase in the number of items held in the inventory (see Table 5, Figures 2 and 3).

4 6 8 10 120.7768

0.7770

0.7772

0.7774

0.7776

0.7778

E
N

s

 S=21
 S=23
 S=25

Figure 2. Effect on EN .

4 6 8 10 123.40

3.45

3.50

3.55

3.60

3.65

3.70

E
I

s

 S=21
 S=23
 S=25

Figure 3. Effect on EI .

Table 5. Effect of s and S for (c, δ, λ, µ, η) = (3, 0.8, 4, 7, 2.6).

Effect on EN Effect on EI

s S = 21 S = 23 S = 25 s S = 21 S = 23 S = 25

4 0.7778 0.7777 0.7776 4 3.4233 3.4822 3.5432
5 0.7776 0.7776 0.7775 5 3.4391 3.4981 3.5593
6 0.7775 0.7774 0.7774 6 3.4561 3.5154 3.577
7 0.7773 0.7773 0.7772 7 3.4742 3.5339 3.5958
8 0.7773 0.7772 0.7772 8 3.4929 3.5532 3.6156
9 0.7772 0.7772 0.7771 9 3.5118 3.573 3.6361

10 0.7771 0.7771 0.7771 10 3.5306 3.593 3.657
11 0.7771 0.7771 0.7770 11 3.5489 3.6128 3.678
12 0.7771 0.7770 0.7769 12 3.566 3.632 3.6989
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Table 6 are indications of the fact that the production rate increases with an increase in
the value of s. This is the consequences of the early start of production. However, the same
thing brings down the duration of the ‘production on’ status (see Table 6). For a fixed value
of S and varying s, EPR (see Figure 4) increases and Eon (see Figure 5) decreases. But for
a fixed value of s and varying S, both EPR (see Figure 4) and Eon (see Figure 5) decrease.
These are consequences of the delayed ‘switching on’ of production.

Table 6. Effect of s and S for (c, δ, λ, µ, η) = (3, 0.8, 4, 7, 2.6).

Effect on EPR Effect on Eon

s S = 21 S = 23 S = 25 s S = 21 S = 23 S = 25

4 2.5681 2.5659 2.5634 4 0.0042 0.0041 0.004
5 2.5707 2.5684 2.566 5 0.0041 0.004 0.0039
6 2.5732 2.5709 2.5684 6 0.004 0.0039 0.0038
7 2.5756 2.5733 2.5708 7 0.0039 0.0038 0.0037
8 2.5779 2.5756 2.573 8 0.0038 0.0037 0.0036
9 2.5801 2.5778 2.5752 9 0.0037 0.0036 0.0035

10 2.5822 2.5799 2.5774 10 0.0036 0.0035 0.0034
11 2.5843 2.5819 2.5794 11 0.0035 0.0034 0.0033
12 2.5862 2.5839 2.5814 12 0.0034 0.0033 0.0032

4 6 8 10 122.560
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Figure 4. Effect on EPR.
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Figure 5. Effect on Eon.
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Table 7 provides the expected number of busy servers EBS (see Figure 6) with respect
to s and S and the expected emergency replenishment values EER (see Figure 7). For fixed
s and varying (increasing) S, EBS and EER, respectively, increase/decrease, which is a
consequence of the greater availability of inventoried items.

Table 7. Effect of s and S for (c, δ, λ, µ, η) = (3, 0.8, 4, 7, 2.6).

Effect on EBS Effect on EER

s S = 21 S = 23 S = 25 s S = 21 S = 23 S = 25

4 0.6249 0.6255 0.6261 4 0.1494 0.1488 0.1481
5 0.6252 0.6257 0.6263 5 0.149 0.1483 0.1477
6 0.6254 0.626 0.6265 6 0.1486 0.1479 0.1473
7 0.6256 0.6262 0.6268 7 0.1482 0.1475 0.1469
8 0.6259 0.6265 0.627 8 0.1479 0.1472 0.1465
9 0.6261 0.6267 0.6273 9 0.1475 0.1469 0.1462

10 0.6263 0.6269 0.6275 10 0.1473 0.1466 0.1459
11 0.6265 0.6271 0.6277 11 0.1470 0.1463 0.1456
12 0.6267 0.6273 0.6279 12 0.1468 0.1461 0.1454
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Figure 6. Effect on EBS.
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Figure 7. Effect on EER.
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4.6. Example: Optimal Cost

In order to study the variation in different parameters on the cost function described in
Section 3.8, we first take the values (K, hcust, hinv, CPR, CER, Cidle, Cbusy) = ($2000, $0.5, $5, $100,
$250, $40, $5).

Now, we numerically compute the optimal (s, S) pair (denoted by (s∗, S∗)) such that

F (c, s∗, S∗) = min
s,S
F (c, s, S). (38)

4.6.1. Example (a)

From Table 8, the optimal pair (s∗, S∗) = (6, 16) and optimum cost F (c, s∗, S∗) =
$606.0135 for the input parameters γ = 0.1, c = 3, λ = 4, µ = 7, δ = 0.8 and T =

−4 0 1
3 −3 1
2 1 −5


, β =

(
1 0 0

)
.

Table 8 provides the optimal running cost of the system for the indicated input pa-
rameters. The reason for the increase in cost for pairs (s, S) for fixed S while s is varied is
evident: the increased holding cost. However, with S increasing, we notice that the system
cost decreases drastically. This is attributed to reduced emergency purchases, reduced
production cost per unit time and, to some extent, reduced holding costs.

Table 8. F (c, s, S).

s S = 6 S = 7 S = 8 S = 9 S = 10 S = 11 S = 12 S = 13 S = 14 S = 15 S = 16

4 910.4632 769.3924 702.8011 665.8797 643.6297 629.5764 620.4579 614.4529 610.47 607.8226 606.065
5 812.0338 715.8488 670.4187 645.2558 630.1284 620.6088 614.4614 610.4358 607.7826 606.0311
6 745.3399 679.4886 648.4402 631.2916 621.022 614.5905 610.4605 607.773 606.0135
7 699.7053 654.6623 633.4851 621.8327 614.887 610.5606 607.7993 606.0141
8 668.4096 637.7087 623.3235 615.4421 610.7679 607.8731 606.0369
9 646.9861 626.1649 616.4447 611.1432 608.0154 606.0896

10 632.3806 618.341 611.8114 608.2665 606.186
11 622.4769 613.0679 608.7086 606.3526
12 615.8021 609.5356 606.643
13 611.332 607.1841
14 608.3575

4.6.2. Example (b)

From Table 9, the optimal pair (s∗, S∗) = (10, 16) and optimum cost F (c, s∗, S∗) =
$419.8059 for the indicated input parameters.

Table 9. F (c, s, S) for (c, η, λ, µ, M) = (3, 2.6, 4, 7, 16).

s S = 6 S = 7 S = 8 S = 9 S = 10 S = 11 S = 12 S = 13 S = 14 S = 15 S = 16

4 644.1595 533.2389 483.2442 456.9492 441.992 433.105 427.6854 424.3232 422.2076 420.8558 419.9742
5 566.9304 493.9666 461.0212 443.692 433.846 428.0056 424.4485 422.2407 420.8466 419.9479
6 516.4134 468.1623 446.3843 434.9474 428.464 424.6268 422.2922 420.8412 419.9197
7 483.0568 451.1004 436.6985 429.1542 424.8899 422.3721 420.8416 419.888
8 460.9622 439.7929 430.2733 425.3026 422.5029 420.8549 419.8542
9 446.3231 432.2923 426.0012 422.7302 420.8969 419.8229

10 436.6286 427.3109 423.1505 421.001 419.8059
11 430.2076 423.9936 421.2372 419.8279
12 425.9467 421.7731 419.9422
13 423.1067 420.2747
14 421.1995

Table 9 provides the optimal running cost of the system for the indicated input pa-
rameters. The reason for the increase in cost for pairs (s, S) for fixed S while s is varied is
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evident: the increased holding cost. However, with S increasing, we notice that the system
cost decreases drastically. This is attributed to reduced emergency purchases, reduced
production cost per unit time and, to some extent, reduced holding costs.

Now, we compute the optimal (s∗, S∗) and optimal server c∗ such that

F (c∗, s∗, S∗) = min
c,s,S
F (c, s, S). (39)

At the optimal pair (s∗, S∗) = (10, 16), the minimum cost F (c∗, s∗, S∗) = $390.7507 is
obtained numerically when c∗ = 2.

4.7. Example: The relation between δ and Cost

In order to study the variation in different parameters on cost function, we first take
the values (K, hcust, hinv, CPR, CER, Cidle, Cbusy) = ($5000, $0.05, $5, $100, $200, $30, $5).

Table 10 provides the effect of the probability of an item being served to a customer
on the cost function for the input parameters S = 13, s = 6, γ = 0.1, λ = 5, µ = 6, T =

−4 1 3
3 −3 1
2 1 −8


, β =

(
0.2 0.5 0.3

)
. From Figure 8, we found that the increase in the

value of δ results initially decreases F (c, s, S) and then starts increasing with the increase
in the value of δ. We obtained the minimum cost when δ = 0.2.

Table 10. Effect of δ on F (c, s, S).

δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F (2, s, S) 246.0757 195.9772 280.9794 376.3558 473.1766 570.4884 668.0241 765.6783 863.4014 961.1673
F (3, s, S) 274.6499 224.8902 310.326 406.0481 503.1662 600.737 698.5022 796.3634 894.2765 992.2195
F (4, s, S) 304.1992 254.5151 340.1136 436.0469 533.3815 631.1632 729.1311 827.1869 925.2874 1023.4
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Table 10: Effect of δ on F (c, s, S)

δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
c∗ 2 3 4 4 5 5 5 5 5 5

F (c∗ , s, S) 445.5808 477.6176 419.2914 349.7553 318.587 318.0415 322.3932 326.9127 330.8801 334.2469

Table 11: Optimal server c∗ and corresponding minimum cost for (S, s, η, λ, µ) =
(30, 12, 2.6, 5, 7)
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4.8. Example: Optimal number of servers and minimum cost261

In order to study the variation in different parameters on cost function we first take262

the values (K, hcust, hinv, CPR, CER, Cidle, Cbusy) = ($2000, $0.5, $5, $100, $125, $3, $2).263

Table 11 provides the optimal value of servers to be employed for the given input264

parameters. We look at the effect of the probability of an item being served to a customer265

on the number of servers to be employed. It is seen that with probability of item266

being served to the customer at least equal to half the optimal number of servers to be267

employed gets stabilized and the system cost also gets drastically cut.268

4.9. Example: Relation between δ and EN269

In this example we have given a comparison between the constant arrival case (λ)270

and inventory level dependent arrival case (λi, 1 ≤ i ≤ S) in Figure 9 and found the two271

cases to be showing entirely different behaviour.272

Interestingly, increase in value of δ results initially decrease in expected number of273

customers and then starts increasing with increase in value of δ in the non-homogeneous274

arrival case. However, in the homogeneous arrival case as δ increases initially the275

expected number of customers remains constant and then starts increasing.276

These observations dependent on the input values of parameters.277

Figure 8. Effect of δ on F (c, s, S).

4.8. Example: The Optimal Number of Servers and Minimum Cost

In order to study the variation in different parameters on the cost function, we first
take the values (K, hcust, hinv, CPR, CER, Cidle, Cbusy) = ($2000, $0.5, $5, $100, $125, $3, $2).

Table 11 provides the optimal value of the servers to be employed for the given input
parameters. We look at the effects of the probability of an item being served to a customer
on the number of servers to be employed. When the probability of an item being served to
the customer is equal to at least half, then the optimal number of servers to be employed is
stabilized, and the system cost is also drastically cut.
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Table 11. Optimal server c∗ and corresponding minimum cost for (S, s, η, λ, µ) = (30, 12, 2.6, 5, 7).

δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c∗ 2 3 4 4 5 5 5 5 5 5
F (c∗, s, S) 445.5808 477.6176 419.2914 349.7553 318.587 318.0415 322.3932 326.9127 330.8801 334.2469

4.9. Example: The Relation between δ and EN

In this example, we give a comparison between the constant arrival case (λ) and
inventory-level-dependent arrival case (λi, 1 ≤ i ≤ S) in Figure 9 and found the two cases
to be showing entirely different behaviors.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85
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inventory level dependent arrival rate 
i
, 1  i  S

Figure 9. Effect of δ on EN .

Interestingly, an increase in the value of δ initially results in a decrease in the expected
number of customers and then starts increasing with an increase in the value of δ in the
non-homogeneous arrival case. However, in the homogeneous arrival case, as δ increases
initially, the expected number of customers remains constant and then starts increasing.

These observations are dependent on the input values of the parameters.

5. Conclusions

We studied a multi-server production inventory model that uses emergency replenish-
ment when a delay in the production process leads to an imminent stock out. Customers
arrive according to a non-homogeneous Poisson process. The service time duration at all
servers is independent with identically distributed exponential random variables. A cus-
tomer receives one item from the inventory at the end of their service with the probability δ.
When the on-hand inventory reaches zero, a local purchase (emergency replenishment) to
bring the inventory level to 1 is made. Due to this, the inventory level never reaches zero.
Under the stability condition, we established a long-run system state distribution. A cost
function involving these control variables was constructed, and we numerically investi-
gated the optimal values. The effects of various parameters on the system performance
measures were also evaluated.

In a follow-up paper, we will extend the present work to the case of Markovian arrival
process MAP and phase-type PH service time.
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