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Abstract: Discrete-valued time series modeling has witnessed numerous bivariate first-order integer-
valued autoregressive process or BINAR(1) processes based on binomial thinning and different
innovation distributions. These BINAR(1) processes are mainly focused on over-dispersion. This
paper aims to propose new bivariate distributions and processes based on a recently proposed
over-dispersed distribution: the Poisson 2S-Lindley distribution. The new bivariate distributions,
denoted by the abbreviations BP2S-L(I) and BP2S-L(II), are then used as innovation distributions for
the BINAR(1) process. Properties are investigated for both distributions as well as for the BINAR(1)
processes. The distribution parameters are estimated using the maximum likelihood method, and the
BINAR(1)BP2S-L(I) and BINAR(1)BP2S-L(II) process parameters are estimated using the conditional
least squares and conditional maximum likelihood methods. Monte Carlo simulation experiments are
conducted to study large and small sample performances and for the comparison of the estimation
methods. The Pittsburgh crime series and candy sales datasets are then used to compare the new
BINAR(1) processes to some other existing BINAR(1) processes in the literature.

Keywords: Poisson 2S-Lindley distribution; binomial thinning; over-dispersion; moments; maximum
likelihood estimation; simulation; BINAR(1) process

MSC: 62E15; 62E20; 62E17

1. Introduction

Count data, or the number of times an event occurs over a set period of time, are
becoming ever more abundant in all spheres of human life. In medicine, biology, ecology,
economics, demography, and other fields, modeling of these data is becoming pivotal.
Real-world situations frequently involve discrete bivariate data that are typically highly
related. Some of the examples include counting the number of COVID-19 cases reported
in a hospital and the number of deaths among them or counting the number of traffic
accidents and the corresponding number of deaths. As a result, bivariate discrete models
may be ideal for the statistical analysis of such data.

To this aim, multiple strategies for establishing bivariate random variables have been
reported in the literature. Most of them are addressed in [1]. The use of mixed methods
to construct discrete and continuous bivariate random variables is often explored in the
statistical literature. For instance, see [2–4]. The key advantage of this approach is that its
marginal probability density function (pdf) or even its moments, correlation, and certain
other properties will have simple expressions. A further possibility is to construct it
using a new family of distributions. The Sarmanov family of distributions (see [5]) can be
used to create bivariate distributions with a variable covariance structure, both discrete
and continuous. The authors of [6] looked into several generic approaches to the family
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formation that took into account different types of marginal distributions. A specific
member of the Sarmanov family is the famous Farlie–Gumbel–Morgenstern (FGM) copula.

The expanding number of applications involving time series of counts has necessi-
tated the development of more appropriate integer-valued time series models that can
manage the most common phenomena of over-dispersion while also taking into account
the cases where two related series are assembled. Since the authors of [7,8] have performed
pioneering research on the first-order integer-valued autoregressive (INAR(1)) process with
Poisson innovations, plenty of relevant papers with univariate innovation distributions
have appeared in the literature. See, for instance, [9–13]. For the bivariate setting, the
authors of [14] introduced the concept of BINAR(1) processes to consider cross-correlations
in integer-valued time series models.

On the other hand, a discrete univariate, one-parameter mixture distribution, the
Poisson 2Sum-Lindley (P2S-L) distribution, was introduced in [15] by mixing the Poisson
distribution with the 2Sum-Lindley (2S-L) distribution (see [16]). A count regression model,
as well as an INAR(1) process having the P2S-L distribution, as an innovation distribution is
effectively established in [15]. The superior model selection criteria of the P2S-L distribution
and the INAR(1)P2S-L process are demonstrated through simulation studies and real-data
analysis.

In this paper, we construct two bivariate distributions based on the P2S-L distribution
and, motivated by their improved performance; we apply them as innovations to the
BINAR(1) process. To be more precise, discrete bivariate distributions based on the P2S-L
distribution are framed in this paper using the mixture methodology (the basic bivariate
P2S-L, the bivariate Poisson 2S-Lindley I (BP2S-L(I) distribution) as well as the Sarmanov
family of distributions (the Sarmanov bivariate P2S-L, bivariate Poisson 2S-Lindley II
(BP2S-L(II)) distribution) and both distributions are mounted as innovation distributions in
the BINAR(1) process. Hence, the BINAR(1)BP2S-L(I) and BINAR(1)BP2S-L(II) processes
are created. Both the processes are then compared with some other recently proposed
BINAR(1) processes, as well as those discussed in [14].

We first review the development of the P2S-L distribution and the associated INAR(1)
process. Then, bivariate versions are constructed and adapted to the BINAR(1) process
with bivariate P2S-L distribution innovations (BP2S-L(I) and BP2S-L(II) distributions) by
inducing a cross-correlation between the counting series by assuming the paired P2S-L
innovations are jointly distributed.

The remaining parts of the paper are organized as follows: Section 2 reviews the
P2S-L distribution and associated INAR(1) process. The construction of the BP2S-L(I) and
BP2S-L(II) distributions is discussed in Section 3. Estimation of the unknown parameters
and its simulation study are given in Section 4. Both the bivariate distributions are used as
innovation distributions for the BINAR(1) process, which is given in Section 5. Estimation
of the unknown parameters of the BINAR(1) processes and their simulation is given in
Section 6. The empirical importance of the proposed BINAR(1) processes is studied in
Section 7. The concluding remarks are given in Section 8.

2. Poisson 2S-Lindley and its Associated INAR(1) Process

The 2S-Lindley (2S-L) distribution was comprehensively defined in [16] as the sum of
two independent Lindley random variables (see [17]). Take Y1 and Y2 as two independent
random variables with the same parameter θ, and Y as the 2S-L random variable defined
by Y1 + Y2. Then, Y has the pdf given by

f (y; θ) =
θ4

(1 + θ)2 y
(

y2

6
+ y + 1

)
e−θy, y > 0,

with θ > 0. With the same number of parameters (one), the 2S-L distribution has direct
stochastic ordering properties with the Lindley distribution, making it a viable alternative.
Based on the 2S-L distribution, the authors of [15] recently proposed a discrete distribu-
tion by mixing the Poisson and 2S-L distributions, called the Poisson 2S-Lindley (P2S-L)
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distribution. A random variable X having the P2S-L distribution is characterized by the
following stochastic structure:

X|Λ = λ ∼ P(λ),

where Λ is a random variable that follows 2S-L(θ), θ > 0, X|Λ = λ ∼ D denotes “
conditionally on Λ = λ, X has the D distribution", P(λ) denotes the Poisson distribution
with parameter λ, and 2S-L(θ) denotes the 2S-L distribution with parameter θ. One can
establish that the unconditional probability mass function (pmf) of X is

P(x; θ) =
θ4(1 + x)

6(1 + θ)6+x

[
x2 + 6(θ + 2)2 + x(11 + 6θ)

]
, x = 0, 1, 2, . . .. (1)

Some of the important properties related to moments of X are discussed below:
The probability-generating function (pgf) of X is determined as

G(s) = E(sX) =
∞

∑
x=0

sxP(x; θ) =
θ4(2− s + θ)2

(1 + θ)2(1− s + θ)4 , (2)

for |s| < 1 + θ. The moment-generating function (mgf) of X is derived as

M(t) = E(etX) =
θ4(2− et + θ

)2

(1 + θ)2(1− et + θ)4 ,

for t ≤ log(1+ θ). From the function above, the mean and variance of X are easily obtained
as

E(X) =
4 + 2θ

θ + θ2 (3)

and

Var(X) =
2
(
θ2 + 4θ + 2

)
θ2(1 + θ)2 , (4)

respectively. In addition, the Fisher index of dispersion (DI) of X is

DI(X) =
Var(X)

E(X)
=

1
θ
+

1
2 + 3θ + θ2 .

One can remark that DI(X) can be less than or greater than 1, since θ is greater than 0.
Thus, the P2S-L distribution can have under or over-dispersed properties. However, the
study in [15] focuses on the over-dispersed case more deeply. Hence, the P2S-L distribution
is effective in using it as an innovation distribution in an INAR(1) process based on binomial
thinning, creating the INAR(1)P2S-L process. Such innovation distribution defined the
process, its properties, and its effectiveness based on estimation and real data.

3. Construction of the Bivariate Distributions

In [18], the authors mentioned two methods for the construction of bivariate distri-
butions based on the Poisson-Lindley distribution. That is, one used the basic method of
bivariate construction, and the other used the Sarmanov family. In this section, we make
use of those two methods for the construction of bivariate distributions: the BP2S-L(I) and
BP2S-L(II) distributions.

3.1. The BP2S-L(I) Distribution

Here, a basic method is used for the construction of the BP2S-L(I) distribution.
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Definition 1. Let X = (X1, X2) be a bivariate random vector such that

Xi | Λ = λ ∼ P(λφi), i = 1, 2, X1 | Λ and X2 | Λ independent

and

Λ ∼ 2S-L(θ),

with φi > 0 and θ > 0. That is, conditionally on Λ = λ, the random variables X1 and X2 are
independent, and the conditional distribution of Xi, i = 1, 2, is univariate Poisson with parameters
λφi, denoted by Xi | Λ = λ ∼ P(λφi). Then, we can say that X has the BP2S-L(I) distribution. In
this case, the unconditional pmf of X is

P(X1 = x1, X2 = x2) =
θ4

6(θ + 1)2
φx1

1 φx2
2 (x1 + x2 + 1)!

x1!x2!(θ + φ1 + φ2)
x1+x2+4×{

6(θ + φ1 + φ2 + 1)2 + x1[6(θ + φ1 + φ2) + 2x2 + 5]

+x2[6(θ + φ1 + φ2) + 5] + x2
1 + x2

2

}
, (5)

where x1, x2 = 0, 1, 2, . . . , φ1, φ2 > 0 and θ > 0.

Proof. The pmf of the BP2S-L(I) distribution is obtained via the following integral develop-
ment:

P(X1 = x1, X2 = x2) =

∞∫
0

P(X1 = x1, X2 = x2 | Λ = λ) f (λ; θ)dλ

=

∞∫
0

(λφ1)
x1 e−λφ1

x1!
(λφ2)

x2 e−λφ2

x2!
θ4

(1 + θ)2 λ

(
λ2

6
+ λ + 1

)
e−θλdλ

=
θ4

6(θ + 1)2
φx1

1 φx2
2 (x1 + x2 + 1)!

x1!x2!(θ + φ1 + φ2)
x1+x2+4×{

6(θ + φ1 + φ2 + 1)2 + x1[6(θ + φ1 + φ2) + 2x2 + 5]

+x2[6(θ + φ1 + φ2) + 5] + x2
1 + x2

2

}
.

The stated pmf is obtained.

Now, a bivariate random vector X = (X1, X2) having the BP2S-L(I) distribution is
denoted as X ∼ BP2S-L(I)(θ, φ1, φ2).

If X ∼ BP2S-L(I)(θ, φ1, φ2), the marginal pmf of Xi, i = 1, 2, can be obtained by the
usual procedure, and we have

P(Xi = xi) =
θ4(xi + 1)φxi

i

[
6(θ + φi + 1)2 + xi(6θ + 6φi + 5) + x2

i

]
6(θ + 1)2(θ + φi)

xi+4 , xi = 0, 1, 2, . . . . (6)

Now, the conditional pmf of X2|X1 = x1 with x1 = 0, 1, 2, . . . can be easily derived as

P(X2 = x2|X1 = x1) =
(x1 + x2 + 1)!φx2

2 (θ + φ1)
x1+4

(x1 + 1)!x2!(θ + φ1 + φ2)
x1+x2+4

×
6(θ + φ1 + φ2 + 1)2 + x1[6(θ + φ1 + φ2) + 2x2 + 5] + x2[6(θ + φ1 + φ2) + 5] + x2

1 + x2
2

6(θ + φ1 + 1)2 + x1(6θ + 6φ1 + 5) + x2
1

(7)

for x2 = 0, 1, 2, . . .. The pmf of X1|X2 = x2 can also be derived in a similar manner.
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The joint pgf of X is

G(s1, s2) = E(sX1
1 sX2

2 ) =
θ4[θ + (1− s1)φ1 + (1− s2)φ2 + 1]2

(θ + 1)2[θ + (1− s1)φ1 + (1− s2)φ2]
4 . (8)

Now, the mean, variance, and covariance of Xi, i = 1, 2, are computed as follows:
The mean of Xi is

E(Xi) =
2(θ + 2)φi
θ(θ + 1)

. (9)

The moment of order two of Xi is given by

E(X2
i ) =

2φi[(3θ(θ + 4) + 10)φi + θ(θ + 1)(θ + 2)]
θ2(θ + 1)2 . (10)

Hence, the variance of Xi can be derived as

Var(Xi) =
2φi[(θ(θ + 4) + 2)φi + θ(θ + 1)(θ + 2)]

θ2(θ + 1)2 (11)

and the covariance of X1 and X2 as

Cov(X1, X2) =
2[3θ(θ + 4) + 10]φ1φ2

θ2(θ + 1)2 . (12)

It should be noted that Cov(X1, X2) is always positive, implying that the BP2S-L(I)
distribution is only appropriate for modeling bivariate data with positive correlations.

3.2. The BP2S-L(II) Distribution

The second distribution is based on the scheme characterized by the Sarmanov family
of distributions. Indeed, in [5], the Sarmanov family of bivariate distributions based on
specific density definitions was introduced. Here, we stress discrete bivariate densities
based on the Sarmanov approach. Let us first define how the Sarmanov bivariate density
can be formed. Let X1 and X2 be two discrete random variables having the supports χ1 ⊆ R
and χ2 ⊆ R, respectively. Further, let us consider two functions, denoted by qi(xi), i = 1, 2,
and defined as bounded non-constant functions such that

∑
xi∈χi

qi(xi)P(Xi = xi) = 0, i = 1, 2. (13)

Then the joint pmf of X = (X1, X2) for the Sarmanov family can be written as

P(X1 = x1, X2 = x2) = P(X1 = x1)P(X2 = x2)[1 + ωq1(x1)q2(x2)], (14)

where ω is a real number, and ωq1(x1)q2(x2) is a measure of the departure of X1 and X2
from independence such that the following condition is satisfied:

1 + ωq1(x1)q2(x2) ≥ 0, for all x1 ∈ χ1, x2 ∈ χ2. (15)

Different choices for the functions qi(xi), i = 1, 2, can give different cases. Here,
following the spirit of [6], we use qi(xi) = e−xi − Li(1), where Li(1) is the value of the
Laplace transform of Xi evaluated at s = 1. We recall that the Laplace transform of Xi is
given by

Li(s) = E
(

e−sXi
)
= ∑

xi∈χi

e−sxi P(Xi = xi). (16)
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The pmf of the Sarmanov-based bivariate P2S-L or BP2S-L(II) distribution having the
P2S-L distribution as a marginal distribution is derived below. First, the Laplace transform
for the P2S-L distribution is

L(s) =
θ4

(θ + 1)2
e2s[1− es(2 + θ)]2

[1− es(1 + θ)]4

(17)

and, at s = 1,

L(1) =
θ4

(θ + 1)2
e2[1− e(2 + θ)]2

[1− e(1 + θ)]4
. (18)

Then the joint pmf associated with a Sarmanov bivariate distribution takes the form

P(X1 = x1, X2 = x2) =

P(X1 = x1)P(X2 = x2)
[
1 + ω

(
e−x1 − L1(1)

)(
e−x2 − L2(1)

)]
. (19)

Definition 2. The joint pmf of X = (X1, X2) having the Sarmanov bivariate distribution with the
P2S-L distribution as a marginal distribution is indicated as

P(X1 = x1, X2 = x2) =
θ4

1(1 + x1)

6(1 + θ1)6+x1

[
x2

1 + 6(θ1 + 2)2 + x1(11 + 6θ1)
]
×

θ4
2(1 + x2)

6(1 + θ2)6+x2

[
x2

2 + 6(θ2 + 2)2 + x2(11 + 6θ2)
]
×[

1 + ω

(
e−x1 −

θ4
1

(θ1 + 1)2
e2[1− e(2 + θ1)]

2

[1− e(1 + θ1)]4

)(
e−x2 −

θ4
2

(θ2 + 1)2
e2[1− e(2 + θ2)]

2

[1− e(1 + θ2)]4

)]
,

(20)

where x1, x2 = 0, 1, 2, . . ., with θ1, θ2 > 0 and ω satisfies (15).

The bivariate random vector X = (X1, X2), having the joint pmf (20), is hereafter
denoted as X ∼ BP2S-L(II)(θ1, θ2, ω). Hence, if X ∼ BP2S-L(II)(θ1, θ2, ω), the mean and
variance of Xi, i = 1, 2, are

E(Xi) =
2(2 + θi)

θi(1 + θi)
(21)

and

Var(Xi) =
2{θi(θi + 1)(θi + 2) + [θi(θi + 4) + 2]}

θ2
i (θi + 1)2 , (22)

respectively. The covariance between X1 and X2 is computed as

Cov(X1, X2) = ωu1u2, (23)

where ui = E(Xie−Xi − XiLi(1)). More precisely, for the BP2S-L(II) distribution, we get

ui =
2e2θ4

i (e(θi + 2)− 1)(e(θi + 3)− 1)
(θi + 1)2(e(θi + 1)− 1)5 −

2(θi + 2)e2θ4
i [e(θi + 2)− 1]2

θi(θi + 1)(θi + 1)2[e(θi + 1)− 1]4

=
2(e− 1)e2θ3

i [e(θi + 2)− 1]
[
e(θi + 1)(θi + 2)2 − θi(θi + 2)− 2

]
(θi + 1)3[e(θi + 1)− 1]5

. (24)

Further, note that the sign of Cov(X1, X2) depends on the sign of ω.
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4. Estimation and Simulation of the Bivariate Distributions

In this section, the estimation of the corresponding parameters of the BP2S-L(I) and
BP2S-L(II) distributions, as well as some Monte Carlo experiments for the simulation of
parameters, are carried out in detail. The method of maximum likelihood (ML) is used for
the estimation of parameters. For both distributions, two sets of parameter values for the
sample sizes n = 25, 50, 100, 200, 400 and N = 1000 number of replications are considered.

4.1. Estimation for the BP2S-L(I) Distribution

Suppose that (x1,i, x2,i), i = 1, 2, . . . , n, are the observations of a n random sample from
X ∼ BP2S-L(I)(θ, φ1, φ2). Then the log of the likelihood function satisfies

L(β) =
n

∑
i=1

x1,i log φ1 +
n

∑
i=1

x2,i log φ2 −
n

∑
i=1

(x1,i + x2,i + 4) log(θ + φ1 + φ2)

+
n

∑
i=1

log[(1 + x1,i + x2,i)!] +
n

∑
i=1

log
{

6(θ + φ1 + φ2 + 1)2

+ x1,i[6(θ + φ1 + φ2) + 2x2 + 5] + x2,i[6(θ + φ1 + φ2) + 5] + x2
1,i + x2

2,i

}
−

n

∑
i=1

[log(x1,i!)]−
n

∑
i=1

[log(x2,i!)] + 4n log θ − n log[6(θ + 1)2], (25)

where β = (θ, φ1, φ2). The ML estimate (MLE) of β or, equivalently, the MLEs of θ, φ1, and
φ2, are obtained by maximizing (25) using numerical methods. Here, the nlminb function
in the R software is used (via the optimization PORT routines) to obtain the MLEs of the
parameters in the BINAR(1)BP2S-L(I) process.

4.2. Simulation of Parameters of the BP2S-L(I) Distribution

The MLEs of the BP2S-L(I) distribution parameters are analyzed using a simulation study.
The following two sets of parameter values are considered: (θ = 0.1, φ1 = 0.2, φ2 = 0.4)
and (θ = 1.5, φ1 = 1.2, φ2 = 1.4). The bias and mean square errors (MSEs) of the MLEs of
the parameters are computed, and the results are reported in Table 1.

Table 1. Simulation results for the BP2S-L(I) distribution.

Sample
Size (n) Parameters

θ = 0.1, φ1 = 0.2, φ2 = 0.4 θ = 1.5, φ1 = 1.2, φ2 = 1.4

Bias MSE Bias MSE

25

θ 0.0656 0.0075 0.0316 0.0236

φ1 0.1377 0.0205 0.0189 0.0197

φ2 0.2968 0.0927 0.0261 0.0126

50

θ 0.0465 0.0063 0.0291 0.0088

φ1 0.1347 0.0202 0.0174 0.0100

φ2 0.2917 0.0909 0.0239 0.0074

100

θ 0.0441 0.0038 0.0277 0.0047

φ1 0.1321 0.0197 0.0135 0.0056

φ2 0.2884 0.0898 0.0230 0.0043

200

θ 0.0424 0.0033 0.0239 0.0033

φ1 0.0580 0.0130 0.0123 0.0033

φ2 0.1784 0.0554 0.0213 0.0027
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Table 1. Cont.

Sample
Size (n) Parameters

θ = 0.1, φ1 = 0.2, φ2 = 0.4 θ = 1.5, φ1 = 1.2, φ2 = 1.4

Bias MSE Bias MSE

400

θ 0.0135 0.0031 0.0219 0.0002

φ1 0.0127 0.0054 0.0067 0.0018

φ2 0.0750 0.0175 0.0185 0.0019

Table 1 makes it clear that as the sample size increases, bias and MSE corresponding
to each parameter decrease.

4.3. Estimation for BP2S-L(II) Distribution

Let (x1,i, x2,i), i = 1, 2, . . . , n, be the observations of a n random sample from X ∼
BP2S-L(II)(θ1, θ2, ω). Then the log of the likelihood function is

U(λ) =
n

∑
i=1

log[P(X1 = x1,i, X2 = x2,i)], (26)

where λ = (θ1, θ2, ω) and P(X1 = x1,i, X2 = x2,i) is the pmf of the BP2S-L(II) distribution
defined in (20). Then, (26) had to be maximized to find estimates for λ. Here also, the
optimization technique PORT routines into the nlminb function in the R software is used to
obtain the MLEs of the parameters in the BINAR(1)BP2S-L(I) process.

4.4. Simulation of Parameters of the BP2S-L(II) Distribution

In this part, the MLEs of the BP2S-L(II) distribution parameters are analyzed using a
simulation study. The two following sets of parameter values are used: (θ1 = 0.1, θ2 = 0.6,
ω = −0.3) and (θ1 = 1.7, θ2 = 1.1, ω = 0.6). The bias and MSEs of the estimates of the
parameters are computed, and the results are reported in Table 2.

Table 2. Simulation results for the BP2S-L(II) distribution.

Sample
Size (n) Parameters

θ1 = 1.7, θ2 = 1.1, ω = 0.6 θ1 = 0.9, θ2 = 1, ω = −0.3

Bias MSE Bias MSE

25

θ1 0.0599 0.0989 0.1890 0.0419

θ2 0.0672 0.0535 0.1181 0.0433

ω 0.0036 0.0210 0.0039 0.0105

50

θ1 0.0519 0.0509 0.1618 0.0417

θ2 0.0520 0.0247 0.1138 0.0233

ω 0.0031 0.0099 0.0010 0.0078

100

θ1 0.0283 0.0257 0.0941 0.0290

θ2 0.0448 0.0129 0.0794 0.0145

ω 0.0022 0.0041 0.0006 0.0049

200

θ1 0.0238 0.0163 0.0855 0.0290

θ2 0.0377 0.0066 0.0714 0.0233

ω 0.0011 0.0041 0.0006 0.0004

400

θ1 0.0148 0.0092 0.0762 0.0143

θ2 0.0344 0.0041 0.0619 0.0142

ω 0.0002 0.0009 0.0005 0.0002
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5. The Bivariate INAR(1) Processes with Paired P2S-L Innovation Distributions

This section deals with the model development of BINAR(1) processes with the BP2S-
L(I) and BP2S-L(II) distributions as innovation distributions.

5.1. General Definition

Let Y t = (Yt,1, Yt,2), t = 1, 2, . . ., define a BINAR(1) process, such that

Yt,1 = p1 ◦Yt−1,1 + εt,1

Yt,2 = p2 ◦Yt−1,2 + εt,2; pi ∈ (0, 1), i = 1, 2,
(27)

where ◦ in (27) denotes the binomial thinning operator introduced in [19], which is de-
scribed as

p ◦Yt−1 =
Yt−1

∑
j=1

Cj,

where {Cj}j∈Z is a sequence of independent and identically distributed Bernoulli random
variables with parameter p. We assume that the innovation vector εt in (27) is (εt,1, εt,2)
and that εt,j is independent of Ys,j, j = 1, 2 for each t and s, s < t. In addition, let the
innovation vector be independent of the counting series in thinning operator ◦. Now, we
proceed by assuming εt has both of the discussed distributions, and then we develop the
corresponding BINAR(1) processes.

5.2. BINAR(1) Process with BP2S-L(I) Innovation Distributions

For the BINAR(1) process discussed in (27), we suppose that the innovation vec-
tor satisfies εt = (εt,1, εt,2) ∼ BP2S-L(I)(θ, φ1, φ2). Then the resulting Y t = (Yt,1, Yt,2),
t = 1, 2, . . ., is a BINAR(1) process with BP2S-L(I) innovation denoted by BINAR(1)BP2S-
L(I).

Suppose that the process Y t = (Yt,1, Yt,2), t = 1, 2, . . ., is a BINAR(1)BP2S-L(I) process.
In this case, the mean, variance, and DI of Yt,i, i = 1, 2, are given by

E(Yt,i) =
2(θ + 2)φi

θ(θ + 1)(1− pi)
, (28)

Var(Yt,i) =
2[θ(θ + 4) + 2]φ2

i + 2θ(θ + 1)(θ + 2)(pi + 1)φi

θ2(θ + 1)2
(
1− p2

i
) (29)

and

DI(Yt,i) = 1 +
[θ(θ + 4) + 2]φi

θ(θ + 1)(θ + 2)(1 + pi)
, (30)

respectively. Note that the DI for the BINAR(1)BP2S-L(I) process is over-dispersed marginally,
even though the P2S-L distribution shows under and over-dispersion properties. Now, the
conditional mean and variance of components of the process are, for i = 1, 2,

E(Yt,i | Yt−1,i) = piYt−1,i +
2(θ + 2)φi
θ(θ + 1)

(31)

and

Var(Yt,i | Yt−1,i) = pi(1− pi)Yt−1,i +
2φi[θ(θ + 1)(θ + 2) + (θ(θ + 4) + 2)φi]

θ2(θ + 1)2 , (32)

respectively. The covariance of Yt,1 and Yt,2 is

Cov(Yt,1, Yt,2) =
2(3θ(θ + 4) + 10)φ1φ2

θ2(θ + 1)2(1− p1 p2)
. (33)
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The conditional joint pmf of the process is given by

P(Y t = yt | Y t−1 = yt−1) =
u

∑
k=0

v

∑
s=0

z1(k)z2(s)P(εt,1 = yt,1 − k, εt,2 = yt,2 − s), (34)

where yt = (yt,1, yt,2), u = min(yt,1, yt−1,1), v = min(yt,2, yt−1,2),

z1(k) =
(

yt−1,1

k

)
pk

1(1− p1)
yt−1,1−k,

z2(s) =
(

yt−1,2

s

)
ps

2(1− p2)
yt−1,2−s,

yt, yt−1 ≥ 0 and P(εt,1 = yt,1 − k, εt,2 = yt,2 − s) is given by substituting x1 with yt−1,1 − k
and x2 with yt−1,2 − s in (5).

5.3. BINAR(1) Process with BP2S-L(II) Innovation Distributions

Here, we describe the BINAR(1)BP2S-L(II) process. To this aim, based on the BINAR(1)
process, we suppose the innovation vector satisfies: εt = (εt,1, εt,2) ∼ BP2S-L(II)(θ1, θ2, ω).
Further, we assume the assumptions made for the construction of the BINAR(1)BP2S-L(I)
process hold too. Then, if Y t = (Yt,1, Yt,2), t = 1, 2, . . . for i = 1, 2, the mean, variance and
DI of Yt,i, i = 1, 2, are obtained as

E(Yt,i) =
2(θi + 2)

θi(θi + 1)(1− pi)
, (35)

Var(Yt,i) =
2θi[θi(θi + 4) + (θi + 1)(θi + 2)pi + 6] + 4

θ2
i (θi + 1)2(1− p2

i
) (36)

and

DI(Yt,i) = 1 +
1

θi+1 −
1

θi+2 + 1
θi

1 + pi
, (37)

respectively. In particular, based on the DI, we note that the BINAR(1)BP2S-L(II) process is
marginally over-dispersed here also. Now, one step ahead gives the conditional expectation
and variance of components of the process for i = 1, 2 as

E(Yt,i | Yt−1,i) = piYt−1,i +
2(θi + 2)
θi(θi + 1)

(38)

and

Var(Yt,i | Yt−1,i) = pi(1− pi)Yt−1,i +
2{θi(θi + 1)(θi + 2) + [θi(θi + 4) + 2]}

θ2
i (θi + 1)2 , (39)

respectively. Furthermore, we have

Cov(Yt,1, Yt,2 | Yt−1,1, Yt−1,2) = Cov(εt,1, εt,2), (40)

where

Cov(εt,1, εt,2) = ω
2(e− 1)e2θ3

1 [e(θ1 + 2)− 1]
[
e(θ1 + 1)(θ1 + 2)2 − θ1(θ1 + 2)− 2

]
(θ1 + 1)3[e(θ1 + 1)− 1]5

×
2(e− 1)e2θ3

2 [e(θ2 + 2)− 1]
[
e(θ2 + 1)(θ2 + 2)2 − θ2(θ2 + 2)− 2

]
(θ2 + 1)3[e(θ2 + 1)− 1]5

.

The conditional joint pmf of the BINAR(1)BP2S-L(II) process can be determined by
using (34), with the exception that P(εt,1 = ε1, εt,2 = ε2) is swapped by (20).
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In addition, under the stationary condition 0 < pi < 1 (see [20]), for both of the models,
E(Yt,i), Var(Yt,i) for i = 1, 2 and Cov(Yt,1, Yt,2) do not depend on t, and Var(Yt,i) is finite.

6. Estimation and Simulation of Parameters of the BINAR(1) Processes

The estimation of the parameters and hence the simulation procedures of both the
BINAR(1) processes discussed above are studied in detail. For the estimation, the methods
of conditional maximum likelihood (CML) and conditional least squares (CLS) are applied.

6.1. Estimation and Simulation of the BINAR(1)BP2S-L(I) Process

Suppose that Y t = (Yt,1, Yt,2), t = 1, 2, . . . , n, is a n random sample from the BINAR(1)
BP2S-L(I) process, and consider observations of this sample denoted as yt = (yt,1, yt,2),
t = 1, 2, . . . , n. This subsection explains the methods used for the estimation proce-
dure for the parameters of the BINAR(1)BP2S-L(I) process. For this objective, we set
Θ = (θ, φ1, φ2, p1, p2) as the parameter vector.

6.1.1. Method of Conditional Least Squares Estimation

The CLS estimate (CLSE) of Θ for the BINAR(1)BP2S-L(I) process is obtained by
minimizing the following equations with respect to Θ: for i = 1, 2,

Hi =
n

∑
t=2

[yt,i − E(Yt,i | Yt−1,i = yt−1,i)]
2

=
n

∑
t=2

[
yt,i − piyt−1,i −

2(θ + 2)φi
θ(θ + 1)

]2

.

(41)

Here, we used the quasi-Newton approach (BFGS algorithm in particular) available in
the optim function of R software for obtaining the CLSE.

6.1.2. Method of Conditional Maximum Likelihood Estimation

The CML estimate(CMLE) of Θ for the BINAR(1)BP2S-L(I) process is computed using
the conditional log-likelihood function of the BINAR(1)BP2S-L(I) process. The conditional
log-likelihood can be obtained by substituting (34) in the following equation:

`(Θ) =
n

∑
t=2

log
[
P(Y t = yt | Y t−1 = yt−1)

]
. (42)

The CMLE is obtained by maximizing (42) with respect to Θ. Furthermore, the
consistency and asymptotic normality of the random version of the CMLE under standard
regularity conditions are demonstrated in [21,22]. Further, the covariance is obtained as
the inverse of Hessian (see [23]), and standard errors (SEs) are the square root of diagonal
elements of the covariance matrix. Here, the optimization routines in the nlminb function
and fdHess function in the R software are used to obtain the CMLE, observed information
matrix, and SEs of the estimates of the parameters in the BINAR(1)BP2S-L(I) process.

6.1.3. Simulation Study for BINAR(1)BP2S-L(I) Process

The estimates obtained for the unknown parameters of the BINAR(1)BP2S-L(I) process
via the two methods discussed above are assessed through a simulation study. Here,
N = 1000 samples, each of sizes n = 25, 50, 100, 200, 400 are taken for the two following sets
of parameter values: (θ = 0.1, φ1 = 0.2, φ2 = 0.4; p1 = 0.2, p2 = 0.15) and (θ = 1.2, φ1 = 1.5,
φ2 = 1.9, p1 = 0.8, p2 = 0.6). For each n, bias and MSEs were calculated and are reported
in Tables 3 and 4.
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Table 3. Simulation results for the BINAR(1)BP2S-L(I) process for the set of parameter values:
θ = 0.1, φ1 = 0.2, φ2 = 0.4; p1 = 0.2, p2 = 0.15.

Sample
Size (n) Parameters

CLS CML

Bias MSE Bias MSE

25

θ 0.0506 0.0075 0.0519 0.0068

φ1 0.0487 0.0123 0.0487 0.0119

φ2 0.0571 0.0134 0.0569 0.0134

p1 0.0652 0.0418 0.0365 0.0246

p2 0.0586 0.0428 0.0161 0.0208

50

θ 0.0416 0.0035 0.0418 0.0035

φ1 0.0483 0.0061 0.0483 0.0060

φ2 0.0571 0.0080 0.0568 0.0080

p1 0.0258 0.0206 0.0171 0.0160

p2 0.0285 0.0207 0.0129 0.0140

100

θ 0.0415 0.0028 0.0414 0.0026

φ1 0.0461 0.0044 0.0458 0.0043

φ2 0.0499 0.0056 0.0498 0.0056

p1 0.0166 0.0103 0.0154 0.0097

p2 0.0120 0.0093 0.0083 0.0079

200

θ 0.0405 0.0020 0.0401 0.0018

φ1 0.0404 0.0033 0.0405 0.0033

φ2 0.0432 0.0050 0.0431 0.0048

p1 0.0075 0.0049 0.0074 0.0047

p2 0.0053 0.0051 0.0046 0.0049

400

θ 0.0398 0.0019 0.0402 0.0018

φ1 0.0173 0.0028 0.0165 0.0027

φ2 0.0274 0.0038 0.0274 0.0030

p1 0.0031 0.0025 0.0032 0.0021

p2 0.0052 0.0023 0.0051 0.0022

Tables 3 and 4 show that as the sample size increases, the bias and MSE corresponding
to each parameter decrease for both methods. Although the CLS method performs slightly
better than the CML method for the second set of parameters, we further proceed with the
CML method since the model comparison is effective with it.

Table 4. Simulation results for the BINAR(1)BP2S-L(I) process for the set of parameter values:
θ = 1.2, φ1 = 1.5, φ2 = 1.9, p1 = 0.8, p2 = 0.6.

Sample
Size (n) Parameters

CLS CML

Bias MSE Bias MSE

25

θ 0.1347 0.0742 0.1346 0.0723

φ1 0.1562 0.1744 0.1630 0.2081

φ2 0.1073 0.1301 0.0687 0.6277

p1 0.0939 0.0277 0.1311 0.0343

p2 0.1087 0.0435 0.1295 0.0448
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Table 4. Cont.

Sample
Size (n) Parameters

CLS CML

Bias MSE Bias MSE

50

θ 0.1152 0.0508 0.1151 0.0507

φ1 0.1123 0.1086 0.0953 0.1145

φ2 0.0415 0.0705 0.0631 0.3437

p1 0.0574 0.0117 0.0718 0.0135

p2 0.0491 0.0165 0.0609 0.0174

100

θ 0.0861 0.0425 0.0862 0.0432

φ1 0.0544 0.0491 0.0489 0.0526

φ2 0.0140 0.0296 0.0572 0.2037

p1 0.0321 0.0047 0.0396 0.0053

p2 0.0275 0.0080 0.0333 0.0083

200

θ 0.0449 0.0392 0.0459 0.0391

φ1 0.0160 0.0178 0.0129 0.0182

φ2 0.0120 0.0184 0.0525 0.1303

p1 0.0159 0.0021 0.0196 0.0022

p2 0.0169 0.0039 0.0196 0.0040

400

θ 0.0082 0.0342 0.0088 0.0231

φ1 0.0072 0.0070 0.0064 0.0073

φ2 0.0062 0.0064 0.0460 0.0731

p1 0.0084 0.0010 0.0103 0.0010

p2 0.0083 0.0019 0.0097 0.0018

6.2. Estimation and Simulation of the BINAR(1)BP2S-L(II) Process

Suppose that Y t = (Yt,1, Yt,2), t = 1, 2, . . . , n, is a n random sample from the
BINAR(1)BP2S-L(II) process, and consider observations of this sample denoted as yt =
(yt,1, yt,2), t = 1, 2, . . . , n. This subsection explains the methods used for the estimation
procedure for the parameters of the BINAR(1)BP2S-L(II) process. We consider Θ∗ =
(θ1, θ2, ω, p1, p2) as the parameter vector.

6.2.1. Method of Conditional Least Squares Estimation

The CLSE of Θ∗ for the BINAR(1)BP2S-L(II) process is obtained by minimizing H∗i ,
i = 1, 2, 3, with respect to Θ∗, where, for i = 1, 2,

H∗i =
n

∑
t=2

[yt,i − E(Yt,i | Yt−1,i = yt−1,i)]
2

=
n

∑
t=2

[
yt,i − piyt−1,i −

2(θi + 2)
θi(θi + 1)

]2 (43)

and

H∗3 =
n

∑
t=2
{[yt,1 − E(Yt,1 | Yt−1,1 = yt−1,1)][yt,2 − E(Yt,2 | Yt−1,2 = yt−1,2)]

−Cov(Yt,1, Yt,2 | Yt−1,1 = yt−1,1, Yt−1,2 = yt−1,2)}2.

(44)

Here also, we used the BFGS algorithm available in the optim function of the R
software for obtaining the CLSE.
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6.2.2. Method of Conditional Maximum Likelihood Estimation

The CMLE of Θ∗ for the BINAR(1)BP2S-L(II) process utilizes the conditional log-
likelihood function indicated as

`′(Θ∗) =
n

∑
t=2

log
[
P(Y t = yt | Y t−1 = yt−1)

]
, (45)

where P(Y t = yt | Y t−1 = yt−1) is obtained via the joint pmf of (εt,1, εt,2) by (20). The CMLE
is obtained by maximizing (45) according to Θ∗. Moreover, the consistency and asymptotic
normality of the random version of the CMLE under standard regularity conditions can
be proven as given by referring to [21,22]. The covariance is obtained as the inverse of the
Hessian matrix, and SEs is the square root of diagonal elements of the covariance matrix.
Here also, the optimization routines in the nlminb function and the fdHess function in R
software is used to obtain the CMLE, observed information matrix, and hence the SEs of
estimates of the parameters in the BINAR(1)BP2S-L(II) process.

6.3. Simulation Study for the BINAR(1)BP2S-L(II) Process

The estimates obtained for the unknown parameters of the BINAR(1)BP2S-L(II) process
by the CLS and CML methods are assessed through a simulation study. Thus, N = 1000
samples each of sizes n = 25, 50, 100, 200, 400 are taken for the two following sets of
parametric values: (θ1 = 0.1, θ2 = 0.3, ω = 0.4, p1 = 0.2, p2 = 0.15) and (θ1 = 0.5, θ2 =
0.6, ω = −0.3, p1 = 0.7, p2 = 0.3). For each n, bias and MSEs were calculated and are
reported in Tables 5 and 6.

Table 5. Simulation results for the BINAR(1)BP2S-L(II) process for the set of parameter values:
θ1 = 0.1, θ2 = 0.3, ω = 0.4, p1 = 0.2, p2 = 0.15.

Sample
Size (n) Parameters

CLS CML

Bias MSE Bias MSE

25

θ1 0.3645 0.1359 0.4542 0.2144

θ2 0.2411 0.0663 0.2609 0.0762

ω 0.4026 0.1626 0.3909 0.2281

p1 0.0638 0.0405 0.2008 0.1312

p2 0.0665 0.0447 0.1841 0.1343

50

θ1 0.3634 0.1355 0.4455 0.2054

θ2 0.2393 0.0625 0.2574 0.0737

ω 0.4021 0.1622 0.3908 0.2072

p1 0.0357 0.0196 0.1605 0.1138

p2 0.0308 0.0193 0.1439 0.1117

100

θ1 0.3613 0.1333 0.4395 0.1990

θ2 0.2379 0.0618 0.2533 0.0716

ω 0.4016 0.1618 0.3887 0.1978

p1 0.0105 0.009 0.1576 0.1138

p2 0.0142 0.0096 0.1144 0.0923

200

θ1 0.3543 0.1328 0.4325 0.1919

θ2 0.2368 0.0590 0.2509 0.0704

ω 0.4012 0.1616 0.3727 0.1894

p1 0.0103 0.0050 0.1246 0.1118

p2 0.0103 0.0051 0.0941 0.0865
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Table 5. Cont.

Sample
Size (n) Parameters

CLS CML

Bias MSE Bias MSE

400

θ1 0.3579 0.1319 0.4277 0.1867

θ2 0.2286 0.0583 0.2466 0.0677

ω 0.4011 0.1604 0.3657 0.1804

p1 0.0043 0.0026 0.0775 0.0044

p2 0.0029 0.0025 0.0698 0.0826

Table 6. Simulation results for the BINAR(1)BP2S-L(II) process for the set of parameter values:
θ1 = 0.5, θ2 = 0.6, ω = −0.3, p1 = 0.7, p2 = 0.3.

Sample
Size (n) Parameters

CLS CML

Bias MSE Bias MSE

25

θ1 0.1444 0.046 0.0339 0.0056

θ2 0.1132 0.0397 0.0315 0.0083

ω 0.3012 0.0903 0.3103 0.1320

p1 0.0980 0.0324 0.0483 0.0038

p2 0.07066 0.0439 0.0211 0.0653

50

θ1 0.1437 0.0368 0.0318 0.0053

θ2 0.1159 0.0275 0.3070 0.0071

ω 0.2992 0.0902 0.3056 0.1266

p1 0.0506 0.0124 0.0398 0.0245

p2 0.0368 0.0192 0.0168 0.0584

100

θ1 0.1262 0.0309 0.0309 0.0052

θ2 0.1061 0.0197 0.0278 0.0067

ω 0.2992 0.0901 0.3050 0.1122

p1 0.0279 0.0058 0.0300 0.0185

p2 0.0229 0.0103 0.0088 0.0434

200

θ1 0.1098 0.2989 0.0304 0.0051

θ2 0.1039 0.0171 0.2064 0.0066

ω 0.2986 0.0897 0.2920 0.1081

p1 0.0112 0.0027 0.0269 0.1814

p2 0.0089 0.0048 0.0034 0.0376

400

θ1 0.0750 0.0252 0.0276 0.0046

θ2 0.0956 0.0156 0.0127 0.0065

ω 0.2978 0.0892 0.2917 0.1019

p1 0.0077 0.0013 0.0070 0.0163

p2 0.0038 0.0022 0.0020 0.0273

Tables 5 and 6 make it clear that as the sample size increases, the bias and MSE of each
parameter decrease for both methods. Here we proceed with the CML method for further
analysis since it is evident that it performs better than the CLS method.
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7. Empirical Study

The results of the suggested BINAR(1) processes are presented in this section using
two real, over-dispersed time series count datasets.

7.1. Methodology

Model adequacy criteria are used to compare the proposed BINAR(1) processes to
some existing BINAR(1) processes. To that end, we compare the BINAR(1)BP2S-L(I) and
BINAR(1)BP2S-L(II) processes to the BINAR(1) bivariate Poisson weighted exponential
(BINAR(1)BPWE) process, the BINAR(1) Sarmanov Poisson weighted exponential (BI-
NAR(1)SPWE) process by [24], the BINAR(1) bivariate Poisson (BINAR(1)BP) and BINAR(1)
bivariate negative binomial (BINAR(1)BNB) processes by [14], and the BINAR(1)Poisson-
Lindley (BINAR(1)PL) process by [20]. The BINAR(1)BPWE and BINAR(1)SPWE processes
were chosen since the Poisson-weighted exponential distribution is closely related to the
Poisson-Lindley distribution, and the rest of the others were chosen since they have the
same number of parameters as that of the BINAR(1)BP2S-L(I) and BINAR(1)BP2S-l(II) pro-
cesses. Further, the P2S-L distribution is introduced as an alternative to the Poisson-Lindley
distribution. Hence, the BINAR(1)PL process is particularly chosen. The BINAR(1)BNB
process is commonly used to model over-dispersed count datasets. As we focus here on
over-dispersion, we use the BINAR(1)BNB process for comparison.

The estimates of the parameters using the CML method (we used CLS estimates as
initial values) along with their SEs and confidence intervals (CIs), -Log-Likelihood (-L),
Akaike information criterion (AIC), Bayesian information criterion (BIC), and the root MSE
(RMSE) of both the series for all the models described above are calculated. The RMSE
represents the sum of squared differences between true values and one-step conditional
expectations. Further, as the authors of [25] suggested, the standardized Pearson residuals
are calculated to check the accuracy of the BINAR(1)BP2S-L(II) process for both datasets.
They are calculated with the following formula:

et =
yt − E(Yt,i | Yt−1,i = yt−1,i)√

Var(Yt,i | Yt−1,i = yt−1,i)
,

where E(Yt,i | Yt−1,i = yt−1,i) and Var(Yt,i | Yt−1,i = yt−1,i) are given in (38) and (39), respec-
tively. Note that the fitted model is an adaptable choice if the mean and variance of et are
closer to 0 and 1, respectively. The residuals’ autocorrelation function (ACF) is then plotted
to see if they are uncorrelated, and the cumulative periodograms (cpgrams) of Pearson
residuals for both series are plotted to see if the BINAR(1)BP2S-L(II) process is random for
both datasets.

7.2. Crime Series Data

The first data we used are the crime series data from the Pittsburgh police agencies in
the file PghCarBeat.csv for the monthly period January 1990 to December 2001. The dataset
consists of criminal records of drug activities (CDRUGS) and shooting activities (CSHOTS)
in the 12th police car beats in Pittsburgh, with a sample size of 144 each, downloaded from
the website www.forecastingprinciples.com. The average CDRUGS and CSHOTS data
values are 5.1736 and 5.7569, respectively, with corresponding variances of 13.1794 and
14.2412, indicating a clear over-dispersion. The plots of the time series, ACF, partial ACF
(PACF) of the CDRUGS and CSHOTS data are given in Figures 1, 2 and 3, respectively.

The PACF plots make it clear that the data can be used since only the first lag is
significant. Further, Figure 4 displays the cross-correlation function (CCF) plot.

www.forecastingprinciples.com
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Figure 1. The time-series plot of CDRUGS and CSHOTS data.
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Figure 2. The ACF plot of CDRUGS and CSHOTS data.
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Figure 3. The PACF plot of CDRUGS and CSHOTS data.

From Figure 4, we observe that there is a significant cross-correlation in lag 2 between
the two time series, which displays positive autocorrelation among both series, which is
obvious since after drug use there is a tendency to shoot and vice versa.

Table 7 consists of the CMLEs, AIC, BIC, and RMSEs for the BINAR(1) processes
considered here for the crime series dataset.

From Table 7, we observe that the BINAR(1)BP2S-L(II) process performs well for the
data because it has the smallest values for the AIC and BIC. The Pearson standardized
residuals were calculated for the BINAR(1)BP2S-L(II) process, and we found out that they
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have the means −0.046 and −0.0261, and variances 1.060 and 1.076, respectively. The ACF
plots for standardized residuals for both time series are plotted in Figure 5.
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−
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CDRUGS & CSHOTS

Figure 4. CCF plot of the CDRUGS and CSHOTS datasets.

Table 7. Estimates with SEs and CIs, AIC, BIC, and RMSEs of the considered BINAR(1) processes for
the crime series dataset.

Model Estimates (SEs) CI -L AIC BIC RMSEs

BINAR(1)BP2S-L(II)

θ1 = 0.9325 (0.0136)
θ2 = 0.8039 (0.0116)
p1 = 0.1590 (1.1905)
p2 = 0.3951 (0.0322)
ω = 0.3488 (0.0429)

(0.9058, 0.9591)
(0.7817, 0.8266)
(0, 1)
(0.3319, 0.4582)
(0.2647, 0.4328)

714.2713 1418.5426 1403.6936
3.0366
3.4383

BINAR(1)BP2S-L(I)

θ = 0.3672 (0.0043)
φ1 = 0.3425 (0.0273)
φ2 = 0.4613 (0.0118)
p1 = 0.3782 (0.0290)
p2 = 0.2464 (0.0413)

(0.3587, 0.3755)
(0.2889, 0.3960)
(0.4381, 0.4844)
(0.3214, 0.4350)
(0.1895, 0.3273)

725.8461 1461.6922 1476.5413
3.0477
3.4832

BINAR(1)BPWE

µ1 = 2.3271 (0.2401)
µ2 = 3.4913 (0.3915)
p1 = 0.4882 (0.0300)
p2 = 0.3344 (0.0394)

(1.8565, 2.7976)
(2.7239, 4.2586)
(0.4294, 0.547)
(0.2571, 0.4116)

750.6639 1509.3278 1521.2071
3.0086
3.4742

BINAR(1)SPWE

τ1 = 0.3514 (0.0519)
τ2 = 0.2948 (0.0315)
p1 = 0.4952 (0.7971)
p2 = 0.3973 (0.0311)
ω = 0.8949 (0.0393)

(0.2496, 0.4531)
(0.2331, 0.3565)
(0, 1)
(0.3363, 0.4582)
(0.8178, 0.9719)

723.2352 1456.4705 1471.3196
3.0029
3.4515

BINAR(1)BPL

λ1 = 0.5715 (0.0684)
λ2 = 0.4644 (0.0437)
φ = −0.1543 (1.0870)
p1 = 0.4126 (0.0322)
p2 = 0.3488 (0.0450)

(0.4374, 0.7055)
(0.3787, 0.5500)
(−2.2848, 1.9762)
(0.3495, 0.4757)
(0.2606, 0.437)

717.1302 1444.2605 1459.1096
3.0362
3.4575

BINAR(1)BP

θ1 = 2.5991 (0.1707)
θ2 = 3.6519 (0.2469)
p1 = 0.4703 (0.0304)
p2 = 0.3598 (0.0390)
ω = 0.1461 (0.0855)

(2.2645, 2.9336)
(3.1679, 4.0458)
(0.4107, 0.5298)
(0.2833, 0.4362)
(0.0696, 0.3139)

766.8106 1543.6212 1558.4703
3.0030
3.4540

BINAR(1)BNB

θ1 = 2.5982 (0.1790)
θ2 = 3.6282 (0.2714)
p1 = 0.4235 (0.0242)
p2 = 0.3183 (0.0309)
ω = 0.3095 (0.0414)

(2.2473, 2.9490)
(3.0962, 4.1601)
(0.3761, 0.4709)
(0, 1)
(0.2283, 0.3906)

729.3140 1468.6281 1483.4772
3.0847
3.4751
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Figure 5. ACF of standardized residuals of CDRUGS and CSHOTS data for the BINAR(1)BP2S-L(II)
process.

It clearly indicates that they are uncorrelated, which clearly shows that the BINAR(1)
BP2S-L(II) process is accurate and gives a good fit to the crime series dataset. The cpgrams
of Pearson residuals of both the series for the crime series dataset are plotted in Figure 6.
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Figure 6. Cpgrams of standardized residuals of CDRUGS and CSHOTS data for BINAR(1)BP2S-L(II)
process.

From Figure 6, we can infer that the residuals exhibit randomly and without trend
distribution.

7.3. Sales Data of Candies

The second dataset is related to some sales data of products on the market. The
data are provided by the Kilts Center for Marketing, Graduate School of Business of
the University of Chicago. Approximately nine years (1989–1997) of store-level data on
the sales of 3500+ UPCs are available in this database (available on the website: http:
//research.chicagobooth.edu/marketing/databases/dominicks.) Here, we choose two
products of candies, which are chewing gum from store ‘56’. The first product, named
Candies1, is the ‘CHICLETS TINY PACK’, the UPC of which is ‘1254612128’ and the
second product, named Candies2, is the ‘TIC TAC WINTERGREEN’, the UPC of which
is ‘980000007’. The sales of these two products from week 1 to week 200 are recorded
as the bivariate count time series data. The average Candies1 and Candies2 data values

http://research.chicagobooth.edu/marketing/databases/dominicks
http://research.chicagobooth.edu/marketing/databases/dominicks
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are 18.145 and 12.385, respectively, with corresponding variances of 122.7276 and 45.645,
indicating a clear over-dispersion. The plots of the time series, ACF, and PACF of Candies1
and Candies2 data are given in Figures 7, 8 and 9, respectively.
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Figure 7. The time series plot of Candies1 and Candies2 data.
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Figure 8. The ACF plot of Candies1 and Candies2 data.
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Figure 9. The PACF plot of Candies1 and Candies2 data.
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The PACF plots make it clear that the data can be used since only the first lag is
significant. Further, Figure 10 displays the CCF plot for candies datasets.
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Figure 10. The CCF plot of Candies1 and Candies2 datasets.

The CCF plot shows that the coefficient of lag 0 deviates significantly from 0, which
implies the occurrence of cross-correlation. Table 8 consists of the CMLEs, AIC, BIC, and
RMSEs for the BINAR(1)s considered here for the sales of candies dataset.

From Table 8, we observe that the BINAR(1)BP2S-L(II) process performs well for the
data because it has the smallest values for the AIC and BIC. The Pearson standardized
residuals were calculated for the BINAR(1)BP2S-L(II) process, and we found out that they
have the means −0.0422 and −0.0023, and variances 1.2940 and 0.9683, respectively. The
ACF plots for standardized residuals for both time series are plotted in Figure 11.

It clearly indicates that they are uncorrelated, which clearly shows that the BINAR(1)
BP2S-L(II) process is accurate and gives a good fit to the sales of candies dataset. The
Pearson residual coefficients of both series for the candies sales dataset are plotted in
Figure 12.

From Figure 12, we can also infer that the residuals exhibit randomly and without
trend distribution.
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Figure 11. ACF of standardized residuals of Candies1 and Candies2 data for the BINAR(1)BP2S-L(II)
process.
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Table 8. Estimates with SEs and CIs, AIC, BIC, and RMSEs of the considered BINAR(1) processes for
the sales of candies dataset.

Model Estimates (SEs) CI -L AIC BIC RMSEs

BINAR(1)BP2S-L(II)

θ1 = 0.2413 (0.0141)
θ2 = 0.3546 (0.0210)
p1 = 0.1914 (1.9070)
p2 = 0.2027 (0.0364)
ω = 0.1266 (0.0379)

(0.2136, 0.2690)
(0.3133, 0.3959)
(0.1201, 0.2628)
(0.1284, 0.2771)
(0, 1)

1353.2669 2696.5339 2680.0423
10.5923
6.5205

BINAR(1)BP2S-L(I)

θ = 0.0823 (0.0218)
φ1 = 0.3488 (0.0460)
φ2 = 0.2158 (0.0273)
p1 = 0.1274 (0.0224)
p2 = 0.1905 (0.0225)

(0.0395, 0.1251)
(0.2587, 0.4390)
(0.1622, 0.2694)
(0.0833, 0.1714)
(0.1465, 0.2346)

1468.821 2947.642 2964.233
10.7085
6.5254

BINAR(1)BPWE

µ1 = 12.2172 (0.9047)
µ2 = 8.7975 (0.7233)
p1 = 0.2415 (0.0295)
p2 = 0.2217 (0.0324)

(10.4438, 13.9906)
(7.3798, 10.2152)
(0.1836, 0.2995)
(0.1581, 0.2852)

1537.859 3083.719 3096.912
10.6145
6.5354

BINAR(1)SPWE

τ1 = 0.0879 (0.0073)
τ2 = 0.1261 (0.0107)
p1 = 0.3474 (0.0251)
p2 = 0.3470 (0.0279)
ω = 0.999 (1.3224)

(0.0735, 0.1023)
(0.1049, 0.1472)
(0.2982, 0.3965)
(0.2923, 0.4018)
(0, 1)

0.10227057 2761.133 2744.641
10.4754
6.4828

BINAR(1)BP

λ1 = 13.5602 (0.4490)
λ2 = 9.5510 (0.3888)
φ = 2.0940 (0.3792)
p1 = 0.2173 (0.0221)
p2 = 0.1962 (0.0281)

(12.6801, 14.4404)
(8.7888, 10.3131)
(1.3508, 2.8373)
(0.1741, 0.2606)
(0.14139, 0.2511)

1737.278 3484.556 3501.048
10.5450
6.5048

BINAR(1)BNB

λ1 = 12.2871(0.6533)
λ2 = 8.7635 (0.5255)
φ = 0.24366 (0.0345)
p1 = 0.2164 (0.0294)
p2 = 0.1955 (0.0339)

(11.0066, 13.5677)
(7.7334, 9.7935)
(0.1760, 0.3113)
(0.1587, 0.2743)
(0.1289, 0.2621)

1479.710 2969.421 2975.912
11.8279
6.6051

BINAR(1)BPL

θ1 = 0.1468 (0.0096)
θ2 = 0.2109 (0.0144)
p1 = 0.2877 (0.02937)
p2 = 0.2948 (0.03179)
ω = 0.999 (1.5316)

(0.1278, 0.1657)
(0.1826, 0.2393)
(0.2302, 0.3453)
(0.2324, 0.3571)
(0, 1)

1359.072 2728.144 2744.636
10.4687
6.4667
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Figure 12. Cpgrams of standardized residuals of Candies1 and Candies2 data for the BINAR(1)BP2S-
L(II) process.
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8. Concluding Remarks

In this paper, bivariate distributions, namely the BP2S-L(I) and BP2S-L(II) distributions,
are constructed based on two different approaches. Both distributions are studied in detail,
and the main mathematical properties are derived. The unknown parameters of these
distributions were estimated using the ML method. Simulation studies were carried out,
and the results show consistent estimates under both distributions. Most importantly,
the BINAR(1)BP2S-L(I) and BINAR(1)BP2S-L(II) processes were created with these paired
innovation distributions. The unknown parameters of these BINAR(1) processes were
estimated by employing the CML and CLS techniques. Both techniques were compared
using simulation studies. The crime series and candy sales datasets are then analyzed
using these BINAR(1) processes, and the results show that the BINAR(1)BP2S-L(II) process
outperforms some other newly proposed BINAR(1) processes in terms of model adequacy
metrics. As a result, the BINAR(1) process with various BP2S-L innovation distributions
can be regarded as meritorious bivariate time series models that compete with those
already published.
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