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Abstract: The main objective of this work is to study the homogeneous thermoelastic interactions
in an isotropic hollow thin cylinder immersed in an electric–magnetic field using the linear Moore–
Gibson–Thompson theory of thermoelasticity, taking into account the generalized Ohm’s law. The
MGT system of thermoelastic equations for the new model is created by incorporating a relaxation
period in the Green–Naghdi type III framework. In addition, the Maxwell equations that investigate
the effect of the electromagnetic field are presented. While the outer surface of the hollow cylinder
is thermally insulated and free of traction, the interior surface is both free of traction and subject to
thermal shock. To convert the problem to the space domain only, the Laplace transform methodology
is used to solve the governing equations generated in the transformed domain. The theoretical
results are computed dynamically and are graphically displayed for a transversely isotropic material
using the Honig and Hirdes approach. A comparison of findings based on different (classical and
generalized) thermoelastic theories is provided, followed by a discussion on the impact of the applied
electromagnetic field.

Keywords: thermoelasticity; generalized Ohm’s law; transverse hollow cylinder; magneto-electro-
thermo-elastic; MGT equation
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1. Introduction

The thermomechanical properties of materials vary with temperature. In many struc-
tural applications, the structural elements of materials are usually subjected to such extreme
temperature changes that even in approximation mode, their material properties cannot
be considered to be of constant values. Therefore, the dependence of physical properties
on temperature should be taken into consideration during the heat stress analysis of these
components. In recent decades, isotropic thermal stress issues have become increasingly sig-
nificant for modern designs, such as nuclear reactors. This is due to the increased diversity
of engineering structures and the prevalence of work in extremely hot environments.

The concept of thermoelasticity describes the effects of mechanical and thermal dis-
turbances on elastic as well as viscous materials. Two equations govern the thermal
conductivity theory: one dealing with heat transfer and conduction and the other dealing
with motion. For this concept, in the traditional theory, there are two drawbacks. First, the
formulation of heat transfer in this concept does not include elastic components. Another
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problem is that according to the parabolic heat equation, the temperature can spread at an
infinite rate, a claim that experimental data have demonstrated.

In conventional thermoelasticity, stress, tension, or deformations caused by mea-
surable thermal stress are predicted. Generalized thermoelastic models were presented
because the use of the concept of traditional thermoelasticity leads to the spread of thermal
signals at an infinite rate. In recent years, thermoelasticity has been utilized to calculate
stress fields based on low-temperature conditions, which cause their rapid changes through
a good signal-to-noise ratio in infrared thermography, but it is only relevant to periodic
loads. Based on the concepts of irreversible processes in thermodynamics, Biot [1] de-
veloped a theory known as classical thermoelasticity. Hyperbolic motion and parabolic
heat transfer equations are used in this framework. Even with the parabolic type of heat
conduction equation, it still has an uncorrelated theoretical error. There are modified ther-
moelastic models in which the mathematical heat transfer model is hyperbolic to remove
this drawback of the conventional thermoelastic concept.

To fix the Fourier law of thermal conductivity, Cattaneo [2] introduced one parameter
that plays the role of relaxation time. Then, the wave-type equation was formulated in place
of the traditional Fourier law. The first modification is attributed to Lord and Shulman [3].
They developed a wave-type heat transfer equation by positing a new law of conduction of
heat to repair the conventional Fourier law. The heat flow vector and its time derivative are
included in this proposed law. It also has a new parameter that acts as a relaxation period.
Since the heat equation in this theory is of the wave type, it ensures that heat and elastic
waves propagate at limited velocities. This theory has the same equations of motion and
constitutive relationships as both coupled and uncoupled theories. The second extension
of the thermocoupled theory is what is referred to as the two-time relaxation thermoelastic
model or the rate-dependent thermal conductivity model. Green and Lindsay came up
with this second concept [4]. In this case, the thermal conductivity and kinetic equations
change, because these two constants, which act as relaxation times and are part of this
theory, are present.

Green and Naghdi [5–7] discussed linear and nonlinear models of thermoelastic bodies
with and without energy squandering. They suggested three new heat conduction models
based on the equivalence of entropy. Their thermoelastic models are known as the GN-I,
GN-II, and GN-III models. In a linear system, type I may become the conventional heat
equation, while type II and III models predict the limited rate of thermal waves upon
linearization. Recent attempts to modify the conventional Fourier formula were conducted
by Abouelregal [8–14] by utilizing higher-order time derivatives.

A discrepancy is observed (e.g., in [2–4]) when the conventional Fourier law is
applied to wave propagation, which leads to the problem of infinite signal velocity. As
a result, many different constitutive relationships for heat flow are considered while
formulating the linear and nonlinear sound wave equations and the heat equation.
Quintanilla [15] created a novel thermoelastic heat conduction model based on the equa-
tion of Moore–Gibson–Thompson [15,16]. Quintanilla [15] suggested a new, improved
heat equation that includes a relaxation parameter in the Green–Naghdi theory of type
III. The Moore–Gibson–Thompson equation is a third-order-in-time wave equation
that describes the nonlinear dispersion of sound and eliminates the unlimited signal
velocity conundrum of conventional second-order-in-time heavily damped theories
of linear acoustics, which include the Westervelt and Kuznetsov formula. The Moore–
Gibson–Thompson (MGT) equation is based on simulations of sound waves with high
amplitudes. There are a lot of studies on this subject because it has so many uses, such
as using high-intensity ultrasound in medicine and industry for extracorporeal shock
waves, light therapy, ultrasonic cleaning, etc. Since the advent of the Moore–Gibson–
Thompson equation, many studies on this concept have been performed [17–20]. In
recent years, the analysis of thermomechanical and structural interactions among many
frameworks has been effectively used [21–26].
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In recent years, research and development efforts have heavily focused on creating
linear Fresnel reflecting concentrators to transform solar energy into usable forms such
as heat and light. Sheikholeslami and Ebrahimpour [27] used multi-way twisted tape
(MWTT) to improve the thermal processing of the linear Fresnel reflector (LFR) unit.
Singh et al. [28] analyzed the thermal efficiency of a linear Fresnel reflecting solar device
with four identical trapezoidal cavity absorbers. Sheikholeslami [29] attached horseshoe-
shaped fins to the tube’s base, and he put perforated tape through the pipe’s middle, all
in an effort to increase output. The enhanced thermal characteristics of the working fluid
also contributed to the enhanced mixing rate brought about by the usage of dispersed
hybrid nano-powders. In addition, he examined how nanoparticles in a honeycomb
arrangement affected the melting process of paraffin [30].

Researchers have been studying the phenomena of thermomechanical and electromag-
netic interactions among materials since the nineteenth century. Hydrophones were the
first devices to use piezoelectric materials around the middle of the 20th century. Before
the 1960s, researchers studied the thermomagnetic elasticity theory [31]. There are many
applications for this important phenomenon, such as in geophysics, to analyze the behavior
of the Earth’s magnetic field with respect to seismic waves and damp sound waves within
a magnetic field. Studying how thermomechanical and electromagnetic materials interact
has also uses in nuclear devices (e.g., in the making of very sensitive magnetometers),
electrical power engineering, optics, etc. [32].

The idea of electromagnetic composite structures has only recently emerged in the
last two decades. Unlike the monolithic constituent materials, such composites can show
field coupling. Ultrasound imaging technologies, sensor systems, electronic controls,
transducers, and other developing components can benefit from so-called “smart” materials
and composites. It is common to find these materials in various applications [33]. High-tech
fields such as lasers, supersonic devices, microwaves, and infrared applications utilize
these materials because of their versatility in converting energy types (between mechanical
and electromagnetic energies). On the other hand, in magneto-electro-elastic materials,
mechanical forces, electric currents, and magnetic fields act similarly [34].

The main objective of presenting this paper is to address the issue of thermoelastic–
magnetic interactions that occur in a transversely isotropic circular cylinder within the
framework of a new mathematical model of generalized thermoelasticity (MGTTE), which
includes the Moore–Gibson–Thompson (MGT) equation. Since the traditional models show
that the speed at which the heat wave travels is infinite, the new generalized thermoelastic
models are more realistic and better fit the physical observations. Through many studies,
these models have proven their effectiveness, especially when trying to deal with theoretical
and experimental flow problems involving very short periods of time and high heat, such
as those that occur in lasers, power systems, nuclear reactors, etc. In addition, from the
results of this work, the equations that govern the behavior of generalized thermoelasticity
are derived, taking into consideration the effect of a magnetic field and the generalized
Ohm’s law.

As an application of the problem, it is postulated that the inner surface of the hollow
cylinder has no traction and is subject to a time-dependent thermal shock. In contrast,
the outer surface has no traction but is thermally insulated. The problem can be solved
using the Laplace transform methodology, while the reflection of the Laplace transform is
calculated numerically. Numerical calculations of the physical quantities under study, such
as temperature, thermal stresses, and deformations, are collected and compared to theories
using graphs and tables. Calculations are made to determine how the non-Fourier effect
affects how heat and thermoelastic waves are transmitted under conditions of thermal
relaxation and the presence of magnetism. When the current study is compared to previous
works, the results are found to be generally compatible.

The following organization forms the general form of the article: In Section 2, the
essential equations of Moore–Gibson–Thompson thermoelasticity are stated. In Section 3,
the problem statement, including the transversely isotropic annular circular cylinder, is
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discussed, while in Section 4, the boundary and initial conditions are introduced. To obtain
the problem’s solution in a transformed domain, the Laplace transform approach is applied
in Section 5. In Section 6, the Laplace transform is numerically reversed. Section 7 compares
the numerical results of the studied fields in three different cases, while Section 8 gives the
main conclusions.

2. Basic Equation of Moore–Gibson–Thompson Thermoelastic Model

The constitutive and strain-displacement relations and motion equation for a homoge-
nous transversely isotropic material are as follows [28–30]:

σij = cijklekl − βijθ, (1)

eij = 0.5
(
uj,i + ui,j

)
, (2)

σij,j + Fi = ρ
∂2ui
∂t2 . (3)

Cattaneo and Vernotte [2,35] developed a generalized form of the Fourier law by
including the concept of relaxation time with a heat flow vector differential as follows:(

1 + τ0
∂

∂t

)
→
q
(→

x , t
)
= −K

→
∇θ
(→

x , t
)

. (4)

Later on, Green and Naghdi [5–7] created three formulations for extended heat
conduction of homogeneous isotropic materials. These concepts are called types I, II,
and III, respectively. Using the GN-III model, we can write an improved version of the
Fourier law as [6]:

→
q
(→

x , t
)
= −

[
K
→
∇θ
(→

x , t
)
+ K∗

→
∇ϑ
(→

x , t
)]

,
.
ϑ = θ. (5)

We can see that we can go back to type I (GN-I) when material parameter K∗ = 0,
while type II (GN-II) can be reached at K = 0.

The equation for determining the energy balance can be written as [3,4]:

ρCE
∂θ

∂t
+ T0

∂

∂t
(

βijeij
)
= −qi,i + Q. (6)

The modified Fourier law (5) has the same defect as the usual Fourier model in
predicting the rapid propagation of heat transfer waves. In this model, the principle of
causation is not followed. As a result, this recommendation has been extensively updated,
and a relaxation factor has been included to address this issue [15]. Quintanilla [16]
formulated the proposed heat equation by adding the relaxation modulus to the Green–
Naghdi type III framework. The resulting form of the improved thermal conductivity
equation is given by [16,17]:(

1 + τ0
∂

∂t

)
→
q
(→

x , t
)
= −

[
K
→
∇θ
(→

x , t
)
+ K∗

→
∇ϑ
(→

x , t
)]

. (7)

After combining Equations (6) and (7), we have a new linear form of the thermal
conductivity equation (MGTTE), which is based on the Moore–Gibson–Thompson equation
for an isotropic substance as shown in the following formula:(

1 + τ0
∂

∂t

)[
∂

∂t

(
ρCE

∂θ

∂t

)
+ T0

∂2

∂t2

(
βijeij

)
− ∂Q

∂t

]
=

∂

∂t
[∇.(K∇θ)] +

∂

∂t
[∇.(K∗∇ϑ)]. (8)

The latter form is a generalization of both the Lord–Shulman theory (LS) [3] and the
third type of the Green–Naghdi theory of thermoelasticity (GN-III) [6].
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It is supposed that the surrounding free space has an initial magnetic field
→
H that

permeates it. To meet the magnetic equations of Maxwell, as well as slow-moving medium,

this generates a generated electro-field
→
E and a generated magnetic field

→
h. Without the

displacement current and charge density, the electromagnetic field is described by the
following Maxwell equations [36]:

→
J = ∇×

→
h + ∂

→
D

∂t , ∇×
→
E = −µ0

∂
→
B

∂t ,
→
B = µ0

→
H,
→
H =

→
H0 +

→
h,

→
D = ε0

→
E , ∇ ·

→
h = 0, ∇ ·

→
D = 0.

(9)

The Maxwell stress tensor, τij, can be presented by:

τij = µ0
[
Hihj + Hjhi − Hkhkδij

]
. (10)

When the small effect of temperature gradient on
→
J is not taken into account, the

generalized form of Ohm’s law for deformable continuums can be written as:

→
J = σ0

[
→
E +

∂
→
u

∂t
×
→
B

]
. (11)

The ability of a material to conduct an electric current is measured only by means of its
electrical conductivity. Many materials exhibit varying values of electrical conductivity (σ0)
depending on their ability to allow electricity to pass through. Many researchers take into
account that a material is perfectly conductive (zero resistivity); therefore, electrical con-
ductivity would lead to infinity (i.e., σ0 → ∞ ). However, this is not physically acceptable,
as electrical conductivity, whatever the type of conductive material, is limited. Although
there are no perfect electrical conductors in nature, the idea can be used as a model when
electrical resistance is insignificant in comparison with other influences.

3. Formulation of the Problem

We consider a thermoelastic body to be an infinitely hollow cylinder made of a
homogeneous transversely isotropic material with finite conductivity that has an inner
radius a and an outer radius b and is free of traction (see Figure 1). It begins in an
undisturbed state at a uniform temperature T0 when a time-dependent symmetric thermal
shock is applied to its inner surface while the outer surface is thermally insulated. We
suppose that (r, ξ, z) denote the cylindrical polar coordinates, where the z-axis coincides
with the cylinder axis. There are only two variables to consider in this problem: the distance
variable, r, and the passage of time, t, due to the cylindrical symmetry of the problem.
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As a result, the displacement vector involves the following components:

→
u =

(
ur, uξ , uz

)
= (u(r, t), 0, 0). (12)

Using this displacement field, the corresponding strain components are derived as:

err =
∂u
∂r

, eξξ =
u
r

, erξ = ezz = ezξ = erz = 0. (13)

Therefore, the cubic dilatation, e, can be expressed as

e = err + eξξ + ezz =
∂u
∂r

+
u
r
=

1
r

∂

∂r
(ru). (14)

The components that make up the mechanical stress tensor, σij, can be deduced
as follows: σrr

σξξ

σzz

 =

c11 c12 −βrr
c12 c11 −βξξ

c13 c13 −βzz

 ∂u
∂r
u
r
θ

 , (15)

where σrr, σξξ , and σzz represent the normal thermal stresses.
In cylindrical coordinates, the following is the motion equation when external body

forces are present:
∂σrr

∂r
+

σrr − σξξ

r
+ Fr = ρ

∂2u
∂t2 (16)

where Fr represents the Lorentz force due to the presence of the magnetic field, which can
be determined from the following relationship:

Fr =

(→
J ×

→
B
)

r
. (17)

We take into account that the applied initial magnetic field,
→
H0, and the induced

magnetic field,
→
h , have the following components:

→
H0 = (0, 0, H0 ),

→
h = (0, 0, h ). (18)

These equations clearly show that the non-vanishing components of vectors
→
J and

→
E

only exist in the ξ-direction, i.e.,:

→
J = (0, J, 0 ),

→
E = (0, E, 0 ). (19)

A linearization of Ohm’s law (11) yields:

J = σ0

[
E− µ0H0

∂u
∂t

]
. (20)

In our situation, we can obtain the following two equations from Equation (9):

∂h
∂r = −

[
J + ε0

∂E
∂t

]
,

1
r

∂
∂r (rE) = −µ0

∂h
∂t .

(21)

In the free space surrounding the cylinder, we can obtain the following two equations:

∂h0

∂r = −ε0
∂E0

∂t ,
1
r

∂
∂r
(
rE0) = −µ0

∂h0

∂t ,
(22)
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where E0 and h0 denote, respectively, the component of the electric field intensity and the
induced magnetic field in free space surrounding the cylinder in the ξ-direction.

By removing variable J from Equations (20) and (21), we arrive at:

∂h
∂r

= σ0µ0H0
∂u
∂t
−
[

σ0E + ε0
∂E
∂t

]
. (23)

Again, when we remove E from Equations (21) and (23), and we obtain:[
∇2 − σ0µ0

∂

∂t
− ε0µ0

∂2

∂t2

]
h = σ0µ0H0

∂e
∂t

. (24)

where ∇2 = ∂2

∂r2 +
1
r

∂
∂r denotes the Laplace operator.

In our case, the radial component of the Maxwell stress tensor, τij, is determined by:

τrr = −µ0H0h. (25)

The equation that describes the body force (Lorentz force) in the radial direction is
as follows:

Fr =

(→
J ×

→
B
)

r
= −µ0H0

∂h
∂r

. (26)

When Equations (15), (16), and (26), respectively, are used, the motion equation has
the form:

c11

(
∂

∂r
+

1
r

)(
∂u
∂r

)
− βrr

∂θ

∂r
− µ0H0

∂h
∂r

=
(

βrr − βξξ

) θ

r
+ ρ

∂2u
∂t2 (27)

Given that βrr = βξξ for a transversely isotropic body, we may derive the following
equation by applying the div operator on both sides:

c11∇2e− βrr∇2θ − µ0H0∇2h = ρ
∂2e
∂t2 . (28)

In addition, the modified Moore–Gibson–Thompson heat conduction equation (MGTTE) (8)
may be written as:(

1 + τ0
∂

∂t

)[
ρCE

∂2θ

∂t2 + T0βrr
∂2e
∂t2

]
= K

∂

∂t
∇2θ + K∗∇2θ. (29)

The following non-dimensional variables are used to simplify the system equations:

{u′, r′, a′, b′} = ϑω{u, r, a, b},
{

t′, τ′0
}
= ϑ2ω{t, τ0}, θ′ = θ

T0
, σ′ij =

σij
c11

,

τ′ij =
τij
c11

, h′ = ωϕ
σ0µ0 H0

h, E′ = ωϕ

ϑσ0µ2
0 H0

E, ϑ2 = c11
ρ , ω = ρCE

K .
(30)

After removing the dashes for simplicity, the governing Equations (22)–(24), (27),
and (28) may be reduced to:

∂h
∂r

=
∂u
∂t
−
[

m0E + V2 ∂E
∂t

]
, (31)

[
∇2 −m0

∂

∂t
−V2 ∂2

∂t2

]
h =

∂e
∂t

, (32)

∂h0

∂r = −V2 ∂E0

∂t ,
1
r

∂
∂r
(
rE0) = − ∂h0

∂t ,
(33)
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∇2e− δ1∇2θ −m0δ2∇2h =
∂2e
∂t2 , (34)(

1 + τ0
∂

∂t

)[
∂2θ

∂t2 + δ1
∂2e
∂t2

]
=

∂

∂t
∇2θ + δ3∇2θ, (35)

where:

m0 =
σ0µ0

ω
, V =

ϑ

cL
, cL =

1
µ0ε0

δ1 =
T0βrr

c11
, δ2 =

H0µ0

ρϑ2 , δ3 =
K∗

ϑ2K
. (36)

Parameter m0 is an indicator of magnetic viscosity, while cL denotes the light speed.
If m0, V2, and δ2 are all equal to zero, the above formulations simplify the standard
generalized thermoelasticity equations without including magneto-electric influences.

In addition, the non-dimensional constitutive equations may be expressed as:σrr
σξξ

σzz

 =

 1 c1 −δ1
c1 1 −δ1
c2 c2 −δ4

 ∂u
∂r
u
r
θ

 , (37)

τrr = −δ2m0h, (38)

where:
c1 =

c12

c11
, c2 =

c13

c11
, δ4 =

T0βzz

c11
. (39)

4. Conditions of the Problem

We assume that the conditions for the beginning of the problem are homogeneous
during this discussion, i.e.,:

u(r, t)|t=0 = 0 = ∂u(r,t)
∂t

∣∣∣
t=0

, θ(r, t)|t=0 = 0 = ∂θ(r,t)
∂t

∣∣∣
t=0

.
(40)

We examine infinitely long hollow cylinders with traction-free inner surfaces (r = a)
that are exposed to a heat shock. As a result, the associated boundary conditions are
as follows:

θ(r, t) = θ0H(t) at r = a, (41)

where θ0 is constant.
The cylinder is considered to have a thermally insulated outer surface, i.e.,:

K
∂θ(r, t)

∂r
= 0 at r = b. (42)

There are no tractions on the interior or external surfaces of the hollow cylinder. Then,
we have:

σrr(r, t) = 0 at r = a, (43)

σrr(r, t) = 0 at r = b. (44)

Vector E has continuous transverse components along the cylinder’s inner and outer
surfaces, which results in:

E(r, t) = E0(r, t) at r = a, b. (45)

In addition, given that the transverse components of vector h are continuous over the
cylinder’s inner and outer surfaces, we have:

h(r, t) = h0(r, t) at r = a, b. (46)
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5. Problem-Solving Approach Using Laplace Transform

Many areas of practical mathematics benefit significantly from the Laplace transform
approach. Functions, measurements, and distributions are just a few of the numerous
things that may be used to create it. After transforming Equations (31)–(38), using the
Laplace transform under the starting conditions given in Equation (40) leads to:

dh
dr

= su− ϕ1E, (47)

dh0

dr = −sV2E0,
1
r

d
dr

(
rE0
)
= −sh

0
,

(48)

σrr
σξξ

σzz

 =

 1 c1 −δ1
c1 1 −δ1
c2 c2 −δ4

 du
dr
u
r
θ

 , (49)

τrr = −δ2m0h, (50)(
∇2 − s2

)
e = δ1∇2θ + m0δ2∇2h, (51)

qδ1e =
(
∇2 − q

)
θ, (52)[

∇2 − ϕ2

]
h = se, (53)

where:

ϕ1 = m0 + sV2, ϕ2 = sϕ1, q =
s2(1 + τ0 s)
(s + δ3)

. (54)

The following sixth-order differential equation is fulfilled by e after removing θ and h
from Equations (51)–(53): (

∇6 − A∇4 + B∇2 − C
)

e = 0, (55)

where:
A = q + α1 +

α3
α4

, B = α1q + α2 +
ϕ2α3

α4
, C = qα2 ,

α1 = s2 + ϕ2 + sm0δ2, α2 = s2 ϕ2, α3 = sδ1, α4 = s
qδ1

. (56)

The factorization of Equation (36) yields:(
∇2 −m2

1

)(
∇2 −m2

2

)(
∇2 −m2

3

)
e = 0, (57)

where m2
1, m2

2, and m2
3 denote the solutions to the following characteristic polynomial:

m6 − Am4 + Bm2 − C = 0 (58)

The following is a valid representation of the solution to the Bessel Equation (57),
which can be expressed as:

e =
3

∑
i=1

[Ai I0(mir) + BiK0(mir)], (59)

where I0(mir) and K0(mir) are the first and second kinds of modified Bessel functions of
order zero, and Ai and Bi, with i = 1, 2, 3, are some parameters that depend only on s.
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We may write the following solutions similarly:

θ =
3

∑
i=1

[
A′i I0(mir) + B′i K0(mir)

]
, (60)

h =
3

∑
i=1

[
A′′i I0(mir) + B′′i K0(mir)

]
. (61)

Equations (52) and (53), which are compatible with these equations, provide:

{
A′i, B′i

}
=

(
qδ1

m2
i − q

)
{Ai, Bi},

{
A′′i , B′′i

}
=

(
s

m2
i − ϕ2

)
{Ai, Bi}, i = 1, 2, 3. (62)

When Equation (59) is substituted into Equation (14), which is integrated concerning
r, it yields the following result:

u =
3

∑
i=1

1
mi

[Ai I1(mir)− BiK1(mir)]. (63)

Displacement u can be derived using the Bessel function’s well-known relations, which
are as follows:

I′n(x) = In+1(x) + n
x Kn(x), I′n(x) = In−1(x)− n

x Kn(x),
K′n(x) = −Kn+1(x) + n

x Kn(x), K′n(x) = −Kn+1(x)− n
x Kn(x).

(64)

When we enter the values from Equations (61) and (63) into Equation (47), we obtain:

E =
3

∑
i=1

−s2

mi
(
m2

i − sϕ2
) [Ai I1(mir)− BiK1(mir)]. (65)

The induced fields in free space, E0 and h
0
, are obtained by removing E0 between

Equation (48) to yield: (
∇2 − s2V2

)
h

0
= 0. (66)

Equation (49) has a solution that is limited at the origin and at infinity, respectively,
and is provided by:

h
01

= A4 I0(sVr). (67)

h
02

= A5K0(sVr). (68)

where A4 and A5 denote the integration parameters.
Using relationship (64) and incorporating Equation (65) into (48), we obtain:

E01
= − 1

V
A4 I1(sVr). (69)

E02
=

1
V

A4K1(sVr). (70)

When both sides of Equation (44) are differentiated for r, we obtain:

du
dr

=
3

∑
i=1

(
Ai

[
I0(mir)−

1
mir

I1(mir)
]
+ Bi

[
K0(mir) +

1
mir

K1(mir)
])

(71)
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When Equations (60), (63), and (71) are substituted into Equation (49), the components
of the stress tensor are given as:

σrr =
3
∑

i=1
Ai

[(
1− qδ2

1
m2

i −q

)
I0(mir)− (1−c1)

mir
I1(mir)

]
+

3
∑

i=1
Bi

[(
1− qδ2

1
m2

i −q

)
K0(mir) +

(1−c1)
mir

K1(mir)
]

,
(72)

σξξ =
3
∑

i=1
Ai

[(
c1 −

qδ2
1

m2
i −q

)
I0(mir) +

(1−c1)
mir

I1(mir)
]

+
3
∑

i=1
Bi

[(
c1 −

qδ2
1

m2
i −q

)
K0(mir)− (1−c1)

mir
K1(mir)

] (73)

σzz =
3
∑

i=1
Ai

[(
c2 −

qδ2
1

m2
i −q

)
I0(mir)− (c2−c1)

mir
I1(mir)

]
+

3
∑

i=1
Bi

[(
c2 −

qδ2
1

m2
i −q

)
K0(mir) +

(c2−c1)
mir

K1(mir)
]

.
(74)

After substituting Equation (63) into (50), we obtain:

τrr = −δ2m0

3

∑
i=1

(
s

m2
i − ϕ2

)
[Ai I0(mir) + BiK0(mir)]. (75)

After applying the Laplace transforms, the boundary conditions (41)–(46) are
converted to:

θ(r, s) =
θ0

s
at r = a, (76)

dθ(r, s)
dr

= 0 at r = b, (77)

σrr(r, s) = 0 at r = a, (78)

σrr(r, s) = 0 at r = b, (79)

E(r, s) = E01
(r, s) at r = a, (80)

h(r, s) = h
01
(r, s) at r = a. (81)

E(r, s) = E02
(r, s) at r = b, (82)

h(r, s) = h
02
(r, s) at r = b. (83)

Substituting the solution functions into the above boundary conditions (Equations (60),
(61), (65), (67)–(70), and (72)) yields a linear system of equations with unknown parameters,
Ai, with i = 1, 2, . . . , 5, and Bi, with i = 1, 2, 3. By solving this system, the values of these
constants can be set. As a result, an integrated solution to the problem is achieved in the
field of the Laplace transform. Now, we have to find the inverse transformations of the
solutions of the studied system domains to the space–time domain.

6. Numerical Inversion of Laplace Transforms

Solving the Laplace transform numerical inversion on the real axis has long been
challenging. This is a hot topic in scientific computing, as evidenced by the high number of
articles on it that have been published. It is possible to solve this inverse problem in several
ways (see, for example, [37–40]). Most numerical techniques include one or more adjusting
factors that influence the accuracy and precision of the computation. For an accuracy check,
one can utilize these tuning or scaling settings. By performing the same calculations with
various tuning or scaling values, it is possible to determine how accurate the result will be
since the computation changes with the tuning parameters.
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A numerical method for calculating the inverse Laplace transform of actual data is
provided in this section. We use a numerical reversal technique for the governing fields
based on applying the Fourier series to reverse the Laplace transformation. Dubner and
Abate [36] investigated the use of the Fourier series to compute inverse Laplace transfor-
mations. One value of t is entered into one of these methods to find the original function,
f (t). For a given value of time t and a positive number ξ, the following relationship can be
used to find the approximate value of the original f (r, t):

f (r, t) =
eξt

t

(
1
2

f (r, ξ) + Re ∑m
n=1(−1)n f

(
r, ξ +

inπ

t

))
. (84)

According to Durbin [41], the best results were obtained when ξt = 5 to 10 and m was
between 50 and 5000.

7. Graphical Results and Discussion

For computational reasons, a material with physical constants that is transversely
isotropic is proposed. We consider a numerical case for which numerical solutions are
offered to illustrate the previously supplied analytical approach and contrast the theoretical
conclusions from the preceding sections. A numerical computation is created using the
Mathematica software package. The physical constants of magnesium (Mg) are listed
as follows [31]:

c11 = 4.96× 1014kg m−1s−2, c12 = 1.15× 1014kg m−1s−2, ρ = 8954 kg m−3,
βrr = βξξ = 1.718× 108kg m−2s−2, CE = 2× 102J/kgK, T0 = 298 K, θ0 = 1,

ε0 = 10−9/(36π)Fm−1, µ0 = 10−7 × (4π)Hm−1, H0 = 107/(4π)Am−1,
σ0 = 10−7 × (4π)Ω−1m−1, K = 96 W m−1K−1, K∗0 = 2W m−1K−1s−1,

In the calculations, we use the inner radius of the cavity as a = 1; the outer radius
as b = 2, with respect to the center of the hole; and one value of time (t = 0.12) unless
otherwise specified.

In three scenarios, numerical computations are performed. The first scenario examines
how the non-dimensional field variables fluctuate with the magnetic field, while time and
relaxation time stay constant. The second objective is to examine how non-dimensional
temperature change θ, radial displacement u, and thermal stresses (σrr and σξξ) fluctuate for
various thermoelastic models while time remains constant. The third instance investigates
how the studied non-dimensional fields fluctuate with time while all other parameters are
held constant. The numerical results of the fields of study are represented in tables and
figures for the purpose of comparison and the discussion of the problem.

7.1. The Effect of the Applied Magnetic Field

Because it can be used in many different fields, including Earth sciences, plasma
physics, nuclear engineering, and other similar topics, the mechanical properties and how
electromagnetic forces, temperature, pressure, and strain affect each other in a thermoelastic
material are very important topics of investigation. The ability of magnetic materials to
exhibit reversibility, that is, the production of electric charge in response to an applied
mechanical force and the internal generation of mechanical vibration in response to an
applied electric field, are among their greatest properties. Due to their intrinsic properties,
magnetic materials are widely used in the fields of electrical and electronic engineering,
structural engineering, medical equipment, and contemporary industry.

The present section focuses on studying thermoelasticity waves in a hollow, flexible
cylinder that conducts electricity and has a stress-free boundary. The cylinder is placed
inside a magnetic field surrounding its inner surface. While maintaining constant relaxation
time (τ0) and transit time (t) parameters, the first situation is a study of non-dimensional
investigated field variables using the proposed generalized Moore–Gibson–Thompson
thermoelasticity (MGTTE) model in the presence

(
H0 = 107

4π = H1 and H0 = 108

4π = H2

)
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and absence of the electromagnetic field effect (H0 = 0). If parameters m0, V2, and δ2,
which are defined in equation (36), are all equal to zero, the generalized thermoelasticity
equations do not include magneto-electric influences. Changes in the spatial coordinates
can be seen in Figures 2–6.
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It is clear from the curves in the figures that the nature of the variation in the fields
varies with time. The data clearly show that the applied magnetic field significantly affects
each field under investigation. The phenomenon of finite propagation velocity is also found
in all figures. On the other hand, the propagation speed in the case of the coupled and
uncoupled classical theories of thermoelasticity is infinite; all the functions involved have
infinite values at every point in the medium away from sources and thermal shocks.

The variation in temperature c across the radial distance is shown in Figure 2. The
temperature changes are initially of larger magnitudes and become smaller over time to
ensure that they meet the boundary requirements, as shown in Figure 2. In addition, for
all values of H0, it goes down quickly as the distance from the center increases and goes
away before r = 1.5. The heat wave front moves forward over time at a finite pace. The
graph shows that only in a finite space field at a given moment, the temperature has a
non-zero value. Thermal oscillation is sensed in the region close to the heat shock, and the
turbulence disappears outside this region. In many locations, the non-zero region moves
all the time, consistently. Although the magnetic field has a slight effect on the temperature
distribution, it helps to increase the amount of temperature change.

Figure 3 represents the variation in radial displacement u versus radial distance r for
different values of the magnetic field. Figure 3 depicts the displacement variation, starting
with positive values in all situations and decreasing to zero over time. This distortion is
the result of a dynamic phenomenon. When magnetic field H0 values increase, we see a
decrease in the magnitudes of the displacement. It can be seen from Figure 2 that the wave
effect limits the temperature of the non-zero region of the radial displacement at a given
moment. Over time, it appears that heat is transmitted to the deeper layers of the medium
at a limited rate. The thermal turbulence and the radial displacement area go up directly
with the investigated moment.
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Figure 4 shows how radial tension σrr varies with redial position r in each example.
It should be noticed that radial stress σrr rapidly rises to zero values after immediately
decreasing from zero to a minimum value. As can be seen in Figure 4, thermal stress σrr
fluctuations at the side walls of the hollow cylinder with r = 1 and r = 2 correspond to
the boundary conditions, as they always start and end with zero values. The values of
initial magnetic field H0 raise pressure σrr, which is another observation that can be gleaned
from the graph. The tension affects the material on the inner surface of the cylinder. This
change corresponds to the radial expansion deformation of the medium, as in Figure 3. In
addition, it is observed that the compressed region shrinks with time, and the tensile stress
region grows, which is consistent with the previously mentioned dynamic stretching effect.
Figure 4 also shows that the area of non-zero stress is limited at some point near the heat
shock. This shows how temperature waves affect the current change in stress σrr.

Elastic elements and systems subjected to mechanical loads while immersed in a
magnetic field with a large energy variation can experience a wide range of stresses. The
generated electrodynamic losses add thermal stress, and the Lorentz force adds magnetic
stress to the already present mechanical stress. As well as influencing one another, these
stressors are very complicated. Validating the current conclusions requires closely fitting
the new data to the prior data [42]. This means that the accuracy of present numerical
estimates is quite good.

Figure 5 depicts the behavior of hoop stress σξξ as the radial distance changes with
and without the effect of initial magnetic field H0 changing. As the illustration shows,
there is circumferential compressive stress for the transversely isotropic material. It is also
clear from the figure that the behavior of circumferential stress σξξ is the same as that of
radial stress σrr, but the difference is in the starting point, where the hoop stress starts
with positive values different from zero. Compression occurs in one section of the cylinder,
while tension occurs in another, as shown in Figures 4 and 5. The area close to the inner
surface of the cylinder undergoes increasing tensile stress over time as it fades to the other
side. From Figure 4, we can find that the amount of stress σξξ increases as the magnetic
field immersing the cylinder increases. This shows that the effect of parameter H0 develops
further into the hollow cylinder, in addition to the effect of thermal shock.

Figures 6–8 depict non-dimensional induced magnetic field h, induced electric field E,
and the radial Maxwell stress τrr distribution in the hollow cylinder with three different
values of axial magnetic field H0. The associated thermo-elastic and electromagnetic
interactions can be easily found in Figures 6–8. Thermal shock causes the deformation of
the electromagnetic medium, which is initially in a magnetic field. As a result, the magnetic
flux passing through the cross-section of the cylinder changes. Thus, the medium contains
an induced magnetic field in addition to an induced electric field. As the heat wave moves
deeper into the cylinder, the magnetic and electric fields that it creates change. This is
further proof that heat moves in a waveform.
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According to the figures and numerical results, the coefficient of variation in axial
magnetic field H0 has a significant effect on the behavior of all induced fields, whether
electric or magnetic, which increases the importance of considering the effect of axial
magnetic field H0. It is clear from looking at Figures 6–8 that when H0 is equal to 109

4π

and 108

4π , the absolute values of all the field variables are higher than they are when H0 is
equal to 107

4π .
Thermo-magneto-elastic investigations of plates and shells have previously heavily

relied on linear models and simplified ideas. In reality, however, most plate and shell con-
structions are subjected to high-energy, temperature-varying electromagnetic radiations,
resulting in strongly coupled deformations [43]. Sheets and circular panels are used
in engineering for things such as pneumatics, turbine diaphragms, marine structures,
nuclear reactors, optical systems, shipbuilding, cars and other vehicles, space shuttles,
sound emitters and receivers, ports and swivel panels, and other annular tapers [44].

7.2. Comparison of Different Models of Thermoelasticity

In the second scenario of this discussion, the behavior of non-dimensional thermal
and mechanical field variables as well as electromagnetic variables versus radial distance
r are explored in the case of various thermoelastic theories. In this case, axial magnetic
field H0 and time t remain the same. Figures 8–14 depict a different variant of the physical
fields each to illustrate the differences between the different theories of thermoelasticity
and their relationship to each other. The model proposed in this article presents many
previous models in the general thermoelastic theory as special cases. The coupled
dynamical thermoelasticity theory (CTE) can be obtained when τ0 = K∗ = 0, while the
Lord–Shulman model (LS) is in the case of K∗ = 0. In addition, the second type of the
Green–Naghdi theorem (GN-II) can be derived when the term that includes parameter
K is equal to zero and there is no thermal relaxation time. On the other hand, when
neglecting the thermal relaxation time, the third type (GN-III) can be produced. In the
presence of thermal relaxation τ0, and K∗ and K parameters, we have the Moore–Gibson–
Thompson generalized thermoelastic theory (MGTTE).
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This subsection presents the results in Tables 1–7 and Figures 9–15, aiming to facilitate
comparisons between different thermoelastic models. Future scientists can compare their
results using the tables in this article. Looking at the tables and noting Figures 5–8, it can
be seen that the thermal parameters strongly influence the distribution of the studied field
quantities, τ0 and K∗. It is also evident that the values of the fields vary with different
thermal models. Both the generalized (LS, GNII, GNIII, and MGTTE) and coupled (CTE)
thermoelastic models provide remarkably similar results in behavior near the inner cylinder
surface where the boundary conditions imposed by the proposed problem are present. The
findings, which are consistent with generalized thermoelasticity theories, are extremely
comparable as the distance rises.

Table 1. The temperature, θ, versus different models of thermoelasticity.

r CTE LS GN-II GN-III MGTTE

1 1.002670000 1.002670000 1.002670000 1.002670000 1.002670000

1.1 0.359209000 0.271741000 0.313294000 0.464869000 0.238439000

1.2 0.146344000 0.076977000 0.101408000 0.215363000 0.059891700

1.3 0.061846600 0.022179500 0.033254400 0.098890400 0.015379900

1.4 0.026386200 0.006437660 0.010968100 0.045027300 0.003987100

1.5 0.011284000 0.001875910 0.003629730 0.020348100 0.001038560

1.6 0.004829320 0.000548098 0.001204270 0.009143340 0.000271333

1.7 0.002071650 0.000160556 0.000400793 0.004117240 7.106 × 10−5

1.8 0.000901008 4.739 × 10−5 0.000134906 0.001920390 1.87 × 10−5

1.9 0.000424842 1.4958 × 10−5 0.000049294 0.001038900 5.13 × 10−6

2 0.000295683 8.04 × 10−6 2.954 × 10−5 0.000809694 1.75 × 10−6

Table 2. The displacement, u, versus different models of thermoelasticity.

r CTE LS GN-II GN-III MGTTE

1 0.437701000 0.368473000 0.390555000 0.534831000 0.357523000

1.1 0.245658000 0.200020000 0.215465000 0.305815000 0.188293000

1.2 0.097118700 0.075013900 0.082896900 0.124531000 0.067335300

1.3 0.035868700 0.026147200 0.029716500 0.047508500 0.022276600

1.4 0.013041300 0.008954700 0.010476400 0.017861300 0.007227640

1.5 0.004729020 0.003056390 0.003682310 0.006699820 0.002335400

1.6 0.001715730 0.001043540 0.001294830 0.002514630 0.000754696

1.7 0.000622736 0.000356514 0.000455545 0.000944092 0.000244065

1.8 0.000226819 0.000122126 0.000160750 0.000355996 7.911 × 10−5

1.9 9.70 × 10−5 4.79 × 10−5 6.57 × 10−5 0.000160252 2.88 × 10−5

2 9.94 × 10−5 4.45 × 10−5 6.41 × 10−5 0.000172770 2.45 × 10−5
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Table 3. The radial stress, σrr, versus different models of thermoelasticity.

r CTE LS GN-II GN-III MGTTE

1.0 0 0 0 0 0

1.1 −0.244336000 −0.172155000 −0.202867000 −0.333905000 −0.183058000

1.2 −0.115397000 −0.073163500 −0.093051000 −0.163042000 −0.069810200

1.3 −0.045451000 −0.025694200 −0.035503100 −0.066585000 −0.021800700

1.4 −0.017213800 −0.008634780 −0.013008300 −0.026186200 −0.006481430

1.5 −0.006464920 −0.002871200 −0.004723640 −0.010218800 −0.001901870

1.6 −0.002426830 −0.000953299 −0.001713980 −0.003986920 −0.000556607

1.7 −0.000912297 −0.000316861 −0.000622786 −0.001557630 −0.000162984

1.8 −0.000336369 −0.000104393 −0.000222791 −0.000593694 −4.75 × 10−5

1.9 −6.98 × 10−5 −2.51 × 10−5 −4.91 × 10−5 −0.000112554 −1.15 × 10−5

2.0 0 0 0 0 0

Table 4. The hoop stress, σξξ , versus different models of thermoelasticity.

r CTE LS GN-II GN-III MGTTE

1 −0.1674230 −0.16390100 −0.16847300 −0.1679220 −0.16461300

1.1 −0.1056410 −0.11924100 −0.12504200 −0.1243420 −0.14136000

1.2 −0.2389110 −0.34152100 −0.35182600 −0.2699060 −0.42123700

1.3 −0.1761530 −0.00034987 −0.35506100 −0.2113800 −0.00087196

1.4 −0.1299800 −0.00559739 −0.00043307 −0.1648920 −0.00736980

1.5 −0.0923387 −0.00434826 −0.00162313 −0.1252300 −0.00670395

1.6 −0.0660684 −0.00353167 −0.00186000 −0.0974572 −0.00645638

1.7 −0.0497601 −3.12 × 10−5 −0.00189921 −0.0816976 −2.52 × 10−5

1.8 −0.0417722 −5.74 × 10−5 −0.0018784100 −0.0768195 −0.00010373

1.9 −0.0399789 −0.00012725 −0.00181465 −0.0792553 −0.00037063

2 −0.0187146 −3.95 × 10−5 −4.0 × 10−5 −0.0393544 −0.00011718

Table 5. The induced magnetic field, h, versus different models of thermoelasticity.

r CTE LS GN-II GN-III MGTTE

1 1.04363 × 10−7 4.83 × 10−8 7.05 × 10−8 1.56538 × 10−7 3.35 × 10−8

1.1 −0.657885000 −0.39161200 −0.449990000 −0.744555000 −0.36674300

1.2 −0.302240000 −0.15586500 −0.191522000 −0.346977000 −0.14004700

1.3 −0.115489000 −0.05096750 −0.067352000 −0.134657000 −0.04378810

1.4 −0.042371400 −0.01589600 −0.022662100 −0.050209600 −0.01303270

1.5 −0.015404400 −0.00489736 −0.007543730 −0.018556800 −0.00382798

1.6 −0.005595750 −0.00150538 −0.002507180 −0.006853680 −0.00112129

1.7 −0.002037820 −0.00046323 −0.000834675 −0.002538090 −0.000328693

1.8 −0.000748352 −0.00014319 −0.000279609 −0.000948138 −9.67082 × 10−5

1.9 −0.000269318 −4.3415 × 10−5 −9.19098 × 10−5 −0.000346829 −2.78989 × 10−5

2 7.16 × 10−8 7.2 × 10−6 2.34 × 10−8 5.49 × 10−8 5.74 × 10−10
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Table 6. The induced electric field, E, versus different models of thermoelasticity.

r CTE LS GN-II GN-III MGTTE

1 0.054825500 0.042532900 0.045444800 0.093388400 0.038801500

1.1 0.021246700 0.016445700 0.017583000 0.036310200 0.014988600

1.2 0.008245870 0.006369620 0.006814010 0.014134000 0.005800250

1.3 0.003206120 0.002472400 0.002646170 0.005509270 0.002249780

1.4 0.001249660 0.000962532 0.001030530 0.002151130 0.000875425

1.5 0.000488775 0.000376317 0.000402948 0.000841861 0.000342202

1.6 0.000192136 0.000148042 0.000158484 0.000330547 0.000134663

1.7 7.60912 × 10−5 5.87733 × 10−5 0.000062876 0.000130407 5.35157 × 10−5

1.8 3.04678 × 10−5 2.36483 × 10−5 0.000025265 5.18156 × 10−5 2.15752 × 10−5

1.9 0.000012398 9.7000 × 10−6 1.03412 × 10−5 2.08084 × 10−5 8.8800 × 10−6

2 5.1600 × 10−6 4.0900 × 10−6 4.3400 × 10−6 8.4900 × 10−6 3.7600 × 10−6

Table 7. The radial Maxwell stress, τrr, versus different models of thermoelasticity.

r CTE LS GN-II GN-III MGTTE

1 3.16 × 10−6 6.09 × 10−6 7.34 × 10−6 9.49 × 10−6 6.44 × 10−6

1.1 0.255101000 0.221500000 0.237873000 0.273060000 0.206062000

1.2 0.085469500 0.069369300 0.077010800 0.094794400 0.062490100

1.3 0.023206900 0.017518800 0.020153600 0.026741800 0.015246600

1.4 0.005961050 0.004172220 0.004981440 0.007148730 0.003502770

1.5 0.001506170 0.000975682 0.001210080 0.001881510 0.000789508

1.6 0.000378929 0.000226982 0.000292558 0.000493300 0.000176949

1.7 9.53214 × 10−5 5.27723 × 10−5 7.07047 × 10−5 0.000129354 3.96246 × 10−5

1.8 2.41088 × 10−5 1.23214 × 10−5 1.71696 × 10−5 3.41292 × 10−5 8.91 × 10−6

1.9 6.9 × 10−5 3.24 × 10−6 4.7 × 10−6 1.02397 × 10−5 2.25 × 10−6

2 1.04363 × 10−5 4.83 × 10−6 7.05 × 10−6 1.56538 × 10−5 3.35 × 10−6
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In contrast with generalized thermoelastic models, which assume that heat waves
move at a limited speed, the coupled theory says that heat waves move at an unlimited
speed. The numerical results show that the heat wave travels from the inside of the cylinder
to the outside because the thermal shock is applied only to the inner surface of the cylinder.

Tables 1–4 and Figures 9–15 show the discrepancy between the predictions of the
GN-III model and the MGTE model. The results show that the numerical values and curves
in the case of the GN-III model are greater than the values and fields of the curves in
the case of the MGTE model. It is also noticed that the numerical values of both the LS
and MGTE models show similar results and behaviors. The reason for this is that there
is a thermal relaxation time. The results of the Green and Naghdi type III thermoelastic
model (GN-III) show that they differ significantly from the small energy dissipation type
II thermoelastic concepts (GN-II) [16,27]. When comparing the GN-II model with other
models, it can be seen that the temperature values and distributions are very different.

These illustrations clearly show that the waves propagate at limited rates in the
extended Moore–Gibson–Thompson thermoelasticity theory (MGTTE). We see that all
variables disappear uniformly outside a time-varying, finite region. This is not true for
coupled thermoelasticity (CTE) and Green and Naghdi type III, where the function under
consideration has non-vanishing values for all values of r because heat waves spread at an
unlimited rate. Compared with previous generalized models of thermoelasticity, the results
of GN-IIII show convergence with the classical elasticity model (CTE) results, which do not
fade quickly under the influence of heat inside the medium. This matches perfectly with
the information provided by Quintanilla [25], which is why the new model is proposed in
this article.

8. Conclusions

The main objective of the present work is to investigate the effects of a detailed analysis
of thermally induced and mechanical vibrations of a transverse, thermoelastic, long, hollow
cylinder under the proposed Moore–Gibson–Thompson (MGTTE) thermoelastic model.
The governing equations of the system are solved using the Laplace transform method to
figure out the studied physical fields.

According to the results of the study, the most important conclusions can be summa-
rized as follows:

• The applied axial magnetic field significantly influences the increase or decrease in
the researched field variables through the thermoelastic materials in the investigated
fields. Nevertheless, it has a small influence on the non-dimensional temperature;

• When electromagnetic radiation hits flexible structures, it creates different temperature
differences and a lot of energy, which distorts the highly coupled medium;

• In the expanded Moore–Gibson–Thompson thermoelastic model, thermal waves are
dispersed as finite-velocity waves rather than infinite waves in a transversely isotropic
material, as in the conventional thermoelastic theory. In addition, there was conver-
gence and similarity between the GN-III and CTE models, which indicates the validity
and relevance of the presented thermoelastic model;

• Both the LS and MGTE models show similar results and similar behaviors. The reason
for this is that there is a thermal relaxation time.

Finally, the methodology described in this article applies to many thermodynamic
challenges. The diaphragms of turbines, aircraft and missiles, marine structures, nu-
clear reactors, optical systems, shipbuilding, automobiles and other vehicles, space
shuttles, sound emitters and receivers, ports and rotating plates, and other annular
structures are just a few of the engineering applications of these circular sheets and
plates. Experimental scientists and researchers who study this field can also benefit
from these theoretical findings.
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Nomenclature
→
q = heat flux vector; K = thermal conductivity; θ = T − T0 temperature change; T = absolute

temperature; T0 = reference temperature; τ0 = relaxation time;
→
x = position vector; K∗ = thermal

conductivity rate; ϑ = thermal displacement; CE = specific heat; Q = heat source; ρ = material
density; t = time variable; βij = cijklαkl , coefficients of thermal coupling; αkl , coefficients of linear
thermal expansion; cijkl = elastic constants; σij = stress tensor; eij = strain tensor; ui = the compo-

nents of the displacement vector. In addition,
→
J = electric current density;

→
E = induced electric

field vector;
→
h = induced magnetic field vector;

→
B = magnetic induction vector;

→
D = electric

induction vector; µ0 = magnetic permeability; ε0 = electric permeability; Fi , components of body
force; σ0 = electric conductivity.
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