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Abstract: The study of convective heat transfer in differently shaped fins with radiation, internal 
heat generation and variable thermal conductivity was considered. The energy equation of the 
model was converted into the dimensionless form by adopting the proper variables, which was later 
solved using the differential transformation method. The impact of the parameters on the thermal 
performance, efficiency and heat transfer of the fins was analyzed graphically and also by perform-
ing thermal analysis on the fins. It was noticed that there was a significant effect on the thermal 
performance of the fins with different shapes, and also the heat transfer rate of the fin increased for 
improved values of the internal heat generation and radiation parameters. The exponential profile 
showed better results than other profiles, and the results obtained were supported by thermal anal-
ysis using ANSYS software. 

Keywords: convection-radiation heat transfer; thermal analysis; differential transformation 
method; internal heat generation and variable heat conductivity 
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1. Introduction 
Heat enchantment has become an important factor that has captured the interest of 

many researchers. Increasing the heat transfer mainly depends on the heat transfer coef-
ficient, the surface area available and the temperature difference between the surface and 
surrounding fluid. Fins are used as heat dissipators by increasing the surface area of the 
heated surface that is exposed to an ambient fluid. In particular, fins are electronic com-
ponents, and diodes, transistors, etc., are made up of fins. Karus et al. [1] presented a 
general overview of fins. Using the above concepts, Gireesha and Sowmya [2] solved fin 
problems with heat distribution in an inclined fin. The study of horizontal fins with nat-
ural convection was considered by Popiel et al. [3]. In most cases, the electrical current 
generates internal heat that can be detected in electrical filaments or nuclear reactors ex-
posed to the temperature. This is a nonlinear factor that does not allow an analytical so-
lution. It can be solved using numerical or semi-analytical methods. A mathematical 
study of the fin with an internal heat source was studied by Minkler and Rouleau [4]. 
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Recently, many researchers [5–7] have used a numerical approach to solve the fins of var-
ious shapes with an internal heat source. Sobamowo [8] investigated the effect of internal 
heat initiation and temperature-dependent heat conduction. Turkyilmazoglu [9] used var-
iable heat conduction and heat distribution coefficients to obtain the rate of heat transfer 
through radial fins. Variable thermal properties in straight fins were reported by Ndlovu 
and Moitsheki [10]. Rohit et al. [11] studied temperature-relative heat transfer in a moving 
fin using the decomposition method. In recent years, thermal enhancement flow problems 
have been analyzed by a few authors [12-13]. The study of heat conduction between fins with 
a motion and in the presence of convection energy using the homotopy scheme was per-
formed by Aziz and Khani [14]. Sowmya et al. [15] examined the heat performance in 
longitudinal fins with a heat source due to natural convection. A study of a porous me-
dium and the radiation parameter was conducted by Hatami and Ganji [16] in a circular 
fin. Heat transfer and temperature distribution in circular convective radiative porous fins 
of different shapes were analyzed by Pasha [17]. Heat propagation in fins with radiation 
for different geometries was studied by Tarobi et al. [18]. A handful of researchers studied 
the effect of rectangular fins used in heat exchange systems and determined the dimen-
sions of the fin to achieve better efficiency [19–21]. Shi et al. [22] studied the bio-convection 
flow of magneto-cross nanofluid containing gyrotactic microorganisms with activation 
energy. 

Fins are widely used in industries to reduce the heat transfer rate of the appliances 
produced by them. As an example, Farhad et al. [23-24] studied the application of fins in 
air-conditioning and ice storage systems by arranging the fins in different combinations. 
Their study revealed that the length, shape and arrangement of the fins expedited heat 
transfer. Sabu et al. [25] studied the significance of nanoparticles' shape and thermo-hydrody-
namic slip constraints on MHD alumina-water nanoliquid flows over a rotating heated disk. Jamal 
et al. [26] considered partially inclined baffles in a rectangular enclosure to study the tur-
bulent and thermal behaviors of air using the finite volume method. They reported that 
the thermal performance of a heat exchanger and the reduction in pressure loss by adopt-
ing the designs that allow the maximum heat transfer rate with minimum energy coincide 
with the results of Demartini et al. [27]. Moreover, they found out that the heat transfer 
rate is directly related to the number of baffles present in the system. Meanwhile, Omid 
et al. [28] studied the performance of airflow in rectangular-shaped solar heaters with V-
shaped ribs. Increasing the inclination of the ribs produces higher velocity and heat trans-
fer. In this article, the DTM was used to solve the nonlinear energy equation describing 
the temperature distribution in fins with variable thermal conductivity, radiation and in-
ternal heat generation. DTM is a semi-analytical technique proposed by Zho [29] in 1986 
to solve the initial value problems in electrical circuits to obtain precise nth derivative 
values. The solution for a system of differential equations by the DTM was explained by 
Fatma [30]. Two-dimensional DTM used to solve the differential equation was developed 
by Chen and Ho [31]. Ayaz [32] proved that DTM is better to solve a nonlinear problem 
than the Taylor series method. The DTM has been used to solve various problems in ap-
plied mathematics and physics such as systems of differential equations [33]. Fallo et al. 
[34] applied the 3D DTM for the first time to study heat transfer in a cylindrical spine fin 
with variable thermal properties. Chiba et al. [35] solved the one-dimensional phase 
change problem in a slab of finite thickness using the DTM. The finite Taylor series and 
the iteration operation described by the transformed equations derived from the original 
equation employing differential transformation operations can be utilized to assess the 
approximating solution. Several authors used the DTM concept to solve various types of 
equations [36–39]. 

This work aims to study the heat transfer of longitudinal fins with different geome-
tries in the presence of a temperature-dependent heat source, thermal radiation and vari-
able thermal conductivity by providing an analytical solution for the heat equation using 
the DTM approximation technique. A review of the above literature shows no attempt has 
been made to analyze the heat transfer for the above-considered profiles and effects using 
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the DTM. Graphical comparison of heat transfer rate between the three profiles and the 
efficiency of the fins are discussed in this study, and also our study is supported by per-
forming thermal analysis using ANSYS software. 

2. Fundamental Operations of DTM 

Let ( )rφ  be a function that is continuously differentiable in the domain D. Power 

series can be used for the representation of ( )rφ  and can be articulated in terms of the 
Taylor series [40] as follows: 

( ) ( ) ( )
0 !

f

e e
f

e
e r r

r r d y r
r D

e dt
rφ

∞

= =

−
= ∀ ∈

 
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  (1)

The Maclaurin series ( )rφ  is obtained by taking 0ir =  in Equation (1) and can be 
expressed as: 
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Franco [41] explained the use of differential transforms and expressed the function 
( )rφ as follows: 
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(3)

( )vϕ is the converted function, and ( )rφ  is the initial function. The differential 

function ( )vϕ is restricted to [ ]0,r H∈  where H is a permanent value and is assumed 

to be unity. The inverse differential transform ( )vϕ can be expressed as: 

( ) ( )
0

e

e

vv e
H

ϕφ
∞

=

 =  
 


 

(4)

The functions and transformations used in our study are presented in Table 1. From 
this, it can be deduced that the differential transform is similar to the Taylor series. To get 
more accuracy, we consider a higher number of terms in the above series. 

Table 1. Fundamental definitions of DTM. 

Initial Function Converted Function 

( ) ( )dg r
dx

rφ =
 

( ) ( ) ( )1v v G vϕ = +  

( ) ( )2

2

d g r
dx

rφ =
 

( ) ( ) ( ) ( )1 2 1v v v G vϕ = + + +  

( ) 1rφ =
 

( ) ( )v vϕ δ=  
( ) trφ =

 
( ) ( )1v vϕ δ= −  

( ) mrrφ =
 

( ) ( ) 1
0
if v w

v v w
if v w

ϕ δ
=

= − =
=/



  
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( ) ( ) ( )g r h rrφ =
 

( ) ( ) ( )
0

v

w

v H v G v wϕ
=

= −
 

( ) arerφ =
 ( )

!

va
v

v
ϕ =

 

3. Mathematical Formulation 

The fin length is L with the variable area ( )P x  as shown in Figure 1. bT is base tem-

perature, aT is ambient temperature, and the tip is presumed to be in convection. Con-
stant heat h  is maintained throughout the fin, while thermal conduction is temperature 
dependent and varies linearly. The energy equation is obtained considering the following 
assumptions: 
• The temperature is a function of x and remains constant over time. 
• The temperature variance due to fin thickness is neglected. 
• The fin bed is kept at a steady temperature. 
• Solid matrix and fluid are in a dynamic state of equilibrium. 
• Fin is considered to be in a steady state. 

 
Figure 1. Representation of a rectangular fin. 

The balanced energy equation under the above assumptions for the small elementdx  is: 

( ) ( )4 4( ) ( ) 0a a
d dTk T P x T T h T T q
dx dx

εσ ∗ × × − − − − + =    
(5)

The corresponding boundary constraints are defined as: 

( )0
0

dT
dX

=
 

( ) bT L T=
 

Here, the variable heat conduction is stated as: 
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( ) [1 ( )]a ak T k T Tζ= + −  (6)

where ak is heat conduction at ambient temperature, and ζ  is persistent. The fin is seg-
regated into different profiles according to the difference in thickness along its length. 

( ) ( )P x b x= Γ
 (7)

where ω  is the girth, and ( )xΓ  is thickness along the length. Various geometries

( )xΓ  can be considered as shown in Figure 2: 

    
Figure 2. Schematic representation of fins with different profiles. 
• For quadrilateral fin 

( ) bxΓ = Γ  (8)

• For exponential fin 

( ) ( )/a x L
bx eΓ = Γ  (9)

• For convex fin 

( )
0.5

b
xx
L

 Γ = Γ  
 

 (10)

Dimensionless parameters are: 

,
b

T
T

θ = a
a

b
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θ =  ,xX
L
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2

2

b b

hLN
k A

 
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 

2 3
b

b a

L T
Nr

A k
εσ

=
2

b a b

L qG
A k T

∗

=  (11)

By applying equations in Equations (7)–(11) into Equation (5), we obtain: 
• For rectangular profile 

( ) ( )
2 2

4 4 2
2[1 ( )] 0a a a

d d Nr N G
dX dX

θ θβ β θ θ θ θ θ θ  + + − − − − − + = 
 

 (12)

• For exponential profile 

( ) ( )

22

2

4 4 2

[1 ( )] [1 ( )]

0

aaX aX aX
a a

a a

d d de e e
dX dXdX

Nr N G

θ θ θβ θ θ β θ θ β

θ θ θ θ

 + − + + − +  
 

− − − − + =
 (13)

• For convex profile 
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( ) ( )
2 2

4 4 2
2[1 ( )] 4 4 4 0a a a

d d Nr y N y G y
dy dy
θ θβ β θ θ θ θ θ θ 
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 (14)

where bTβ ζ=  and convective environment boundary conditions are: 

( ) ( )0
0, 1 1

d
dX
θ

θ= =  

4. Solution Method with DTM 
Equations (12)–(14) are reduced to the Taylor series using the properties mentioned 

in Table 1. We obtain: 
• For rectangular profile 
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• For exponential profile 
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• For convex profile 
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Boundary conditions can be reduced to: 

( ) ( )
0

1 0, 1
d

Q Q f
∞

=

= =   (18)

Considering ( )0Q a=  and using boundary constraints with the assistance of 
MATLAB software, the terms of the series can be obtained as follows: 
• For rectangular profile 
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[ ]7 0Q =  
and so forth 
• For exponential profile 
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……..and so forth 
• For convex profile 
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………and so forth 
By substituting Equation (19) in Equation (4) for 1H =  

• For rectangular profile 

( ) ( )
[ ] [ ]

( )

222 4 2 4
2 42 6 2

2 1 12 1
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NG aN a Nr N Nr
X X

a
Q Q
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To obtain the values of a , we use Equation (18) 

( ) ( )
[ ] [ ]
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222 4 2 4

1
2 6 2

2 1 12 1
a a

a a

NG aN a Nr N Nr Q
a

Q
a

aθ
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= +
+

 (23)

Solving Equation (23) using MATLAB software we obtain the exact value of a . The 
same procedure is repeated for the other profiles. 

Fin Efficiency 
The amount of heat transferred in a fin is determined with the help of the parameter 

called efficiency. It is a correlation between the actual heat shift in a fin to heat that would 
be transmitted if a complete fin is of the temperature of the fin bed. The non-dimensional 
equation for the efficiency of a rectangular profile is given by: 

( )( )
( ) ( )

1
4 4 2

1 a
x

b a b a

d
dx

Nr N G

θβ θ θ
η

θ θ θ θ
=

 + −  
 =

− + − −
 (24)

5. Results 
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The current investigation presents the exploration of temperature differences associ-
ated with variable thermal conductivity, internal heat generation and radiation over the 
longitudinal fin of different profiles. The dimensionless energy equations of the fins are 
solved using the DTM. Results mainly referring to temperature field and thermal profiles 
are depicted graphically for three types of fins, namely rectangular, exponential and con-
vex. The effects of Nr, G, Nc, aθ  and β on temperature fields are analyzed and dis-
cussed. Moreover, for all results reported here, the following values of variables are used 
unless otherwise indicated by the graphs or tables: 

0.5, 1, 0.1, 1& 0.4aN G Nrβ θ= = = = = . Thermal analysis is performed and discussed 
using ANSYS software. The results of the present study are compared with the existing 
results of Languri et al. [42] and Arslanturk [43] (Table 2). 

Table 2. Comparison of ( )Xθ  obtained by different studies for rectangular fins by considering

0, 0, 0, 0aG Nrβ θ= = = =  and 0.5N = . 

X  
HPM 

(Languri et al. [42]) 
ADM 

(Arslanturk [43]) 
VIM 

(Languri et al. [42]) 
DTM 

(Current study)  

  ( )Xθ     
0 0.886819 0.886819 0.886819 0.886818  

0.2 0.891257 0.891257 0.891257 0.8912567  
0.4 0.904614 0.904615 0.904614 0.940614  
0.6 0.927026 0.927026 0.927026 0.927027  
0.8 0.958715 0.958716 0.958715 0.958715  
1 1.000000 1.000000 1.000000 1.000000  

The fluctuation in fin temperature due to variable heat conduction ( )β  is shown in 
Figure 3 for three different profiles. From this graph, it is noticed that the thermal gradient 
reduces gradually from the base to the tip of the fin for different values of β . The incre-
ment in β  enhances the temperature field due to heat loss to the surrounding fluid from 
the fin surface. The results show that the fin-tip temperature for exponential profiles is 
greater than that of the other profiles. 

 
Figure 3. Temperature distribution of different profiles for diverse values of β . 
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Figure 4 shows the influence of the N on the thermal attribute of the fin. As the pa-
rameter N intensifies, the enriched heating pattern in the fin is noted which reduces the 
temperature rise. The contribution of this flow parameter is significant for enhancing the 
thermal transport of the fin. From the graph, we can notice that the exponential profile 
shows better performance which is followed by the rectangular and convex for various 
values on radiation parameters. 

 

Figure 4. Temperature distribution of different profiles for diverse values of N . 

The effect of the internal heat generation parameter ( )G  is depicted in Figure 5. 
For this, it is observed that the temperature of the fin can be enhanced with the values of 
G . Higher heat generation enhances fin temperature in steady-state conditions owing to 
the fact of larger dissipation of the heating environment due to the fin. 

 

Figure 5. Temperature distribution of different profiles for diverse values of G . 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N=1
N=1.5
N=2

Convex

Exponential

Rectangular

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

0.75

0.8

0.85

0.9

0.95

1

G=0.1
G=0.2
G=0.3

Exponential

Convex

Rectangular



Mathematics 2022, 10, 3814 10 of 16 
 

 

The radiative parameter impact (Nr) is shown in Figure 6. With an increment in the 
radiation number, the thermal profile θ decreases steadily. The lower temperature inside 
the fin indicates a loss of ambient fluid temperature with radiative parameters. 

 
Figure 6. Behavior Nr on θ. 

The Figure 7 shows variation in dimensionless ambient temperature ( )aθ  on the 

temperature field. As aθ  increases, the temperature of the surrounding liquid increases, 
which affects the rate of heat transmission from fin to surface. This is noted with a rise in 

aθ . 

 
Figure 7. Behavior aθ  on θ. 

The effect of parameters on temperature for rectangular, exponential and convex pro-
files is obtained on the same graph to understand the difference between each profile. 
Similar observations discussed above can be seen in the other two profiles. Meanwhile, 
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the exponential-shaped fins exhibit better performance than the others. Heat transference 
at the fin base is an important study, which has many applications and is of the form 

( )1
b

d
Q

dX
θ

=
 

The effect of simultaneously varying bQ  with N for two different values of β and 

aθ  can be seen in Figure 8a,b, respectively, for all three profiles. From the graphs, it can 

be concluded that the value of bQ  is inversely related to the values of β and aθ . Heat 
transfer is more at the base and then reduces to become constant at the fin tip. Which 
shows that the fin cools down earlier at the tip. 

  
(a) (b) 

Figure 8. (a) Variation of bQ with N for several assigned values of β . (b) Variation of bQ with 

N for several assigned values of aθ . 

6. Thermal Analysis 
ANSYS is a tool that helps us understand the routine of a model from our study in a 

virtual environment. It uses governing equations to study the behaviors of the problem. 
To investigate the thermal behaviors, the following assumption is made on the fins: 
• Aluminum alloy (AA6061) is considered a fin material as it is a good thermal and 

electrical conductor with heat conduction of 300 W/m K. 
• Heat conduction is considered 1D and longitudinal. 
• h is considered to be 39.9 W/m2K above the fin surface. 
• The fin base is kept at 550 K, and 283 is the ambient temperature. 

Figure 9a–c illustrate longitudinal fin thermal propagation for rectangular, exponen-
tial and convex profiles, respectively. The maximum temperature observed was 550 K in 
all three profiles, and the fin tip temperature was 546 K, 530.28 K and 545 K, respectively. 
The temperature gradually decreased from the bed of the fin to the tip. Exponential fins 
have better results compared to other profiles. The results are drawn from the thermal 
analysis, which agrees well with our numerical results. 
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(a) (b) (c) 

Figure 9. Temperature distribution of (a) rectangular; (b) exponential; (c) convex profile for alumi-
num alloy (AA6061). 

The efficiency of the fin for several values of internal heat generation ( )G  versus 
the thermal expansion coefficient can be seen in Figure 10a. From the graph, we can depict 
that a smaller value of β efficiency is higher and decreases gradually. Moreover, as the 
value of heat production is increased, the efficiency is enhanced. This shows that by keep-
ing the values of β  smaller and values of G  higher we can obtain efficient fins. A sim-
ilar observation can be observed with the three different profiles considered in our study, 
but the exponential fin has fin efficiency in general. 

Figure 10b shows the efficiency of the fin versus aθ  for different values of a radiative 

parameter. It can be observed that for a lower value of a radiative parameter and aθ  the 
efficiency is higher and reduces gradually as the values are increased. An exponential 
profile with a lower value of aθ  and Nr  can be used to obtain the higher efficiency of 
the fin. 
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(b) 

Figure 10. Influence of: (a) G and β on fin efficiency; (b) Nr and aθ on fin efficiency. 

7. Conclusions 
The framework for temperature rate is presented in a longitudinal fin subject to in-

ternal heating, variable thermal conductivity and convective radiation. The Rosseland the-
ory is used to determine the features of a radiative phenomenon. DTM approximations 
are followed for the simulation process. Graphical explanations are manifested for the 
consequence of parameters in the heat transfer of the fin. The key findings of this analysis 
are as follows: 
• Upon enhancing the convection–conduction parameter, the thermal dispersal in the 

fin lowers. 
• A strengthened heat transfer fine is observed for the radiative-conduction constant. 
• The thermal rate of the fin improves with an augmented change in a heat-generating 

parameter. 
• This scrutiny convinces us that DTM algorithms are efficient and convenient meth-

ods for nonlinear differential systems. 
• Thermal radiation and natural convection have a significant influence on the cooling 

of a fin. 
• In the steady state, fins dissipate heat to the environment because heat production 

within a fin surges the temperature of the fins. 
• The temperature scatters of a fin for different profiles are calculated using the ANSYS 

software, considering aluminum alloy (AA6061) as the fin body material. The fin base 
has a higher temperature and reduces drastically toward the fin tip. 
This work can be extended by considering the porous fins in the presence of a mag-

netic field and also by considering the porous fins with the nano and hybrid nanofluid 
with the effect of the shape factor. 
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Nomenclature 

P →  fin cross-section (m2) 
a→  exponential parameter 
h→  heat transfer coefficient (wm−1k−1) 
k →  heat conduction (wm−1k−1) 
Nr →  radiative parameter 
G →  heat generation parameter 
L→  fin length (m) 
N →  convective parameter 
T →  temperature (k) 
ϕ →  transformed function 

φ →  original analytic function 
a→ fin base temperature 
β →  thermal expansion coefficient (K−1) 
ζ →  dimensional constant (K−1) 
η → efficiency of the fin 
U →  transformed equation  
θ →  dimensionless temperature 
a→ ambient temperature 
b→  base of the fin 
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