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Abstract: In this study, we consider a general, flexible, parametric hazard-based regression model for
censored lifetime data with covariates and term it the “general hazard (GH)” regression model. Some
well-known models, such as the accelerated failure time (AFT), and the proportional hazard (PH)
models, as well as the accelerated hazard (AH) model accounting for crossed survival curves, are
sub-classes of this general hazard model. In the proposed class of hazard-based regression models, a
covariate’s effect is identified as having two distinct components, namely a relative hazard ratio and
a time-scale change on hazard progression. The new approach is more adaptive to modelling lifetime
data and could give more accurate survival forecasts. The nested structure that includes the AFT,
AH, and PH models in the general hazard model may offer a numerical tool for identifying which
of them is most appropriate for a certain dataset. In this study, we propose a method for applying
these various parametric hazard-based regression models that is based on a tractable parametric
distribution for the baseline hazard, known as the generalized log-logistic (GLL) distribution. This
distribution is closed under all the PH, AH, and AFT frameworks and can incorporate all of the
basic hazard rate shapes of interest in practice, such as decreasing, constant, increasing, V-shaped,
unimodal, and J-shaped hazard rates. The Bayesian and frequentist approaches were used to estimate
the model parameters. Comprehensive simulation studies were used to evaluate the performance of
the proposed model’s estimators and its nested structure. A right-censored cancer dataset is used to
illustrate the application of the proposed approach. The proposed model performs well on both real
and simulation datasets, demonstrating the importance of developing a flexible parametric general
class of hazard-based regression models with both time-independent and time-dependent covariates
for evaluating the hazard function and hazard ratio over time.
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generalized log-logistic distribution; Bayesian approach; accelerated failure time model; general
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1. Introduction

One of the main goals of censored time-to-event data analysis with covariates is to
find and quantify the relationship between the baseline hazard rate function (hrf) and the
covariates so that the covariates can be employed in disease prevention and management [1–5].
The assumption leads to hazard-based regression models, and the study goal is to estimate
a vector of regression coefficients for the components of covariates.

Cox [6] developed a hazard-based regression model in which the covariate has a
multiplicative relationship with the hrf, and is called the proportional hazard (PH) model.
The PH model is without a doubt the most widely used in practice. Let h(t; x) be the hrf for
a subject with x =

(
x1, x2, . . . , xp

)T variables, and h0(t) be the baseline hrf for those with
x = 0. The following is a formula for the Cox PH model:

h(t; x) = h0(t) · ψ(β · x) = h0(t)ex′β, (1)

where ψ is a positive link function with ψ(0) = 1, most often the exponential function is
used to represent the link function of the covariates; β =

(
β1, β2, . . . , βp

)T is the vector of
the regression coefficients, eβ j denotes the hazard ratio resulting from an increase in the
jth covariate by one unit. The Cox PH model leads to the estimation of β by means of a
“partial likelihood” approach [7].

The Cox PH model is usually used to model censored lifetime data. However, there
may be some benefits to using parametric PH models for such data. According to Hjort [8],
the success of the Cox PH regression model may have had the unintended consequence
of practitioners paying too little attention to the baseline hazard. If proved to be accept-
able, a parametric version of the Cox model would allow for more exact estimation of
survival probability, while also contributing to a better understanding of the phenomenon
under investigation. Parametric PH models, for example, which might be a challenge
with the Cox PH model, can sometimes be handled simply, and visualizations of the
hrf are considerably easier. To accommodate variable hrf forms, modifications to the
log-logistic and Weibull models are presented. For example, exponentiated-Weibull [9],
sine Kumaraswamy–Weibull [10], arctan–Weibull [11], exponentiated generalized cosine–
Weibull [12], secant Kumaraswamy–Weibull [13], tan log-logistic [14], and the generalized
log-logistic [15] models.

When the Cox PH model proportionality assumption is not satisfied, flexible para-
metric non-proportional hazards can be relaxed. For example, the accelerated failure time
(AFT) model can be considered [16]. The AFT model can be written as:

h(t; x) = h0

(
tex′β

)
ex′β. (2)

The AFT assumption in Equation (2) postulates that the covariates have time-dependent
and non-proportional effects on the hazard rate, while PH assumption in Equation (1)
postulates that the covariates have time-independent and proportional effects.

The PH and AFT models have been widely employed in a variety of time-to-event
analysis applications. These models, despite their popularity, are unsuitable for handling
time-to-event data with crossed survival and hazard curves [17]. Chen and Weng [18]
presented a new class of hazard-based regression models, known as the accelerated hazard
(AH) model, that may be used to analyze crossing survival curves. The AH model can be
written as:

h(t; x) = h0

(
tex′β

)
. (3)

To describe the shift in hazard progression across time, the AH assumption in Equation (3)
assumes that the covariates have a time-scale change to the hazard rate function. The
AH model has the advantage of being non-proportional, it can accept the phenomenon of
identical hazards at time t = 0, which is common in randomized clinical trials.
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As a result, the relationship between covariates and baseline hazard can be described
as follows: covariates with a “proportional” effect on the hrf must be time-independent
and capable of scaling up the baseline hrf, whereas covariates with a “non-proportional”
effect on the hrf must be time-dependent or interact with time in the baseline hrf. As a
result, whereas the influence of a time-independent covariate on the hrf varies over time,
the effect of a time-independent covariate on the hrf remains constant.

Hence, when creating the link between the covariates and the hrf, we have four
options: time-dependent, time-independent, proportional, or non-proportional. As a result,
neither the AFT, AH, or PH models can enable some factors to have proportional and time-
dependent impacts on the hazard while others have non-proportional and time-dependent
effects in one model [19]. To solve this issue, the goal of this work is to introduce a tractable
parametric general class of hazard-based regression models for overall survival data that
includes the AFT, AH, and PH as special cases, which will subsequently be used to model
right-censored cancer datasets with or without crossover survival curves.

The motivating ideas behind our work on Bayesian and frequentist approaches for
the general class of hazard-based regression models with GLL baseline distribution are
as follows: (i) the baseline continuous probability distributions closed under the PH and
AFT frameworks have drawbacks in that most of them are not adaptable enough to take
into account both monotone and non-monotone hazard rates; (ii) for statistical inference,
the Bayesian approach does not depend on asymptotic approximations; to the author’s
knowledge, there are no previous studies for the Bayesian inference of the general class
of parametric hazard-based regression models; (iii) due to the accessibility of software,
Bayesian application for hazard-based complex models is considerably easier and simpler
than the frequentist approach; (iv) if the baseline hazard distribution is valid and correct,
parametric hazard-based regression models may yield more accurate estimates than semi-
parametric hazard-based regression models; and, last but just not least, (v) what sets our
work apart and appeals to healthcare professionals, epidemiologists, bio-statisticians, and
other applied researchers in numerous fields is the use of modified distributions that may
accommodate different hazard rate shapes data.

Based on the above-mentioned motivations and discussions, the main purpose of
this paper is to introduce a general parametric hazard-based regression model with a
generalized log-logistic baseline distribution. So, presenting the parametric GH class
of hazard-based regression models and their special cases using GLL baseline hazard,
deriving the probabilistic functions for the GH model, formulating and interpreting all
the special cases, applying the Bayesian and frequentist inference procedures, developing
computational algorithms to fit the proposed GH model, estimating the covariate effect
on the hazard rate, and applying it to a right-censored cancer dataset is the novelty of
the study.

The rest of this text is folded as follows: Section 2 describes the proposed GH model
formulation, assumptions, its nested structure, and its probabilistic functions. Section 3
lists the special cases of the general hazard model and their probabilistic functions. The
parameter interpretations of the sub-models are discussed in Section 4. Section 5 reviews
the generalized log-logistic (GLL) distribution and its special cases. Section 6 presents the
inferential approaches of the proposed GH model. Two extensive simulation studies are
presented in Section 7. Section 8 displays two right-censored cancer datasets, one of which
contains crossover survival curves. The final Section 9 contains the major conclusion, final
remarks, and discussion of future work.

2. Model Formulation
2.1. Review of Current Literature and Recent Research

Prior to the model formulation, we discuss the state of scientific progress in the context
of current survival models. Specifically, we look at the work that has been completed in
relation to the closely related extended hazard (EH) and generalized hazard (GH) models.
The EH model is actually very similar to the GH model; the only distinction is that the EH
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model was developed before the development of the AH model. In the study of censored
lifetime data with covariates, Ciampi and Etazadi-Amoli [20] constructed a universal model
for evaluating the PH and the AFT hypothesis. Then, using spline approximation, Etazadi-
Amoli and Ciampi [21] proposed an EH model for censored lifetime data with variables.

Following the research completed by Etazadi-Amoli and Ciampi, Louzada-Neto [22]
proposed an EH regression model that permits the spread parameter to rely on covariates.
For EH models, Louzada-Neto [23] presented a simple Bayesian analysis. Then, after the
development of the AH model, Chen and Jewell [24] developed the GH model, which
combines the EH model with the AH model, another hazard-based model. An extended
linear EH model with applicability to time-dependent covariates was proposed by [25].
Tong et al. [26] addressed a few inferential research questions in the semi-parametric GH
model. The modification of the GH model was discussed by Wang et al. [19] in the context
of time-independent and time-dependent factors.

The majority of the work created in relation to GH models dealt with semi-parametric
models. The parametric GH regression models for the relative survival data were recently
examined by [3]. Other efforts for the GH models were discussed by Li et al. [27] by
extending the GH model to a spatial model. Finally, a mixed-effect GH model was created
by Rubio and Drikvandi [28] to include clustered survival data.

There is a research gap following the current literature that needs to be filled. Both the
application of the GH model to the overall survival data and the field of statistical inference
for the Bayesian approach are unresolved issues that need to be resolved. Here, we suggest
a parametric GH model to close that gap, and we estimate the model’s parameters using
both maximum likelihood estimation (MLE) and Bayesian methods.

2.2. Model Formulation

The hrf and the cumulative hazard function (chf), rather than the probability density
function (pdf) and the cumulative distribution function (cdf) are typically used to interpret
the most common parametric hazard-based regression models.
Assume that x is a vector of covariates, T is a non-negative random variable that represents
the amount of time till the occurrence of an event of concern, and ψ(x) is the link function for

the covariates, which is most often employed as an exponential or (log-linear function) ex
′
β,

where β is a vector of regression coefficients. Ciampi and Etazadi-Amoli [20] developed a
generalized version of the PH and AFT models to incorporate more versatile interaction
terms in relation to the covariates and time.

The hrf and chf of the general class of hazard-based regression models are expressed
as follows:

hGH(t; x) = h0
(
tψ
(
x′β1

))
ψ
(
x′β2

)
= h0

(
tex′β1

)
ex′β2 , (4)

HGH(t; x) = H0
(
tψ
(
x′β1

))
ψ
(
−x′β1 + x′β2

)
= H0

(
tex′β1

)
ex′β2−x′β1 , (5)

where h0(t) and H0(t) are called the baseline hazard and the baseline cumulative hazard
rate functions, respectively; hGH(t; x) is the hrf at time t, and HGH(t; x) is the cumulative
hrf at time t.

2.3. Nested Structure of the GH Model

The importance of the general class of parametric hazard-based regression model is
that it represents a GH structure that contains, as special cases, the proportional hazard
(PH), accelerated hazard (AH), and the accelerated failure time (AFT) models. To be more
clear, the following relations hold:

i. If β1 = 0, then GH = PH;
ii. If β2 = 0, then GH = AH;
iii. If β1 = β2, then GH = AFT.
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Hence, the GH model can be used as a numerical tool to determine which of them is
more appropriate for a given censored survival data. The nested structure of the model
illustrates the richness of the GH class and motivates its investigation [21].

2.4. Model Assumption

The basic assumption of the general class of parametric hazard-based regression
models is that the effect of covariates on the hrf is identified as having two separate
components, namely:

i. A time-scale change in the hrf;
ii. A relative hazards ratio.

hGH(t; x) = h0

(
tex′β1

)
ex′β2 .

i. Time-dependent and time-independent (time-fixed) covariates;
ii. Proportional and non-proportional hazards separately.

for evaluating the hrf and hazard ratio over time [24].
The assumption of the special cases is different in nature. For instance, the PH

framework postulates that the covariates multiply the hrf, causing the hrf to fluctuate in
level [29,30]. The AH framework postulates that each covariate has a time-dependent effect
since it states that the effect of a unit change in a covariate affects the time scale of the
baseline hrf [18]. In the AFT framework, it is postulated that the covariates have an effect
both on the hazard and the time scale [31]. Note that, the AH, AFT, and PH models coincide
for the case when the baseline hazard is the Weibull distribution [3].

2.5. Probabilistic Functions for the GH Model

In this section, we derive the most common probabilistic functions for the GH model.
The other probabilistic functions for the model with Equations (4) and (5) are computed
as follows:

The survival function (sf) of the GH model is computed as follows:

SGH(t; x) = S0

(
tex′β1

)ex′β2−x′β1

. (6)

where S0(.) is the baseline survival function.
The cdf of the GH model is expressed as follows:

FGH(t; x) = 1− SGH(t; x) = 1− S0

(
tex′β1

)ex′β2−x′β1

. (7)

The pdf of the GH model can be obtained by using:

fGH(t; x) = h0

(
tex′β1

)
ex′β2 S0

(
tex′β1

)ex′β2−x′β1

. (8)

3. Special Cases of the GH Model

In this section, the three common sub-models for the general class of the hazard-based
regression models are discussed.

3.1. Proportional Hazard Model

In the GH model framework, if β1 = 0, then GH = PH framework. Hence, the hrf is
expressed as follows:

hPH(t; x) = h0(t)ex′β. (9)

The chf is expressed as:
HPH(t; x) = H0(t)ex′β. (10)
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The sf of the PH model is computes as follows:

SPH(t; x) = S0(t)ex′β
. (11)

The cdf of the PH model is expressed as follows:

FPH(t; x) = 1− SPH(t; x) = 1− S0(t)ex′β
. (12)

The pdf of the PH model can be obtained by using:

fPH(t; x) = f0(t)ex′βS0(t)ex′β−1
(13)

3.2. Accelerated Hazard Model

In the GH model framework, if β2 = 0, then GH = AH framework. Hence, the hrf is
expressed as follows:

hAH(t; x) = h0

(
tex′β

)
. (14)

The chf is expressed as:

HAH(t; x) = H0

(
tex′β

)
e−x′β. (15)

The sf of the AH model is computed as follows:

SAH(t; x) = S0

(
tex′β

)e−x′β

. (16)

The cdf of the AH model is expressed as follows:

FAH(t; x) = 1− SAH(t; x) = 1− S0

(
tex′β

)e−x′β

. (17)

The pdf of the AH model can be obtained by using:

fAH(t; x) = f0

(
tex′β

)
S0

(
tex′β

)e−x′β

. (18)

3.3. Accelerated Failure Time Model

In the GH model framework, if β1 = β2, then GH = AFT framework. Hence, the hrf is
expressed as follows:

hAFT(t; x) = h0

(
tex′β

)
ex′β. (19)

The chf is expressed as:

HAFT(t; x) = H0

(
tex′β

)
. (20)

The sf of the AFT model is computed as follows:

SAFT(t; x) = S0

(
tex′β

)
(21)

The cdf of the AFT model is expressed as follows:

FAFT(t; x) = 1− SAFT(t; x) = 1− S0

(
tex′β

)
. (22)
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The pdf of the AFT model can be obtained by using:

fAFT(t; x) = f0

(
tex′β

)
ex′β. (23)

The GH model is a general class that includes the PH, AFT, and AH models as special
examples. More specifically, if β1 = 0, then GH = PH; if β2 = 0, then GH = AH; and if
β2 = β1, then GH = AFT [3,20,21].

4. Parameter Interpretation for the Parametric Hazard-Based Regression Models

In this section, it is crucial to determine if a positive coefficient of a covariate can
monotonically raise the time scale or lower the hazard in order to ensure that the broad
class of hazard-based regression models has a plausible interpretation.

4.1. Proportional Hazard Model

In this sub-section, we start the interpretation of the parameters of the PH model, as
this will facilitate the interpretation of the general class model. if β1 = 0, then the GH
model is the same as that in a PH model:

h(t; x) = h0(t)ex′β, (24)

H(t; x) = H0(t)ex′β, (25)

dH(t; x)
dx

= βex′β H0(t), (26)

where H0(t) is an increasing function that takes a value greater than 0. When β > 0,
dH(t;x)

dx > 0, showing that when the covariate x increases, the hazard increases and the
survival time decreases.

4.2. Accelerated Failure Time Model

In the GH model, if the covariate β2 = β1, the GH model is the same as the AFT model.
Hence,

h(t; x) = h0

(
tex′β

)
ex′β, (27)

H(t; x) = H0

(
tex′β

)
, (28)

dH(t; x)
dx

= βtex′βH′0
(

tex′β
)

, (29)

Since H0(.) is an increasing function, H′0(.) Is greater than 0. When β > 0, dH(t;x)
dx > 0, show-

ing that when the covariate x increases, the hazard increases and the survival time decreases.

4.3. Accelerated Hazard Model

In the GH model, if the covariate β2 = 0, the GH model is the same as the AH model.
Hence,

h(t; x) = h0

(
tex′β

)
, (30)

H(t; x) = e−x′β H0

(
tex′β

)
, (31)

dH(t; x)
dx

= −βe−x′β
[

H0

(
tex′β

)
− tex′β H′0

(
tex′β

)]
. (32)

No matter whether the β is less than or greater than zero, when t =
H0

(
tex′β

)
ex′β H′0(tex′β)

′ ,
dH(t;x)

dx = 0.

Thus, with the increase in t, the sign of dH(t;x)
dx may change. The time when the sign changes

depend on the form H0(.) Function. It means that x with a positive coefficient does not
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always increase the duration when it increases, which results in a challenge to interpret the
sign of a variable coefficient.

Hence, the AH model also has the merit of being applicable to the crossing of haz-
ards and survivor functions. In other circumstances, this benefit may make it difficult to
comprehend the parameters accurately [32,33]. As a result, rather than providing merely
the survival functions, showing the hazards according to distinct covariate patterns is
recommended to assist in illustrating the survival time process [24]. In fact, the GH and
AH models are suitable for the analysis of crossover survival and hazard functions [34].

In general, the parameter interpretation depends on the shape of the baseline hazard,
which we classify here as monotone (decreasing or increasing) or non-monotone (bathtub
or unimodal). A summary of the parameter interpretation for the AFT, AH, and PH models
is presented in Table 1 below.

Table 1. Summary of Parameter interpretation and comparison of PH, AH, and AFT Models.

AH Model PH Model AFT Model

effect

βAH > 0 treatment βPH > 0 treatment βAFT > 0 treatment
accelerates the hazard proportionally increases decelerates failure

by a factor hazard by a factor time of the survivor
of eβAH of eβPH function by a factor

of eβAFT

βAH < 0 treatment βPH < 0 treatment βAFT < 0 treatment
decelerates the hazard proportionally decreases accelerates failure

by a factor hazard by a factor time of the survivor
of eβAH of eβPH function by a factor

of eβAFT

β’s interpretation Hazard progression hazard ratio Survival time
time ratio ratio

limited to crossover No Yes Yesin hazards

limited to crossover No Yes Noin survival

N.B. βAH = βPH = βAFT = 0, treatment does not have an effect.

5. Generalized Log-Logistic Distribution

The log-logistic distribution is often utilized in oncology research in survival analysis
because its hrf is changeable and its parameters are easy to estimate [35]. Nonetheless,
more advanced parametric models are frequently required in medical studies. To achieve
this goal, the log-logistic distribution has been modified to new classes of parametric
distributions, such as the generalized log-logistic [15], McDonald log-logistic [36], tangent
log-logistic [14], and exponentiated log-logistic geometric [37] distributions; more details
about the established extensions of the classical log-logistic are obtainable in [38].

Furthermore, right-censored survival data are typically seen in cancer clinical trials
with periodic follow-ups, where the survival times are made up of some exactly observed
and some right-censored observations.

Under the proportional odds (PO) and accelerated failure time (AFT) models, the log-
logistic distribution is closed. Under the proportional hazard (PH) model, it is not closed.
When generalized, it can be used as a baseline for all parametric hazard-based regression
models [39] due to its mathematical versatility and adaptability. As a result, we concentrate
on assessing right-censored data in various hazard-based regression models employing
a generalized log-logistic (GLL) baseline in this paper. There are three parameters in the
GLL distribution (a scale parameter and two shape parameters). The distribution can be
modified, and the two shape parameters allow for a variety of hazard shapes [40]. The GLL
distribution is closed under PH [29,41], AH [42], and AFT [31,43].
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Assume that the GLL distribution is a susceptible subject’s survival time. The hrf for
this distribution is as follows:

h(t; θ) =
αk(kt)α−1

d1 + (ηt)αe , t ≥ 0, k, α, η > 0, (33)

where k > 0, α > 0, η > 0 are the unknown parameters of the distribution and θ = (k, α, η)′.
Khan and Khosa [41] proposed this model, which is adequate for incorporating different
hrf shapes, including those that are monotonic and non-monotonic. The integrated hrf of
the GLL distribution may be written as:

H(t; θ) =
kα

ηα
log[1 + (ηt)α], t ≥ 0, k, α, η > 0. (34)

The GLL distribution is denoted by T ∼ GLL(k, α, η) and its survival function takes
the form:

S(t; θ) = [1 + (ηt)α]
− kα

ηα , t ≥ 0, k, α, η > 0. (35)

5.1. Special Cases of the GLL Distribution

Equation (33) contains different special cases of the GLL distribution [15]. These
distributions are given as follows:

1. Log-logistic (LL) distribution: when k = η, Equation (33) reduces to the hrf of a LL
distribution, which is:

h(t; θ) =
αk(kt)α−1

d1 + (kt)αe , t ≥ 0, k, α > 0. (36)

2. Three-parameter Burr-XII (BXII-3) distribution: when η = kλ(−
1
α ), where λ > 0, and

p = 1
λ , Equation (33) gives us to the hrf of a BXII-3 distribution, which is:

h(t; θ) =
αk(kt)α−1

d1 + p(kt)αe , t ≥ 0, k, α, p > 0. (37)

3. Two-parameter Burr-XII (BXII-2) distribution: when η = 1, Equation (33) reduces to
the hrf of a BXII2 distribution, which is:

h(t; θ) =
αk(kt)α−1

d1 + tαe , t ≥ 0, k, α > 0. (38)

4. Weibull (W) distribution: when η → 0, Equation (33) reduces to the hrf of the W
distribution, which is:

h(t; θ) = αk(kt)α−1, t ≥ 0, k, α > 0. (39)

5. Exponential (E) distribution: when α = 1, and η → 0, Equation (39) reduces to the hrf
of the E distribution, which is:

h(t; θ) = k, k > 0. (40)

6. Standard Log-logistic (SLL) distribution: when k = η = 1, Equation (33) reduces to
the hrf of the SLL distribution, which is:

h(t; θ) =
αtα−1

d1 + tαe , t ≥ 0, α > 0. (41)
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5.2. GLL GH Model

For the GH model, the generalized log-logistic baseline hazard is

h(t) =
αk(kt)α−1

d1 + (ηt)αe ,

so, according to Equation (4) the hazard rate for an individual with covariate vector x and
link function ψ(x) is:

hGLL−GH(t; θ, β1, β2) = h0
(
tψ
(
x′β1

))
ψ
(
x′β2

)
=

αk(ktψ(x′β1))
α−1⌈

1 + (ηtψ(x′β1))
α⌉ψ

(
x′β2

)
(42)

applying the log-linear function ψ(x′β) = exp(x′β), we can simplify into

hGLL−GH(t; θ, β1, β2) = h0
(
tψ
(
x′β1

))
ψ
(
x′β2

)
=

αk
(

ktex′β1
)α−1[

1 +
(
ηtex′β1

)α
] ex′β2 . (43)

The chf of the GLL-GH model using Equation (5) is obtained as follows:

HGLL−GH(t; θ, β1, β2) = ex′β2−x′β1
kα

λα
log
[
1 +

(
λtex′β1

)α]
. (44)

6. Model Inference

In this section, we discuss the classical approach (via maximum likelihood estimation
technique) and Bayesian inference (assuming non-informative priors for both baseline haz-
ard parameters and regression coefficients) for the general class of hazard-based regression
models with GLL baseline.

6.1. Classical Inference

The general class of hazard-based regression models is considered in this sub-section
with a fully parametric specification. To obtain the frequentist inference about the vector of
model parameters, we assume that the time-to-event data are right-censored and that the
censoring mechanism is non-informative. The censored likelihood function can be defined
as follows when a parametric general class of hazard-based regression model is considered:

L(θ, β1, β2; D) =
n

∏
i=1

[ f (ti; θ, β1, β2, x)]δi [S(ti; θ, β1, β2, x)]1−δi

=
n

∏
i=1

[
h(ti; θ, β1, β2, x)
S(ti; θ, β1, β2, x)

]δi

[S(ti; θ, β1, β2, x)]1−δi

=
n

∏
i=1

[h(ti; θ, β1, β2, x)]δi S(ti; θ, β1, β2, x)

=
n

∏
i=1

[h(ti; θ, β1, β2, x)]δi exp[−H(ti; θ, β1, β2, x)]

=
n

∏
i=1

[
h0

(
tiexi

′β1 , θ
)

exi β2
]δi

exp
[
−H0

(
tiex′i β1 , θ

)
ex′i β2−x′i β1

]
,

(45)

where θ is the vector of distributional parameters with the baseline hazard, and
D = (ti, δi, xi, i = 1, 2, . . . , n) denotes the observed data, including ti = survival time,
δi = censoring time, and xi = covariates, respectively. The maximum likelihood estimation
can be obtained via an iterative optimization process (e.g., the Newton–Raphson algorithm).
Hypothesis testing and interval estimations of model parameters are possible due to the
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MLEs’ approaching normalcy. The likelihood function’s natural logarithm, often known as
the log-likelihood function, is expressed as follows:

`(θ, β1, β2; D) =
n

∑
i=1

δi log
[

h0

(
texi

′β1 ; θ
)
+ xi

′β2

]
−

n

∑
i=1

H0

(
tiexi

′β1 ; θ
)

e−xi β1+xi
′β2 ,

(46)

Using Equation (33) for h0(.) and Equation (34) for H0(.) as the baseline hazard and
cumulative hazard functions, respectively, for the GLL-GH model. The full log-likelihood
function of the GLL-GH model can be expressed as follows:

`(θ, β1, β2; D) =
n

∑
i=1

δi log(α) +
n

∑
i=1

δiα log(k) + (α− 1)
n

∑
i=1

δi log
(

tiex′i β1
)

−
n

∑
i=1

δi log
[
1 +

(
ηtiex′i β1

)α]
+

n

∑
i=1

δi log
[
ex′i β2

]
−
(

k
η

)α n

∑
i=1

e−x′i β1+xi β2 log
[
1 +

(
ηtiex′i β1

)α]
.

(47)

To obtain the MLE’s of θ′ = (k, α, η), β1, β2, we can maximize Equation (47) directly with
respect to (k, α, η), β1, and β2, or we can solve the first derivative of the log-likelihood
function (non-linear equations below). Let us ω = (k, α, η, β1 , and β2), then the first
derivatives of the log-likelihood functions are as follows:

∂`(ω)

∂α
=

1
α

n

∑
i=1

δi +
n

∑
i=1

δi log(k) +
n

∑
i=1

δi log
(

tiexi
′β1
)
+

n

∑
i=1

δi

(
ηtiexi

′β1
)α

log
(

ηtiexi
′β1
)

[
1 +

(
ηtiexi β1

)α
]

−
(

k
η

)α

log(k)
n

∑
i=1

e−x′i β1+x′i β2 log
[
1 +

(
ηtiexi

′β1
)α]

+

(
k
η

)α

log(η)
n

∑
i=1

e−xi
′β1+xi

′β2 log
[
1 +

(
ηtiexi

′β1
)α]

−
(

k
η

)α n

∑
i=1

e−x′i β1+x′i β2
(

ηtiex′i β1
)α

log
(
ηtiexi β1

)[
1 +

(
ηtiexi

′β1
)α
] ,

(48)

∂`(ω)

∂η
= −

(
α

η

) n

∑
i=1

δi

(
ηtiexi

′β1
)α[

1 +
(
ηtiexi

′β1
)α
] +(α

η

)(
k
η

)α n

∑
i=1

e−xi
′β1+xi

′β2 log
[
1 +

(
ηtiexi

′β1
)α]

−
(

α

η

)(
k
η

)α n

∑
i=1

e−x′i β1+x′i β2
(

ηtiex′i β1
)α[

1 +
(
ηtiexi β1

)α
] ,

(49)

∂`(ω)

∂β1,j
= (α− 1)

n

∑
i=1

δixij − α
n

∑
i=1

δixij

(
ηtiexi

′β1
)α[

1 +
(
ηtiexi

′β1
)α
]

+

(
k
η

)α n

∑
i=1

xij log
[
1 +

(
ηtiex′i β1

)α]

−
(

k
η

)α

α
n

∑
i=1

xij

e−xi
′β1+x′i β2

(
ηtiexi

′β1
)α[

1 + (ηtiexi ′β1)
α] + for j = 1, 2, . . . , p.

(50)
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∂`(ω)

∂β1,j
= (α− 1)

n

∑
i=1

δixij − α
n

∑
i=1

δixij

(
ηtiexi

′β1
)α[

1 +
(
ηtiexi

′β1
)α
]

+

(
k
η

)α n

∑
i=1

xij log
[
1 +

(
ηtiex′i β1

)α]

−
(

k
η

)α

α
n

∑
i=1

xij

e−xi
′β1+x′i β2

(
ηtiexi

′β1
)α[

1 + (ηtiexi ′β1)
α] + for j = 1, 2, . . . , p,

(51)

∂`(ω)

∂β2,j
=

n

∑
i=1

δixij

−
(

k
η

)α n

∑
i=1

xij

[
1 +

(
ηtiex′i β1

)α]
e−x′i β1+x′i β2 for j = 1, 2, . . . , p.

(52)

By adjusting the initial partial derivatives, the MLEs for the unknown distributional param-
eters are obtained for θ′ = (k, α, η), and the regression coefficients β1, and β2, by solving
the non-linear equations ∂`(ω∗)

∂α∗ = 0, ∂`(ω∗)
∂η∗ = 0, ∂`(ω∗)

∂k∗ = 0, ∂`(ω∗)
∂β1,j∗ ∗

= 0, and ∂`(ω∗)
∂β2,j

∗ = 0

iteratively. To maximize log-likelihood functions, many software packages include proven
optimization algorithms. We utilized the function nlminb to optimize our computer code,
which was written in R software.

The approximate normality of the maximum likelihood estimators is used in the tests
and interval estimates for the model distributional parameters and regression coefficients.
The asymptotic distribution of ω̂∗ is roughly a (p + 3)–variate normal distribution having
mean ω∗ and covariance matrix I(ω̂∗)−1 where the observed information matrix is (p + 3)
×(p + 3). The observed information matrix is utilized to build confidence intervals for the
model parameters because the expected information matrix is difficult. The following is a
representation of the observed information matrix:

J(ω̂∗) = −



∂`2(ω∗)
∂α∗2

∂`2(ω∗)
∂α∗∂k∗

∂`2(ω∗)
∂α∗∂η∗

∂`2(ω∗)
∂α∗∂β1,j

∗
∂`2(ω∗)

∂α∗∂β2,j
∗

∂`2(ω∗)
∂k∗2

∂`2(ω∗)
∂k∗∂η∗

∂`2(ω∗)
∂k∗∂β1,j

∗
∂`2(ω∗)
∂k∗∂β2,j

∗

∂`2(ω∗)
∂η∗2

∂`2(ω∗)
∂η∗∂β1,j

∗
∂`2(ω∗)

∂η∗∂β2,j
∗

∂`2(ω∗)
∂β1,j

∗2
∂`2(ω∗)

∂β1,j
∗∂β2,j

∗

∂`2(ω∗)
∂β2,j

∗2


The asymptotic distribution is likewise nearly normal using the multivariate delta technique,
with mean ω∗ and covariance matrix D ∑ D′, where D is the (p + 3)× (p + 3) diagonal
matrix diag(θ̂, 1, 1, . . . , 1), I(ω̂∗)−1. As a result, for the model parameters, the asymptotic
multivariate normal distribution N5

(
0, I(ω̂∗)−1

)
can be utilized to create 100(1− ϕ)%

two-sided confidence intervals. The significant level is denoted by the letter ϕ.

6.2. Bayesian Inference

As an alternative, we apply the Bayesian approach, which enables the incorporation
of prior understanding of the model parameters using informative prior density functions.
In the absence of this knowledge, a non-informative prior may be taken into account. The
information pertaining to the model parameters is retrieved using a posterior marginal
distribution in the Bayesian technique. Two problems typically result from this. The first
speaks of obtaining a marginal posterior distribution, and the second, of computing the
important moments. In both situations, numerical integration frequently does not offer an
analytical answer. Here, we utilize the Gibbs sampler and Metropolis–Hastings’s algorithm
as part of the Markov chain Monte Carlo (McMC) simulation approach.
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By defining the prior distributions for model unknown parameters, followed by
multiplying by the likelihood function, the Bayesian model is created.

6.2.1. Priors for the Parameters

An essential component of every Bayesian inference is the specification of a prior
distribution. This is particularly true for parametric hazard-based regression models. Due
to the flexibility of gamma distributions, which include non-informative priors (uniform)
and the marginal prior distribution for each regression coefficient m = 1, . . . ,5, the prior sce-
nario is set in this study using a non-informative independent gamma distribution, Gamma
(10, 10), as the baseline distribution parameters because we have no prior information from
historical data or from previous experiments and a normal distribution with zero mean
and a wide known variance (0, 100) for the regression coefficients. These priors are taken
into consideration in numerous study publications in the literature, including [2,29,31,44].
Here,

π(α) ∼ G(a1, b1) =
ba1

1
Γ(a1)

αa1−1e−b1α; a1, b1, α > 0, (53)

π(η) ∼ G(a2, b2) =
ba2

2
Γ(a2)

ηa2−1e−b2η ; a2, b2, η > 0, (54)

π(k) ∼ G(a3, b3) =
ba3

3
Γ(a2)

ka3−1e−b3k; a3, b3, k > 0. (55)

The hyper-parametric values of the prior distributions may be simply determined from
historical data of the baseline distribution [15]. For the regression coefficients prior (taken
as a normal distribution), we have:

π
(

β′1
)
∼ N(a4, b4), (56)

π
(

β′2
)
∼ N(a5, b5). (57)

The joint prior distribution of all unknown parameters has a pdf given by:

π
(
α, k, η, β′1, β′2

)
= π(α)π(η)π(k)π

(
β′1
)
π
(

β′2
)
. (58)

6.2.2. Likelihood Function

The likelihood function for the generalized-log-logistic general hazard model is com-
puted as follows:

LGLL−GH(θ, β1, β2 | D) =
n

∏
i=1

[
h0

(
tiex′i β1 | θ

)
ex′i β2

]δi
exp

[
−H0

(
tiex′i β1 | θ

)
ex′i β2−x′i β1

]

=
n

∏
i=1

 αk
(

ktiex′i β1
)α−1

[
1 +

(
ηtiex′i β1

)α] ex′i β2


δi

exp
[
−
{

kα

ηα
log
[
1 +

(
ηtiexi

′β1
)α]}

ex′i β2−x′i β1

]
.

(59)

6.2.3. Posterior Distribution

The joint posterior density function is expressed as the multiplication of the likelihood
function in Equation (59) and the prior distribution in Equation (58):
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p
(
α, k, η, β1

′, β2
′ | t
)

∝
n

∏
i=1

 αk
(

ktiex′i β1
)α−1

[
1 +

(
ηtiex′i β1

)α] ex′i β2


δi

exp
[
−
{

kα

λα
log
[
1 +

(
λtiexi

′β1
)α]}

ex′i β2−x′i β1

]
× π

(
α, k, η, β′1, β2

′),
(60)

where the prior specification for the unknown parameters is represented by the first four
terms on the right-hand side of the equation.

Due to the difficulty of integrating the joint posterior density, the joint posterior density
is analytically intractable. The inference can therefore be based on McMC simulation
techniques, including the Gibbs sampler and Metropolis–Hastings algorithms, which can
be used to provide samples from which properties of the marginal distributions of interest
can be inferred.

7. Simulation Study

We provide two simulation experiments in this section that illustrate the inferen-
tial properties, model suitability, nested structure, and estimator performance of the
suggested model.

7.1. Simulation Study I: Comparative Study

Simulation study I discusses the proposed model’s classical approach, as well as their
special cases, which include the AH, AFT, and PH models. The goal of this study is to
show how the proposed model’s nested structure compares to the most commonly used
parametric approaches for survival data analysis. We use information criteria, such as
Akaike information criterion (AIC), Corrected AIC (CAIC), and Hannan–Quin information
criterion (HQIC), to choose models that accurately reflect the underlying model structure,
as well as the effects of censoring percentage and sample size on parameter estimation.

7.1.1. Data Generation from the Hazard-Based Regression Models

We employed the inversion method to generate survival data from the general class of
hazard-based regression models and their special cases, such as AH, AFT, and PH. This
technique is based on the relationship between the chf of a survival random variable and a
standard uniform random variable. Whenever the chf has a closed form solution, it may be
applied, inverted, and easily implemented in R [45].

Since the Cox PH model is the most widely used in survival analysis, we took into
consideration the method of Bender et al. [46] that they used to simulate data from the Cox
regression model. We also thought about the Leemis et al. [47] methods for simulating
survival data from an AFT model, and we used the same method for the rest of the AH
and our proposed GH model [48].

The cdf is deduced from the survival function from the following formula:

F(t; x) = 1− S(t; x). (61)

As a result, for lifetime data generation, if Y is a random variable that follows a cdf F, then
U = F(Y) follows a uniform distribution on the interval [0, 1], and (1−U) also follows a
uniform distribution U [0, 1]. We eventually obtain that:

1−U = S(t) = exp{−H0(t; x)} . (62)

Then,
exp{−H0(t; x)} = 1−U. (63)
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Taking into account the chf for the GH model in Equation (5) it follows as:

exp
{
−H0

(
tex′β1

)
ex′β2−x′β1

}
= 1−U. (64)

The generation of survival times for the proposed model and its special cases can be
described in the following general structural form:

T =
1

ex′β1
H−1

0

(
− log(1−U)

ex′β2−x′β1

)
, (65)

with

(ex′β1 , ex′β2) =


β1, β2 = 0 for the AH model
β1 = β2 for the AFT model
β1 = 0, β2 for the PH model
β1, β2 for the GH model

.

If the baseline hrf is strictly positive for all t, then the baseline chf, can be inverted, and
we can express the lifetime data of each of the hazard-based regression models considered
(PH, AFT, PH, and GH) model from H−1

0 (u).
In our case, the chf for the GLL distribution is of the form:

H(t; α, η, k) =
kα

ηα
log[1 + (ηt)α], t ≥ 0, k, α, η > 0.

Consequently, the inverse of the chf is expressed as follows:

H−1
0 (U; α, η, k) =

(
eηαk−αU − 1

) 1
α

η
.

In this study, we used the baseline chf and its reverse (H0(t) and H−1
0 (t)

)
to generate the

survival data.
Case I: GH Model
In case 1, the lifetimes of the GH model is expressed as follows:

T =
1

ex′β1
H−1

0

(
− log(1−U)

ex′β2−x′β1

)
.

For this simulation, we consider that the survival times follow a GLL baseline, therefore
the survival times can be simulated from:

T =

(
eηαk−α

(
− log(1−u)e−x′β2

)
. − 1

) 1
α

ηex′β2−x′β1
.

Case II: AFT Model
In case 2, we generate the survival data from an AFT model as follows:

T =
H−1

0 {− log(1−U)}
ex′β .

Using GLL baseline:

T =

(
eηαk−α(− log(1−u)

)
− 1)

1
α

ηex′β .
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Case III: AH Model
In case 3 , we generate the survival data from an AH model as follows:

T =
1

ex′β H−1
0

(
− log(1−U)

e−x′β)

)
.

Using GLL baseline:

T =

(
eηαk−α

(
− log(1−u)ex′β

)
. − 1

) 1
α

ηe−x′β .

Case IV: PH Model
In case 4 , we generate the survival data from a PH model as follows:

T = H−1
0

(
− log(1−U)

ex′β

)
.

Using GLL baseline:

T =

(
eηαα

k−α
(
− log(1−u)e−x′β

)
− 1
) 1

α

η
.

7.1.2. Simulation Design

Using a severe cancer (with a reduced five-year survival rate), such as lung cancer, the
initial values of the parameters are set to create scenarios that imitate cancer population
studies [3,5].

i. The administrative censorship at Tc = 5 years, which produced an average of 20%
censoring in all datasets.

ii. An extra random samples censorship (drop out) utilizing exponential distribution
with the rate parameter r were employed to estimate the censoring rates.

In the second scenario, we select r values that will cause censoring of roughly 40%.
Based on the GH model in Equation (4), a series of simulations with N=10,000 datasets of
various sample size (n = 5000 and 10,000) set and censoring percentages (Tc = 20 and 40%)
were conducted.

The covariates’ values were simulated as follows: (1) the continuous covariate “age”
was simulated using a collection of uniform distributions with 0.25 probability on (30, 65),
0.35 probability on (65, 75), and 0.40 probability on (75, 85) years old; as well as (2) the bi-
nary covariates “treatment” and “gender” were simulated using a 0.5 binomial distribution.
For more information, we advise the reader to visit [3,5,29,49].

7.1.3. Simulation Scenarios

To compare the nested structure of the proposed GH model with generalized log-
logistic baseline hazard to its special cases, the AH, PH, and AFT regression models. We
conducted four simulation scenarios based on the types of hazard-based regression model
frameworks (AH, AFT, PH, and GH).

Scenario 1: GH Framework
In Scenario 1, the survival times data were obtained from a general hazard (GH) frame-

work with a GLL baseline hrf using the distributional parameter values for (k = 0.625, α = 1.50,
and η = 1.0) and the covariates values for (β = 0.75, 0.85, 0.95, βH = 0.35, 0.45, 0.55). The
censored times data were produced from assuming administrative censoring (a) Tc = 5,
which generated about 20% censoring, (b) an extra independent random censoring (i.e.,
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dropout) using an exponential distribution with rate parameter r and we select values for r
to generate about 40% censoring.

Scenario 2: AFT Framework
In Scenario 2, the survival times data were obtained from an AFT framework with a

GLL baseline hrf using the using the distributional parameter values for (k = 0.675, α = 1.50,
and η = 1.0) and the covariates values for (β = 0.75, 0.85, 0.95, βH = 0.75, 0.85, 0.95). The
censored times data were produced from assuming administrative censoring (a) Tc = 5,
which generated about 20% censoring, (b) an extra independent random censoring (i.e.,
dropout) using an exponential distribution with rate parameter r and we select values for r
to generate about 40% censoring.

Scenario 3: PH Framework
In Scenario 3, the survival times data were obtained from a PH framework with a GLL

baseline hrf using the using the distributional parameter values for (k = 0.65, α = 1.50, and
η = 1.0) and the covariates values for (β = 0, 0, 0, βH = 0.15, 0.25, 0.35). The censored times
data were produced from assuming administrative censoring (a) Tc = 5, which generated
about 20% censoring, (b) an extra independent random censoring (i.e., dropout) using an
exponential distribution with rate parameter r and we select values for r to generate about
40% censoring.

Scenario 4: AH Framework
In Scenario 4, the survival times data were obtained from an AH framework with a

GLL baseline hrf using the distributional parameter values for (k = 0.80, α = 1.50, and
η = 1.0) and the covariates values for (β = 0.15, 0.25, 0.35, βH = 0, 0, 0). The censored times
data were produced from assuming administrative censoring (a) Tc = 5, which generated
about 20% censoring, (b) an extra independent random censoring (i.e., dropout) using an
exponential distribution with rate parameter r and we select values for r to generate about
40% censoring.

7.1.4. Results for Scenario 1

For Scenario 1, the degree of censoring seems to affect how well a model fits the data.
The GH model performs better than the AFT, PH, and AH models overall. The AFT model
outperforms the other hazard-based models, including the PH and AH models, in terms
of information criteria. Generally speaking, it appears that the AH model has the most
information criteria. As can be seen in Figures 1–4, the AFT and PH models suit the data
the best, while the AH model fits the data the least well. Although it appears that the AFT
model is overestimated and the PH model is underestimated, both of them suit the data
better than the AH model. As seen in Table 2, every competing model demonstrates how
the censoring proportions’ increase has an impact on the model’s performance in terms of
information criteria. The identical thing takes place in Table 3. The PH model outperforms
better than the AFT and AH models in Table 3 for the lighter censoring, while when the
censoring becomes heavier, the AFT is the one that outperforms better compared to the PH
and AH models. In general, the AFT model is the one that is superior after the GH model,
since the covariates of the model effect are for both hazard and time scale.
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Figure 1. Estimated baseline hrfs with censoring proportion of 20% and a sample size of n = 5000.
The dashed and solid curves indicate the estimated and true hrfs, accordingly. The data generated
from a GH structure.

Figure 2. Estimated baseline hrfs with censoring proportion of 40% and a sample size of n = 5000.
The dashed and solid curves indicate the estimated and true hrfs, accordingly. The data generated
from a GH structure.

Table 2. Simulation results from the GH model with (k = 0.625, α = 1.50, and η = 1.0), covariates
values for (β1 = 0.75, 0.85, 0.95, β2 = 0.35, 0.45, 0.55) and n = 5000 with about 20% censoring. AIC,
CAIC, and HQIC values for the competitive models.

Model AIC CAIC HQIC

20% Censoring

GLL-GH Model 9068.327 9068.705 9088.884

GLL-AFT Model 9202.449 9202.656 9216.154

GLL-AH Model 12, 264.223 12, 264.149 122, 277.928

GLL-PH Model 9222.095 9222.307 9235.800
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Table 2. Cont.

Model AIC CAIC HQIC

40% censoring

GLL-GH Model 5463.519 5463.598 5484.077

GLL-AFT Model 5505.834 5505.872 5519.540

GLL-AH Model 7424.734 7424.799 7438.440

GLL-PH Model 5548.739 5548.777 5562.444

Figure 3. Estimated baseline hrfs with censoring proportion of 40% and a sample size of n = 10,000.
The dashed and solid curves indicate the estimated and true hrfs, accordingly. The data generated
from a GH structure.

Table 3. Simulation results from the GH model with (k = 0.625, α = 1.50, and η = 1.0), covariates
values for (β1 = 0.75, 0.85, 0.95, β2 = 0.35, 0.45, 0.55) and n = 10,000 with about 20% censoring. AIC,
CAIC, and HQIC values for the competitive models.

Model AIC CAIC HQIC

20% Censoring

GLL-GH Model 17,567.525 175,672 17,589.491

GLL-AFT Model 17,843.352 17,843.429 17,857.996

GLL-AH Model 24,035.240 24,035.198 24,049.884

GLL-PH Model 17,818.738 17,818.184 17,833.382

40% censoring

GLL-GH Model 10,719.862 10,719.901 10,741.828

GLL-AFT Model 10,809.107 10,809.125 10,823.751

GLL-AH Model 14,662.298 14,662.330 14,676.942

GLL-PH Model 10,913.655 10,913.673 10,928.299
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Figure 4. Estimated baseline hrfs with censoring proportion of 40% and a sample size of n =10,000.
The dashed and solid curves indicate the estimated and true hrfs, accordingly. The data generated
from a GH structure.

7.1.5. Results for Scenario 2

In Scenario 2, a simulation is generated using an AFT framework. The GLL-GH model
and the true generated GLL-AFT model were all superior to the GLL-PH and GLL-AH
models for the information criteria values, such as the AIC and CAIC values for Scenario
2. This demonstrates how the AFT model is a specific case of the GH framework. The
generated model has the lowest AIC, CAIC, and HQIC values as would be predicted given
that it is an AFT framework.

The GLL-GH model has the lowest AIC and CAIC values when the sample size and
censoring fraction increase to n = 10,000 and 40% censoring, respectively, as shown in
Tables 4 and 5. This shows that the GH structure performs better than its special cases when
there is heavy censoring of the data. However, from the visual representations, it is clear
that the GLL-GH and GLL-AFT models exhibit certain similarities and provide the best fit
when compared to the other two rival models. We can, therefore, deduce from Scenario 2
that the AFT model is a sub-model of the GH model, as illustrated in Figures 5–8.

Table 4. Simulation results from the AFT model with (k = 0.675, α = 1.50, and η = 1.0), covariates
values for (β1 = 0.75, 0.85, 0.95, β2 = 0.75, 0.85, 0.95) and n = 5000 with about 20% and 40% censor-
ing. AIC, CAIC, and HQIC values for the competitive models.

AIC CAIC HQIC

20% Censoring

GLL-AFT Model 9710.030 9710.583 9723.735

GLL-GH Model 9713.632 9714.807 9734.190

GLL-AH Model 12,766.930 12,766.869 12,780.635

GLL-PH Model 10,241.712 10,240.974 10,255.417

40% Censoring

GLL-AFT Model 6119.325 6119.367 6133.030

GLL-GH Model 6122.154 6122.246 6142.711

GLL-PH Model 6500.689 6500.739 6514.394

GLL-AH Model 8259.059 8249.154 8262.764
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Figure 5. Estimated baseline hrfs with censoring proportion of 20% and a sample size of n = 5000.
The dashed and solid curves indicate the estimated and true hrfs, accordingly. The data generated
from an AFT structure.

Figure 6. Estimated baseline hrfs with censoring proportion of 40% and a sample size of n = 5000.
The dashed and solid curves indicate the estimated and true hrfs, accordingly. The data generated
from an AFT structure.

Table 5. Simulation results from the AFT model with (k = 0.675, α = 1.50, and η = 1.0), covari-
ates values for (β1 = 0.75, 0.85, 0.95, β2 = 0.75, 0.85, 0.95) and n = 10,000 with about 20% and 40%
censoring. AIC, CAIC, and HQIC values for the competitive models.

Model AIC CAIC HQIC

20% Censoring

GLL-AFT Model 19,192.366 19,192.571 19,207.011

GLL-GH Model 19,195.876 19,196.313 19,217.842

GLL-AH Model 25,043.290 12,766.257 25,057.934

GLL-PH Model 20,201.167 20,200.269 20,215.811
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Table 5. Cont.

Model AIC CAIC HQIC

40% censoring

GLL-AFT Model 12,214.303 12,214.324 12,228.947

GLL-GH Model 12,211.367 12,211.413 12,233.332

GLL-PH Model 13,036.386 13,036.410 13,051.030

GLL-AH Model 16,233.077 16,233.122 16,247.721

Figure 7. Estimated baseline hrfs with censoring proportion of 40% and a sample size of n = 10,000.
The dashed and solid curves indicate the estimated and true hrfs, accordingly. The data generated
from an AFT structure.

Figure 8. Estimated baseline hrfs with censoring proportion of 40% and a sample size of n = 10,000.
The dashed and solid curves indicate the estimated and true hrfs, accordingly. The data generated
from an AFT structure.
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7.1.6. Scenario 3 Results

In Scenario 3, a PH framework is used to generate simulation data. For information
criteria values, such as the AIC and CAIC values for Scenario 3, the GLL-GH model and
the true generated GLL-PH model were all superior to the GLL-AH and GLL-AFT models.
This explains how the GH framework is used specifically in the PH model. Since the model
created from the data were closed using the PH framework, the resultant GLL-PH model
has the lowest AIC, CAIC, and HQIC values as would be expected.

As demonstrated in Tables 6 and 7, the GLL-GH model’s AIC and CAIC values are
comparable when the censoring fraction is increased to 40%. This demonstrates that when
there is severe data censoring, the GH structure outperforms its special cases. However, it
is obvious from the visual representations in Figures 9–12 that the GLL-GH and GLL-PH
models share several characteristics and offer the best fit when compared to the other two
competing models. As we may infer from Scenario 3, the PH model is a sub-model of the
GH model.

Table 6. Simulation results from the PH model with (k = 0.65, α = 1.50, and η = 1.0), covariates
values for (β2 = 0.15, 0.25, 0.35, β1 = 0.0, 0.0, 0.0) and n = 5, 000 with about 20% and 40% censoring.
AIC, CAIC, and HQIC values for the competitive models.

Model AIC CAIC HQIC

20% Censoring

GLL-PH Model 14,941.383 14,941.349 14,955.088

GLL-GH Model 14,947.070 14,946.997 14,967.627

GLL-AFT Model 15,037.394 15,037.361 15,051.100

GLL-AH Model 15,224.134 15,224.102 15,237.840

40% Censoring

GLL-PH Model 10,966.406 10,966.229 10,980.111

GLL-GH Model 10,966.497 10,966.116 10,987.054

GLL-AFT Model 11,038.579 11,038.415 11,052.284

GLL-AH Model 11,206.019 11,205.877 11,219.724

Figure 9. Estimated baseline hrfs with censoring proportion of 20% and a sample size of n = 5000.
The dashed and solid curves indicate the estimated and true hrfs, accordingly. The data generated
from a PH structure.
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Figure 10. Estimated baseline hrfs with censoring proportion of 40% and a sample size of n = 5000.
The dashed and solid curves indicate the estimated and true hrfs, accordingly. The data generated
from a PH structure.

Figure 11. Estimated baseline hrfs with censoring proportion of 40% and a sample size of n = 10,000.
The dashed and solid curves indicate the estimated and true hrfs, accordingly. The data generated
from a PH structure.

Table 7. Simulation results from the PH model with (k = 0.65, α = 1.50, and η = 1.0), covariates
values for (β2 = 0.15, 0.25, 0.35, β1 = 0.0, 0.0, 0.0) and n = 10, 000 with about 20% and 40% censoring.
AIC, CAIC, and HQIC values for the competitive models.

Model AIC CAIC BIC

20% Censoring

GLL-PH Model 29,768.943 29,768.927 29,783.588

GLL-GH Model 29,772.045 29,772.008 29,794.011

GLL-AFT Model 29,969.703 29,969.686 29,984.345

GLL-AH Model 30,321.478 30,321.462 30,336.123
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Table 7. Cont.

Model AIC CAIC BIC

40% Censoring

GLL-PH Model 22,085.485 22,085.404 22,100.129

GLL-GH Model 22,088.317 22,088.143 22,110.283

GLL-AFT Model 22,219.687 22,219.611 22,234.331

GLL-AH Model 22,560.893 22,560.828 22,575.538

Figure 12. Estimated baseline hrfs with censoring proportion of 40% and a sample size of n = 10,000.
The dashed and solid curves indicate the estimated and true hrfs, accordingly. The data generated
from a PH structure.

7.1.7. Scenario 4 Results

In the context of Scenario 4, some proximity can be accounted for by the visual
representation in Figures 13–16 of all the fitted models. Nevertheless, as anticipated, the
GLL-GH and GLL-AH models outperform the two other rival models, the GLL-AFT and
GLL-PH models. When compared to the other models, the GLL-GH model is the most
similar to the actual created model, demonstrating that the GH framework is a general
instance of the AH framework. As demonstrated in Tables 8 and 9, the GLL-AH model has the
lowest value for information criteria because it is the generated model from simulation data.

Table 8. Simulation results from the AH model with (k = 0.80, α = 1.50, and η = 1.0), covariates
values for (β1 = 0.15, 0.25, 0.35, β2 = 0.0, 0.0, 0.0) and n = 5, 000 with about 20% and 40% censoring.
AIC, CAIC, and HQIC values for the competitive models.

Model AIC CAIC HQIC

20% Censoring

GLL-AH Model 15,084.818 15,084.785 15,098.523

GLL-GH Model 15,086.243 15,086.172 15,106.801

GLL-PH Model 15,161.428 15,161.396 15,175.133

GLL-AFT Model 15,212.691 15,212.658 15,226.396
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Table 8. Cont.

Model AIC CAIC HQIC

40% Censoring

GLL-AH Model 11,154.225 11,154.078 11,167.930

GLL-GH Model 11,156.478 11,156.161 11,177.035

GLL-PH Model 11,229.268 11,229.130 11,242.974

GLL-AFT Model 11,252.678 11,252.542 11,266.382

Figure 13. Estimated baseline hrfs with censoring proportion of 20% and a sample size of n = 5000.
The dashed and solid curves indicate the estimated and true hrfs, accordingly. The data generated
from an AH structure.

Figure 14. Estimated baseline hrfs with censoring proportion of 40% and a sample size of n = 5000.
The dashed and solid curves indicate the estimated and true hrfs, accordingly. The data generated
from an AH structure.



Mathematics 2022, 10, 3813 27 of 41

Figure 15. Estimated baseline hrfs with censoring proportion of 40% and a sample size of n = 10,000.
The dashed and solid curves indicate the estimated and true hrfs, accordingly. The data generated
from an AH structure.

Figure 16. Estimated baseline hrfs with censoring proportion of 40% and a sample size of n = 10,000.
The dashed and solid curves indicate the estimated and true hrfs, accordingly. The data generated
from an AH structure.

Table 9. Simulation results from the AH model with (k = 0.80, α = 1.50, and η = 1.0), covariates
values for (β1 = 0.15, 0.25, 0.35, β2 = 0.0, 0.0, 0.0) and n = 10, 000 with about 20% and 40% censoring.
AIC, CAIC, and HQIC values for the competitive models.

Model AIC CAIC HQIC

20% Censoring

GLL-AFT Model 30,458.953 30,458.937 30,473.597

GLL-GH Model 30,463.451 30,463.416 30,485.416

GLL-AH Model 30,664.667 30,664.651 30,679.310

GLL-PH Model 30,741.659 30,741.644 30,756.303
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Table 9. Cont.

Model AIC CAIC HQIC

40% Censoring

GLL-AFT Model 22,592.371 22,592.306 22,607.015

GLL-AFT Model 22,598.029 22,597.890 22,619.996

GLL-GH Model 22,776.538 22,776.477 22,791.182

GLL-AH Model 22,822.921 22,822.861 22,837.565

From the data in Tables 2–7, the GH model may have a better performance, but it
is hard to say that improvements for the GH model is significant. The GH model, as
expected, has a nested structure with a versatile closed-form expression, making it more
suitable for censored lifetime data analysis. Finally, the simulation results noted that the
GH model has the ability to be a very valuable tractable parametric hazard-based model
for sufficiently describing various types of lifetime data from various hazard rate shapes
and censoring percent-ages, as well as a numerical tool for making comparisons between
the three different approaches for hazard-based models, namely, the AH, PH, and AFT
structures.

7.2. Simulation Study II: Performance Study

The Bayesian methodology of the proposed model is addressed in Simulation Study II.
The aim of this analysis is to illustrate the Bayesian inferential properties of the estimators
in the proposed model. In particular, we show how sample size and censoring percentages
affect the proposed model’s Bayesian inferential properties.

7.2.1. Measures of Performance

The posterior mean, absolute bias (AB), mean square error (MSE), effective number of
different simulations draws (ne f f ), coverage probability (CP), and potential scale reduction
factor (R̂) were used to evaluate the Bayesian inferential features of the proposed GH
model.

The estimators’ bias is determined as follows:

Bias(θ̂) =
1
N

N

∑
i=1

(θ̂i − θ). (66)

The MSE is a useful indication of overall correctness and is computed as:

MSE(θ̂) =
1
N

N

∑
i=1

(θ̂i − θ)2, (67)

where θ = (α, κ, η, β′).
The following is a description of CP:

CP = θ̂ ∓ 1.96× SE(θ̂). (68)

According to Gelman et al. [50], the effective number of sample size simulation draws
should be more than or equal to 400 in order to verify the convergence diagnostics of McMC
simulations. The maximum permitted limit of (R̂) should also be close to 1(R̂ < 1.10).

7.2.2. Posterior Analysis of Simulation Study II

In the simulation sets, we incorporated the proposed parametric GH model with
the GLL baseline distribution to examine its Bayesian inferential characteristics. Each
simulation set was utilized to estimate the suggested GH model with various censoring
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rates and sample sizes. Three parallel chains with 60,000 iterations each, plus additional
6000 for the burn-in time were utilized to approximate posterior distributions using JAGS
software [51]. The chains were shortened further by storing every 10th draw to reduce
auto-correlation in the sequences.

7.2.3. Simulation Results of Simulation Study II

Based on these findings reported in Tables 10 and 11, we can infer that the estimators’
biases and MSE decrease with sample size, and that the estimators’ bias and MSE are also
influenced by the censoring percentage, with greater censoring proportions increasing MSE
and absolute bias (AB). The Gelman–Rubin diagnostic (potential scale reduction factor) and
the number of efficiency sample size draws, on the other hand, illustrate that convergence
has been reached. The estimators’ coverage probability was close to 95%.

Table 10. Results of the McMC simulation for Study II (Bayesian inference) under the GLL-GH
framework with baseline hazard parameter values of (α = 1.40, k = 0.80, and η = 1.20); covariate
values of β1 = (0.25, 0.35, 0.45), β2 = (0.55, 0.65, 0.75); sample size of 100; and two censoring
proportions for rates of 20 and 40%.

True Value (θ̂) Posterior Mean AB MSE CP n-eff R̂

20% Censoring

β11 = 0.25 0.260 0.010 0.005 94.13 5232 1.002
β12 = 0.35 0.378 0.028 0.014 93.96 4313 1.002
β13 = 0.45 0.475 0.025 0.010 94.60 4717 1.000
β21 = 0.55 0.595 0.045 0.015 93.88 3987 1.000
β22 = 0.65 0.714 0.064 0.026 92.37 3243 1.000
β23 = 0.75 0.822 0.072 0.032 95.03 3456 1.000
α = 1.40 1.425 0.025 0.011 94.50 5404 1.001
κ = 0.80 0.833 0.033 0.025 94.23 5039 1.002
η = 1.20 1.224 0.024 0.021 95.67 4788 1.002

30% Censoring

β11 = 0.25 0.292 0.042 0.007 92.47 5032 1.003
β12 = 0.35 0.386 0.036 0.015 92.55 4519 1.004
β13 = 0.45 0.483 0.033 0.012 93.41 4788 1.001
β21 = 0.55 0.606 0.056 0.018 94.69 3987 1.001
β22 = 0.65 0.720 0.070 0.023 96.82 3832 1.001
β23 = 0.75 0.831 0.081 0.033 94.45 4156 1.000
α = 1.40 1.436 0.036 0.013 96.32 5122 1.002
κ = 0.80 0.847 0.047 0.028 91.60 5039 1.001
η = 1.20 1.232 0.032 0.024 93.09 5188 1.001

Table 11. Results of the McMC simulation for Study II (Bayesian inference) under the GLL-GH
framework with baseline hazard parameter values of (α = 1.40, k = 0.80, and η = 1.20); covariate
values of β1 = (0.25, 0.35, 0.45), β2 = (0.55, 0.65, 0.75); sample size of 300; and two censoring
proportions for rates of 20 and 40%.

True Value (θ̂) Posterior Mean AB MSE CP n-eff R̂

20% Censoring

β11 = 0.25 0.258 0.008 0.004 95.14 4898 1.000
β12 = 0.35 0.368 0.018 0.012 95.03 4020 1.000
β13 = 0.45 0.470 0.020 0.008 94.93 5676 1.000
β21 = 0.55 0.590 0.040 0.013 95.80 5413 1.000
β22 = 0.65 0.704 0.054 0.024 94.80 5213 1.000
β23 = 0.75 0.802 0.052 0.030 95.04 5093 1.000
α = 1.40 1.425 0.025 0.010 95.12 5003 1.000
κ = 0.80 0.803 0.003 0.002 95.07 4937 1.000
η = 1.20 1.204 0.004 0.003 94.92 4953 1.000
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Table 11. Cont.

True Value (θ̂) Posterior Mean AB MSE CP n-eff R̂

30% Censoring

β11 = 0.25 0.292 0.042 0.006 94.00 5099 1.000
β12 = 0.35 0.386 0.036 0.014 95.25 5676 1.001
β13 = 0.45 0.483 0.033 0.011 94.763 55122 1.000
β21 = 0.55 0.606 0.321 0.013 95.43 3056 1.002
β22 = 0.65 0.720 0.70 0.020 95.55 3898 1.001
β23 = 0.75 0.831 0.081 0.031 94.34 4454 1.000
α = 1.40 1.436 0.036 0.012 96.32 4989 1.001
κ = 0.80 0.847 0.047 0.026 95.00 5006 1.000
η = 1.20 1.232 0.032 0.020 96.05 5012 1.001

8. Application

The most commonly used type of censored data in oncology studies is right-censored
survival data. In these analyses, the time-to-event is commonly the time between survival
and death. This section focuses on the use of parametric hazard-based regression models
to reanalyze two real-world right-censored oncology datasets that have previously been
addressed in the literature. The purpose of this study is to compare the parametric general
hazard (GH) regression model to its special cases, which include the PH, AFT, and AH
model frameworks, with the generalized log-logistic baseline. In the first of the two datasets,
there are crossing survival curves, but there are no crossover survival curves in the second.

8.1. Colon Cancer Dataset
8.1.1. Data Description

In this section, we take a look at a genuine survival time data set for people with colon
cancer that is openly accessible using the R package survival under the label of colon [52].
Initially, Laurie [53] described the study. Moertel [54] contains the main report. The final
Moertel report’s dataset and this one are most similar [55]. Lin’s paper [56] made use of a
version of the data with fewer follow-up times (1994). This colon cancer dataset has gained
widespread use in the literature on survival analysis, and it is particularly simple to locate
in research involving parametric hazard-based regression models.

This clinical trial’s experiment involved 1858 patients. These findings come from one
of the earliest trials of adjuvant treatment for colon cancer that was successful. Levamisole
is a low-toxicity drug formerly utilized to treat worm infestations in animals, while 5-FU is
a chemotherapy drug that is moderately toxic (as these things go). Each individual has two
records: one for recurrence and one for death.

The following variables were taken into account for each patient (i = 1, . . . , 1858):

i. ti : time until event or censoring;
ii. status: censoring status ( 1 = observed lifetime, 0 = censored);
iii. age: age of the patient in years;
iv. surg: time from surgery to registration (1=long, 0 = short);
v. etype: type of event (1 = recurrence, 2 = death).

The total number of patients whose surgery takes a long time are 494 patients (26.59%),
among whom 247(50%) died. The Kaplan–Meier plot for the surgery variable is reported
in Figure 17.

8.1.2. Visual Representation of the Data

Analysis: The non-parametric plots for the survival time of colon cancer patients are
reported in Figure 18. TTT plot for the survival time indicates an increasing hazard rate
pattern.
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Figure 17. Kaplan–Meier survival plot for the variable surgery status (1 = long, 0 = short).

Figure 18. Non-parametric plots for the survival time data of colon cancer patients.

8.2. Classical Analysis

For the proposed GH model and its sub-models, including the PH, AH, and AFT
models with GLL baseline distribution, the MLE estimates for baseline distribution param-
eters and regression coefficients are provided in Table 12, and the estimated hrfs for the
competitive models are given in Figure 19.
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Figure 19. Estimated hazards for the competitive models of the colon cancer dataset.

Table 12. Results from the fitted parametric hazard-based regression models to colon cancer dataset.

Models Parameter(s) Estimate SE Z-Value p-Value L-95% U-95%

GLL-GH β11 0.065 0.038 0.593 0.553 −0.053 0.171
β12 −0.171 0.129 −1.331 0.183 −0.423 0.081
β13 −1.549 0.118 −13.185 <0.001 −1.780 −1.139
β21 0.012 0.039 0.316 0.752 −0.065 0.090
β22 0.161 0.087 1.850 0.064 −0.010 0.331
β23 −0.890 0.072 −12.339 <0.001 −1.032 −0.749
α 1.938 0.127 8.932 <0.001 1.690 2.187
κ 0.009 0.001 15.290 <0.001 0.007 0.011
η 0.039 0.006 6.697 <0.001 0.028 0.187

GLL-AFT β1 0.023 0.038 0.593 0.553 −0.053 0.098
β2 0.100 0.089 1.131 0.258 −0.074 0.274
β3 −0.970 0.058 −16.864 <0.001 −1.083 −0.857
α 2.381 0.139 17.175 <0.001 2.161 2.653
κ 0.008 0.001 10.986 <0.001 0.011 0.009
η 0.019 0.002 11.213 <0.001 0.042 0.022

GLL-PH β1 −0.064 0.033 −1.936 0.043 −0.129 0.001
β2 0.167 0.072 2.323 0.020 0.026 0.309
β3 −0.518 0.052 −9.978 <0.001 −0.620 −0.417
α 1.938 0.127 8.932 <0.001 1.690 2.187
κ 0.009 0.001 15.290 <0.001 0.007 0.011
η 0.039 0.006 6.697 <0.001 0.028 0.187

GLL-AH β1 0.029 0.047 0.620 0.535 −0.062 0.120
β2 −0.464 0.108 −4.288 <0.001 −0.676 −0.252
β3 −1.139 0.090 −12.648 <0.001 −1.315 −0.962
α 2.113 0.084 25.226 <0.001 2.161 2.277
κ 0.004 0.000 17.158 <0.001 0.011 0.005
η 0.024 0.003 9.495 <0.001 0.042 0.029
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8.3. Frequentist Model Comparison

We take into account the AIC, CAIC, and HQIC when comparing frequentist models.
The proposed GH model is the most effective model when compared to its rival models,
according to the estimates of the AIC, CAIC, and HQIC in Table 13.

Table 13. Results for some frequentist information criteria for the hazard-based regression models.

Model AIC CAIC HQIC

GH 16,276.09 16,276.07 16,294.43

PH 16,415.50 16,415.50 16,427.74

AH 16,384.96 16,384.94 16,397.94

AFT 16,294.36 16,294.35 16,306.58

8.3.1. Likelihood Ratio Test

To form a comprehensive statistical inference about a model, it is necessary to lower
the number of parameters and assess how this impacts the model’s ability to match the
data. The likelihood ratio test (LRT) is used to compare the GH model to its sub-models,
which include the PH, AFT, and AH hazard-based regression models. The LRT statistic
and its accompanying p-values in Table 14 show that the GH model fits better than its
sub-models for the colon cancer lifetime dataset.

Table 14. LRT test for the GH model and its sub-models.

Model Hypothesis LRT p-Value

GH vs. PH H0 : β2 = 0, H1 : H0 is false, 145.424 <0.001

GH vs. AH H0 : β1 = 0, H1 : H0 is false, 114.863 <0.001

GH vs. AFT H0 : β1 = β2, H1 : H0 is false , 24.268 <0.001

8.4. Bayesian Analysis

We used Bayesian analysis to compare the proposed GLL-GH model with its compet-
ing models, such as the GLL-PH, GLL-AH, and GLL-AFT models. The baseline distribution
parameters α ∼ G(a1, b1), η ∼ G(a2, b2), and k ∼ G(a3, b3) with hyper-parameter values
(a1 = b1 = a2 = b2 = a3 = b3 = 10) are assumed to have separate gamma priors that are
independent and non-informative normal prior with a value of N(0, 100) for β′s (regression
coefficients). Rstan package was utilized for our analysis [57].

8.4.1. Numerical Summary

In this section, we used the McMC sample of posterior properties for the generalized
log-logistic general hazard (GLL-GH) model and its special cases, including the GLL-PH,
GLL-AH, and GLL-AFT models in Table 15, to examine several posterior properties of
interest and their numerical values.
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Table 15. Results for the posterior properties of the competitive models.

Models Par (s) Estimate SE SD 2.5% Medium 97.5% Ne f f R̂

GLL-GH β11 0.086 0.001 0. −0.016 0.087 0.187 4013 1.001
β12 −0.172 0.002 0.122 −0.412 −0.174 0.067 4049 1.001
β13 −1.500 0.003 0.129 −1.752 −1.497 −1.264 2174 1.004
β21 0.009 0.001 0.040 −0.070 0.009 0.086 4772 1.000
β22 0.161 0.001 0.087 −0.004 0.158 0.333 4151 1.001
β23 −0.925 0.002 0.088 −1.097 −0.925 −0.756 2410 1.003
α 2.166 0.002 0.138 1.909 2.161 2.449 4951 1.001
κ 0.011 0.000 0.002 0.008 0.011 0.016 2174 1.004
η 0.044 0.000 0.009 0.029 0.042 0.064 2016 1.004

GLL-AFT β1 0.021 0.001 0.038 −0.057 0.021 0.095 5059 1.001
β2 0.101 0.001 0.089 −0.073 0.100 0.271 5069 1.000
β3 −1.012 0.002 0.081 −1.168 −1.012 −0.855 2685 1.001
α 2.282 0.002 0.134 2.033 2.277 2.554 4304 1.000
κ 0.008 0.000 0.001 0.006 0.008 0.011 2426 1.001
η 0.020 0.000 0.003 0.015 0.020 0.027 2470 1.001

GLL-PH β1 −0.029 0.000 0.034 −0.096 −0.029 0.039 5944 1.000
β2 0.238 0.001 0.071 0.099 0.238 0.374 5490 1.000
β3 −0.245 0.001 0.066 −0.374 −0.245 −0.116 4336 1.000
α 1.997 0.002 0.000 −1.767 1.993 2.242 3623 1.001
κ 0.002 0.000 0.122 0.002 0.002 0.002 2912 1.002
η 0.004 0.000 0.000 0.004 0.004 0.005 3235 1.001

GLL-AH β1 0.071 0.001 0.043 −0.013 0.072 0.157 5046 1.000
β2 −0.283 0.001 0.098 −0.479 −0.282 −0.094 4320 1.000
β3 −0.744 0.002 0.096 −0.932 −0.744 −0.554 3425 1.001
α 2.218 0.002 0.132 1.970 2.216 2.487 3258 1.000
κ 0.003 0.000 0.000 0.003 0.003 0.004 2728 1.001
η 0.014 0.000 0.002 0.010 0.014 0.018 2904 1.001

8.4.2. Visual Summary

Figures 20–27 provide the trace and autocorrelation (AC) plots for the baseline distribu-
tion parameters and regression coefficients of the proposed GH model and its sub-models,
indicating convergence of the chains.

Figure 20. Trace plots for the GLL-PH model parameters.
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Figure 21. Trace plots for the GLL-AH model parameters.

Figure 22. Trace plots for the GLL-AFT model parameters.

Figure 23. Trace plots for the GLL-GH model parameters.
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8.4.3. McMC Convergence Diagnostics

We applied both numerical and visual methods to evaluate the convergence of the
McMC algorithm for the proposed models and their special cases. As can be seen from
the summary results in the above table, the McMC algorithm HMC-NUTS has converged
to the joint posterior distribution because the potential scale reduction factor R̂ is 1, the
effective sample size (ne f f ) is greater than 400, and the Monte Carlo error (SE) is less than
5% of the posterior standard deviations for all of the parameters.

Visually assessing convergence is often done using autocorrelation and trace graphs [58].
Figures 20–23 trace plot displays a stationary pattern fluctuating within a band, demon-
strating the convergence of the McMC algorithm. Figures 24–27 autocorrelation plot
demonstrates how autocorrelation rapidly decreases to zero as the period of lag increases,
indicating good mixing and the convergence of the algorithm to the desired posterior
distribution.

Figure 24. Autocorrelation plots for the GLL-PH model parameters.

Figure 25. Autocorrelation plots for the GLL-AH model parameters.
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Figure 26. Autocorrelation plots for the GLL-AFT model parameters.

Figure 27. Autocorrelation plots for the GLL-GH model parameters.

8.4.4. Bayesian Model Selection

We implemented two information criteria, Watanabe AIC (WAIC), proposed by [59],
for the Bayesian model comparison, and the Vehtari et al. [60] proposed Leave-one-out
information criteriON (LOOIC). A model may be said to be best suited if it has the lowest
WAIC and LOOIC values for both information criteria. In addition to Stan fitting, posterior
predictive check (PPC) and determining WAIC and LOOIC are performed using the R
package loo [61]. Table 16, below, shows that when compared to its rival models, the
GLL-GH model is the most effective.
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Table 16. Bayesian model comparison for the GLL-GH and its special cases

Model WAIC LOOIC

GH 16,274.00 16,274.01

PH 16,360.20 16,360.21

AH 16,345.80 16,345.90

AFT 16,295.75 16,295.80

9. Conclusions

The PH, AFT, and AH models are three ways to develop hazard-based regression
models for survival data. Because of the relative risk interpretation of the regression
coefficients and the existence of a semi-parametric PH model that is robust against the
distributional assumption of the survival time, PH models are particularly popular in
clinical trials and oncology investigations. The goal of this study was to generalize the
hazard-based regression models stated above to include both time-independent and time-
dependent covariates in a single model, dubbed the GH model. The main goal of this model
is to distinguish scenarios in which covariates have a time-independent or time-dependent
effect on the hazard rate when modelling survival data, with a focus on parametric models.

In general, if the underlying distributional assumption is relatively true, a para-
metric model is chosen in statistical data analysis. In survival data analysis, parametric
hazard-based regression models can provide more accurate estimations of the regression
coefficients than semi-parametric hazard-based regression models (Collet, 2015). Other
essential values, such as quantiles, the hrf, and survival probabilities, can also be easily
estimated using parametric models. It is worth noting that the hazard function is a key part
of the time course of a disease process, therefore it is a focus of many clinical investigations.

The Cox PH model does practically all of the modelling of censored survival data.
The non-proportional hazard models, such as the AFT and AH models, are chosen as an
alternative once the proportionality assumption is discarded. On the other hand, AFT
and AH models can only include covariates with time-dependent and non-proportional
effects on the hazard overtime, whereas a PH model can only have time-independent
and proportional effects. The GH model established in this work can accept a variety
of covariates, some of which may have time-independent and proportional impacts on
the hazard value, while others may have time-dependent and non-proportional effects.
Another advantage of the model is that it may be used to predict when survival and hazard
rates will cross.

A detailed simulation study was conducted to evaluate the performance of the sug-
gested GH model. The findings show that the GH model produces better outcomes, with
fewer biases detected for the majority of parameters. The layered structure of the GH
model in comparison to the PH, AFT, and AH models for a broad regression setting con-
taining various covariates prevalent in cancer epidemiology studies was further explored
using simulated datasets. The results demonstrate the GH model’s nested structure and
tractability once more. Following the simulation study, this paper shows a real-world
data application with right-censored cancer datasets from a patient clinical trial. When the
information criterion used in this study was evaluated, the GLL-GH model outperformed
the GLL-PH, GLL-AH, and GLL-AFT models.

In future research, more complicated GH models may be investigated in order to
modify the GH model and make it more tractable for modelling censored survival data.
By expanding the GH model, other common hazard-based regression models such as the
PO and YP models can be incorporated. Other potential research projects include the
creation of residual analysis tools and diagnostic metrics to assess the suggested models’
goodness of fit. We want to extend the proposed GH model in future work to accommodate
interval-censored data, as well as survival data with competing hazards and cure fractions.
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