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Abstract: During imaging and transmission, images are easily affected by several factors, including
sensors, camera motion, and transmission channels. In practice, images are commonly corrupted by
a mixture of Gaussian and impulse noises, further complicating the denoising problem. Therefore,
in this work, we propose a novel mixed noise removal model that combines a deterministic low-
rankness prior and an implicit regularization scheme. In the optimization model, we apply the
matrix logarithm norm approximation model to characterize the global low-rankness of the original
image. We further adopt the plug-and-play (PnP) scheme to formulate an implicit regularizer by
plugging an image denoiser, which is used to preserve image details. The above two building
blocks are complementary to each other. The mixed noise removal algorithm is thus established.
Within the framework of the PnP scheme, we address the proposed optimization model via the
alternating directional method of multipliers (ADMM). Finally, we perform extensive experiments to
demonstrate the effectiveness of the proposed algorithm. Correspondingly, the simulation results
show that our algorithm can recover the global structure and detailed information of images well
and achieves superior performance over competing methods in terms of quantitative evaluation and
visual inspection.

Keywords: mixed noise removal; matrix nuclear norm; logarithm norm; ADMM; plug-and-play

MSC: 68U10

1. Introduction

Image denoising has been widely used in many applications, such as hyperspectral
imaging (HSI) [1], scene recognition [2], and image restoration [3]. However, due to imaging
conditions, natural images inevitably suffer from various kinds of noises, e.g., Gaussian,
random, salt-and-pepper (S&P), and stripe noises, which critically influence subsequent
applications. In particular, many images are contaminated by mixed noise, including
Gaussian noise plus random noise or Gaussian noise plus stripe noise. Therefore, restoring
a clean image from its corrupted version is the central issue in image denoising. From a
mathematical perspective, the denoising problem is morbid and irreversible. Hence, to
some extent, the prior knowledge of the image is of great importance.

In the past decade, scholars have proposed numerous image denoising models, such
as bivariate probability [4], Gaussian–Hermite distribution [5], total variation [6], au-
toregressive [7], Block-Matching 3D (BM3D) [8], and sparse representation-based image
modeling [9–11]. Among these models, the image sparse representation model has been
extensively studied and applied. It transforms a natural image into a linear combination of
a group of base or dictionary atoms and makes the transformed image coefficient sparse
and compressible. Finally, only a few coefficients are unequal to 0. A few examples of this
model are the common cosine, wavelet, and Fourier base methods. However, this image
denoising method can only address white Gaussian noise. In actual applications, images
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are often affected by many types of noise, such as Gaussian, S&P, or random noises. The
traditional denoising method cannot easily remove impulse noises, because it maintains
impulse noise points at edges [12,13].

In general, two types of typical impulse noises exist, i.e., S&P and random noises.
Conventional methods use two approaches to remove the mixture of Gaussian–impulse
noises. The first is the detection-based noise removal method, and the second is the
modeling-based method. The detection-based denoising method has been discussed in
existing research [14–17]. This method first detects the locations of damaged image pixels,
then handles the mixed noise. In fact, the accuracy of the detection of the damaged pixels is
very important for removing mixed noise. Generally, detection-based methods are effective
in removing impulse noise. However, their fidelity terms do not take Gaussian noise into
account. Therefore, they cannot remove Gaussian noise effectively.

The second method treats impulse noise as a sparse signal and constructs a statistical
distribution model on the basis of the impulse noise. A previously reported method [18]
adopts Laplacian scale mixture (LSM) modeling to characterize impulse noise and estimates
the hidden variables and impulse noise jointly from the noisy image. This method utilizes a
nonlocal low-rank regularizer to regularize the denoising model. Liu et al. [19] proposed a
mixed noise removal algorithm using weighted dictionary learning. Although this method
can handle mixed noise, its training process is time-consuming. Jiang et al. [20] developed
an image denoising method by combining weighted encoding and nonlocal self-similarity.
This method can remove Gaussian and impulse noises jointly. However, its denoising
performance relies on the design of the diagonal weight matrix.

Recently, low-rank matrix recovery has attracted considerable attention in the field of
image restoration [4,21–24]. The fundamental problem of this process is how to find and
use the low-dimensional structures of images. In contrast to the traditional mixed noise
denoising method, low-rank matrix recovery can handle different noise types without any
noisy prior information. Therefore, many researchers have applied the low-rank matrix
restoration model to reconstruct images. Zhang et al. [25] proposed a denoising method
for hyperspectral images based on a low-rank matrix recovery model. Subsequently,
a noise-adjustable low-rank matrix approximation model was applied to hyperspectral
image denoising [26]. However, in the above two methods [25,26], the upper bound
of the rank of a given matrix must be set. Nuclear norm was introduced to design the
rank approximation function in [27] for hyperspectral image denoising to solve the above
issue. This nuclear norm-based rank approximation function is mainly characterized by
its treatment of each singular value as equal. However, this approach ignores the fact that
the contribution of each nonzero singular value is different. As a result, some nonconvex
low-rank-based approaches are exploited for hyperspectral image restoration [28,29]. In
addition, the total variation-regularized low-rank restoration method has been developed
to remove mixed noise from HSI images [30,31]. In recent years, deep learning-based
approaches to image denoising have been extensively studied. Instead of mathematical
model construction, learning-based methods directly learn a mapping function from a noisy
image to a clean image. These methods include convolutional neural network-based CT
denoising [32], autonomous illumination systems [33], and deep plug-and-play (PnP) image
restoration [34]. Additionally, some low-rank tensor-based HSI restoration algorithms
have been proposed. These algorithms include weighted group sparsity-regularized low-
rank tensor decomposition (LRTDGS) [35] and fibered rank constrained tensor restoration
PnP [36].

In this work, inspired by PnP-based [34,36–39] and low-rank based [40,41] methods,
we propose a mixed noise removal algorithm by applying the PnP regularization-based
logarithm norm approximation (LNAM) model. First, the LNAM is used to characterize
the global low-rankness of the original image. Second, the PnP regularization method
is adopted to preserve the image detail information. Finally, the experimental results
obtained through simulations on test images are used to confirm the effectiveness of the
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proposed denoising method. The contributions of the proposed method can be summarized
as follows:

First, instead of utilizing the matrix-based low-rank approximation function, we intro-
duce a logarithm norm-based smooth rank function and propose the LNAM. Compared
with the nuclear norm-based low-rank function, the proposed model could more effectively
exploit the global low-rank structure of HSI and provides a tighter approximation.

Second, the low-rankness prior is known to usually face limitations in preserving the
local details of images. Therefore, the PnP framework is incorporated into the LNAM model
to break through this limitation. Furthermore, we introduce a classic BM3D denoiser [8]
that extensively exploits the nonlocal self-similarity prior of images.

Third, several simple subproblems are solved by decomposing the original problem
by using the framework of the alternating direction multiplier method (ADMM) to address
the LNAM optimization problem effectively.

The remainder of this article is organized as follows: Section 2 introduces the related
works using mixed noise denoising models on hyperspectral images. As described in
Section 3, the LNAM model is proposed and solved with the ADMM-based optimization
algorithm. Section 4 presents the experimental results of the test images and a discussion
on the effect of several parameters on the proposed algorithm. Finally, we conclude this
paper in Section 5.

2. Background of the Low-Rank-Based Hyperspectral Image Denoising Method

Mixed noise removal techniques based on low-rank matrix recovery are mainly in-
spired by the robust principal component analysis (RPCA) [42]. The main concept of
RPCA is that it aims to find the underlying low-dimensional subspace structure of high-
dimensional signals from the corrupted observation. The RPCA model can be expressed as

min
X,S

rank(X) + λ‖S‖0

s.t.Y = X + S
, (1)

where λ denotes the regularization parameter; Y represents the corrupted observational
data; X and S are denoted the unknown low-rank matrix and the sparse matrix, respectively;
and ‖ · ‖0 represents the `0-norm, which attempts to promote sparsity. Although the RPCA
model can be utilized to remove the sparse noise, however, it cannot work well when the
hyperspectral image is polluted by mixed noise, e.g., Gaussian noise plus sparse noise.
Therefore, an improved model has been proposed by considering the Gaussian noise E in
the following:

min
X,S,E

rank(X) + λ‖S‖0 +
η
2 ‖E‖

2
F

s.t. Y = X + S + E
, (2)

where λ, η are both the regularization parameters. Problems (1) and (2) are NP-hard
problems. One common approach is replacing the rank function with the nuclear norm,
and correspondingly, the `0-norm is replaced with the `1-norm [43].

min
X,S,E

‖X‖∗ + λ‖S‖1 +
η
2 ‖E‖

2
F

s.t. Y = X + S + E
, (3)

The low-rank matrix approximation model has been widely used in most hyperspectral
image denoising applications. However, this model suffers from the following aspects: First,
all nonzero singular values are known to have the same contribution to the rank function.
In fact, different singular values have different contributions. Large singular values would
be penalized more heavily than small ones by using the nuclear norm approach. This
situation easily leads to the overshrinking of the rank. Second, the rank function may be
impractical. Third, low-rank matrix approximation approaches require numerous iterations.
This requirement results in low computational efficiency.
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Recently, the nonconvex relaxation approach has been utilized to approximate the
nuclear norm [44]. In particular, a well-known method named the weighted Schatten
p-norm model was introduced [45] for hyperspectral image denoising. This method is
represented as

min
X,S

C‖X‖p
w,Sp

+ λ‖S‖1

s.t. Y = X + S + E, ‖E‖F ≤ ξ
, (4)

where C denotes the weights for the low-rank constraint, λ represents the regularization
constraint parameter, and ξ denotes the noise level. In ‖X‖p

w,Sp
= ∑i wiσ

p
i (X), wi represents

the ith non-negative weighted value, and σi is the ith singular value of matrix X. ‖E‖F
denotes the Frobenius-norm of matrix E.

This weighted Schatten p-norm model can effectively remove noise. However, it is
sensitive to the initial parameters, such as the noise level and the weights. Furthermore, the
model is difficult to adapt for the removal of mixed noise. Therefore, inspired by the idea
presented in a previous work [40,41], in this work, we use the matrix LNAM to eliminate
mixed noise from images.

3. Proposed Mixed Denoising Algorithm

As mentioned above, hyperspectral images are often contaminated by mixed noise,
and a strong structural correlation exists among the image blocks. This situation prompted
us to apply the rank function-based method. In this work, we propose a PnP-based
LNAM for mixed noise removal from hyperspectral images. Next, we adopt the ADMM
optimization algorithm to solve the proposed mixed noise removal model within the PnP
framework and develop the corresponding hyperspectral image denoising algorithm.

3.1. PnP-Based LNAM Model

Given that various noises in natural images are independent, we propose the mixed
noise removal model based on a logarithm norm-based rank approximation as follows:

min
X,S
‖X‖L + λ‖S‖1 + ρφ(X)

s.t. ‖Y−X− S‖2
F ≤ ζ

, (5)

where λ, ρ are the regularization parameters, Y is the corrupted image, and S denotes the
sparse noise. ζ > 0. ‖X‖L represents the logarithmic norm-based low-rank function. The
subscript “L” is the first letter of the logarithm, which can be expressed as

‖X‖L = ∑min{m1,m2}
i=1 log(σp

i (X) + δ), (6)

where X denotes a clear image with the size of m1 × m2, and σi(X) represents the ith
singular value of X. 0 < p ≤ 1, and δ > 0 denotes a constant that is used to avoid dividing
the result by 0.

In model (5), φ(X) denotes an implicit regularizer exploiting certain priors of natural
images, which can be selected from many famous denoisers, such as the BM3D denoiser [8],
DnCNN denoiser [46] and FFDNET [47]. In this work, the BM3D denoiser is selected as the
embedded regularization module. In summary, ‖X‖L characterize the global information of
the original image, i.e., low-rankness. Additionally, the image details can be persevered by
plugging the regularization module φ(X) into the PnP framework. To preserve the global
structure and detailed information of the image, the two above complementary modules
are used in our work.

Compared with the nuclear norm function, the logarithmic norm-based low-rank func-
tion can obtain a superior sparseness on real images. In reference to a previous work [48],
we suppose that a constant M is the boundary of feasible set X, such that ‖X‖ = |x| ≤ M,
and the convex envelop of rank(x) is 1

M‖X‖∗ =
1
M |x|1. The logarithmic function is clearly
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closer to rank(x) than the convex envelope when the positive constant δ→ 0 . Therefore,
the logarithmic function can achieve stronger sparsity than the nuclear norm.

3.2. Optimization Method

We introduce an auxiliary variable L to address the PnP-based logarithmic norm
approximation model (7). Correspondingly, model (7) can be represented as

min
X,S
‖X‖L + λ‖S‖1 + ρφ(L)

s.t. ‖Y−X− S‖2
F ≤ ζ ; X = L

, (7)

Furthermore, the augmented Lagrangian function of (7) is constructed as

`(X, L, S, Λ1, Λ2, λ, ρ, β1, β2) = ‖X‖L + λ‖S‖1
+〈Λ1, Y−X− S〉+ β1

2 ‖Y−X− S‖2
F + ρφ(L) + 〈Λ2, X− L〉+ β2

2 ‖X− L‖2
F

, (8)

where Λ1, Λ2 denote the Lagrangian multipliers, and β1, β2 represent the penalty parame-
ters. Within the framework of ADMM, we minimize the augmented Lagrangian function (8)
by using an alternating strategy, i.e., at the (k + 1)th step. We thus update the solution by
fixing some variables and solving the remaining ones. Finally, the proposed mixed noise
removal method can be divided into the following three subproblems and summarized in
Algorithm 1.

(1) X-Subproblem

Given Sk and Lk, we update Xk as

Xk+1 = argmin
X

{
‖X‖L +

〈
Λ1, Y−X− Sk

〉
+ β1

2 ‖Y−X− Sk‖2
F

+
〈

Λ2, X− Lk
〉
+ β2

2 ‖X− Lk‖2
F }

= argmin
X

{
‖X‖L +

β1
2 ‖X− (Y− Sk + Λ1

β1
)‖2

F
+ β2

2 ‖X− Lk + Λ2
β2
‖2

F

}
= argmin

X

{
‖X‖L +

β1+β2
2 ‖X− β1A+β2B

β1+β2
‖

2

F

} , (9)

where A = Y− Sk + Λ1
β1

, B = Lk − Λ2
β2

. We introduce the following theorem to obtain the
solution to (9).

Theorem 1 (Logarithmic Singular Value Thresholding [40]). Let G ∈ Rm1×m2 be a given
matrix, and the SVD of G is G = UG ∑G VT

G, where ∑G is the diagonal matrix whose diagonal
elements are the singular values. For any α > 0,the closed-form solution of the following problem:

min
X

α‖X‖L +
1
2
‖X−G‖2

F , (10)

is given by X = UGTα, ξ(∑G)VT
G, where Tα, ξ(·) represents the logarithmic singular value thresh-

olding function, which can be expressed as

Tα, ξ(x) =

 0, ∆ ≤ 0
argminϕ(y), ∆ > 0

y∈{0, (x−ξ+
√

∆)/2}
, (11)

where ∆ = (x− ξ)2 − 4(α− xξ) and ϕ(y) = α log(y + ξ) + (y− x)2/2.

(2) L-Subproblem

Given Xk and Sk, we update Lk as
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Lk+1 = argmin
L

ρφ
(

Lk
)
+

β2

2
‖Xk+1 − L +

Λ2

β2
‖

2

F
. (12)

Let σ̂2 = ρ
β2

. Equation (12) can be represented as

proxφ

(
Lk+1

)
= argmin

L
φ(L) +

1
2σ̂2 ‖X

k+1 − L +
Λ2

β2
‖

2

F
, (13)

where proxφ(·) denotes the proximal operator of regularization, which is replaced by
the embedded denoiser. It is known that BM3D [8] and FFDNET [47] are both famous
image denoisers. The main advantage of the BM3D denoiser is that it can be applied to
characterize the piecewise smoothness and the nonlocal self-similarity of images in a 3D
transform domain. Recently, deep learning-based image denoisers have shown promising
performance. However, the deep learning-based method needs a massive amount of
training data, and these datasets are difficult to obtain. Therefore, the BM3D denoiser [8] is
selected as a module within the PnP framework. By plugging in the BM3D denoiser, the
solution can be expressed as

Lk+1 = BM3D
(

Xk+1 +
Λ2

β2
, σ̂

)
. (14)

(3) S-Subproblem

Given Xk+1 and Lk+1, we update Sk as

Sk+1 = argmin
S

{
λ‖S‖1 +

〈
Λ1, Y−Xk+1 − S

〉
+ β1

2 ‖Y−Xk+1 − S‖2
F

}
= argmin

S

{
λ‖S‖1 +

β1
2 ‖Y−Xk+1 − S + Λ1

β1
‖2

F

} (15)

We apply the soft thresholding operator so f t(·) to obtain the solution to the sub-
problem of (15). The operator is defined as so f tτ(x) = max(|x| − τ, 0)sgn(x), where x
denotes the variable, and τ represents a parameter. Accordingly, the solution of (15) can be
represented as

Sk+1 = so f t λ
β1

(
Y−Xk+1 +

Λ1

β1

)
. (16)

(4) Update Multipliers

The Lagrangian multipliers are updated as follows:{
Λ1 = Λ1 + β1(Y−Xk+1 − Sk+1)
Λ2 = Λ2 + β2(Xk+1 − Lk+1)

. (17)

Algorithm 1. ADMM for Solving the PnP-Based LNAM Model.

Input: The noisy image Y, parameter λ, ρ, stopping criteria ε.

Initialization: t = 0, let X, L, S, and Lagrangian multiplies Λ1,Λ2 be zeros matrices, penalty
parameter β1= 1.1; β2= 1.2.
Step 1: Calculate X via (9).
Step 2: Calculate L via (14).
Step 3: Calculate S via (16).
Step 4: Update the multiplies Λ1, Λ2 via (17).

Step 5: Check convergence criteria: ‖X
t+1−Xt‖F
‖Xt‖F

≤ ε.

Step 6: If the convergence criteria are not met, set t = t + 1 and go to Step 1.
Output: The restored HSI X.
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4. Experimental Results

Simulated and real HSI image sets are selected to evaluate the performance of the
proposed method. Meanwhile, we conduct comparison experiments on these HSI datasets
with other mixed noise removal algorithms, including the modified BM3D method [8],
low-rank matrix recovery (LRMR) [25], low-rank global total variation (LRGTV) [31],
and a weighted group sparsity-regularized low-rank tensor decomposition (LRTDGS)
method [35]. In all experiments, each band of the HSI data is normalized into [0, 1],
and the parameters of the methods for comparison are based on the suggested values
in the original article. Moreover, the modified BM3D method proposed in [8] is used to
remove the Gaussian noise. Before denoising, the sparse noise is detected and removed
through adaptive median filtering. Then, BM3D can remove the Gaussian noise. Hence,
the modified BM3D method is called A-BM3D.

All the algorithm simulation environments used MATLAB R2018 and a 64-bit Win-
dows 10 operating system with 2.6 GB CPU and 16 GB memory. The configuration of the
experimental environmental parameters is summarized in Table 1.

Table 1. Experimental environmental configuration.

Name Configuration

Simulated images and size Sumi-Indian (145 × 145 × 224), Pavia (200 × 200 × 80)
Real HSI image and size Urban (307 × 307 × 210)
Performance Evaluation PSNR (dB), SSIM [49]
Experimental platform Windows 10, MATLAB R2018b, 16GB Memory

4.1. Simulated Data Experiment

In this study, the ground truth of the Simu–Indian data [50] and the Pavia City Center
data [51] are adopted to generate the synthetic data for our experiments. The sizes of the
Simu–Indian and the Pavia data are 145 × 145 × 224 and 200 × 200 × 80, respectively. In
addition, we normalize each band of the HSI data into [0, 1] and consider the synthetic HSI
data as the clean data. The mean of the peak signal-to-noise ratio (MPSNR) and the mean
of structural similarity (MSSIM) over all the bands are utilized to assess the performances
of different mixed noise removal algorithms. For the generation of a noisy image, Gaussian
and S&P noises are added into all the bands of the clean HSI data, as in the following
two cases:

Case 1: In this case, the noise intensity is equal in all bands. First, we add the Gaussian
noise with a zero mean into all bands with the noise standard variances G = 0.025, 0.05,
0.075, and 0.10. Second, we add S&P noise into all bands with the noise proportions
S&P = 0.05, 0.10, 0.15, and 0.20.

Case 2: In contrast to that in Case 1, the noise intensity in different bands differs in
Case 2. We add different zero-mean Gaussian noises into each band. In contrast to that in
Case 1, the Gaussian noise variance is randomly selected from 0.02 to 0.10. Then, different
percentages of S&P noise, which are randomly selected from [0.10, 0.20], are added into
each band. In addition, five selected bands of the Simu–Indian data and 10 selected bands
of the Pavia City Center data are corrupted with 10 and 15 stripes, respectively.

Tables 2 and 3 report the comparison results of different denoising methods for the
Simu–Indian and Pavia datasets in the above two cases. MPSNR and MSSIM are used to
evaluate the performances of different denoising algorithms. These two tables show that,
on the whole, the proposed algorithm provides satisfactory PSNR and SSIM values in most
cases when compared with other methods. This situation confirms the advantages of the
proposed algorithm in mixed noise denoising. For the Simu–Indian data, the performance
of the proposed algorithm is close to that of the LRTDGS algorithm when the mixed noise
intensity is low. For the Pavia data, the quality results of the LRGTV method are the
best likely, because the LRGTV algorithm processes all the patches together and uses the
spatial–spectral total variation regularization method to recover the whole 3D HSI. The
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restoration effect of the LRMR algorithm is relatively unsatisfactory when the Gaussian
noise is strong. Although the A-BM3D algorithm adopts the adaptive filter to remove S&P
noise, its denoising effect is not ideal when the density of the S&P noise is high. Table 3
shows that, surprisingly, the LRTDGS algorithm performs poorly on the Pavia data.

Table 2. Quantitative evaluation of the different methods on the Simu–Indian dataset.

Case Noise Level Evaluation Index A-BM3D LRMR LRGTV LRTDGS Proposed

Case 1

G = 0.025,
S&P = 0.05

MPSNR (dB) 32.7384 43.8913 48.3861 47.7429 47.8694
MSSIM 0.9603 0.9917 0.9966 0.9986 0.9928

G = 0.05,
S&P = 0.10

MPSNR (dB) 31.3988 39.4308 43.8277 44.1583 43.9426
MSSIM 0.9459 0.9756 0.9873 0.9950 0.9907

G = 0.075,
S&P = 0.15

MPSNR (dB) 29.5997 36.2251 40.2178 41.4578 40.3526
MSSIM 0.9121 0.9492 0.9701 0.9962 0.9821

G = 0.10,
S&P = 0.20

MPSNR (dB) 27.2071 33.6607 37.2842 39.0910 37.6930
MSSIM 0.8156 0.9122 0.9448 0.9912 0.9810

Case 2
MPSNR (dB) 25.0932 31.2765 34.9218 36.2435 35.1372

MSSIM 0.7126 0.9094 0.9343 0.9447 0.9351

Table 3. Quantitative evaluation of the different methods on the Pavia dataset.

Case Noise Level Evaluation Index A-BM3D LRMR LRGTV LRTDGS Proposed

Case 1

G = 0.025,
S&P = 0.05

MPSNR (dB) 29.1858 40.8327 43.1464 31.7501 42.4572
MSSIM 0.8255 0.9871 0.9916 0.9049 0.9689

G = 0.05,
S&P = 0.10

MPSNR (dB) 28.4427 36.3285 38.3019 30.3034 37.6853
MSSIM 0.8002 0.9663 0.9756 0.8690 0.9314

G = 0.075,
S&P = 0.15

MPSNR (dB) 27.4632 33.2836 34.9636 29.1936 33.7557
MSSIM 0.7656 0.9370 0.9512 0.8352 0.8888

G = 0.10,
S&P = 0.20

MPSNR (dB) 26.1708 31.1647 32.3247 28.1507 31.6958
MSSIM 0.7142 0.9026 0.9208 0.7980 0.8402

Case 2
MPSNR (dB) 24.7539 30.3447 31.5693 27.1295 30.9436

MSSIM 0.6820 0.9083 0.9205 0.7356 0.9347

Figures 1 and 2 provide a visual representation of the performances of different
methods based on their restoration results for the Simu–Indian dataset. In Figure 1, the
zero-mean Gaussian noise standard variance is 0.10, and the S&P noise intensity is 0.10.
Meanwhile, in Figure 2, we set the Gaussian intensity to be the same as that in Figure 1, but
the noise intensity of S&P is 0.20. Furthermore, the same subregion of each subfigure is
marked with red boxes and enlarged. Figures 1 and 2 show that all the compared algorithms
can remove mixed noise to some extent. The image tends to be blurry after the A-BM3D
method is used. Although the two LRMR algorithms can remove noise and preserve
spectral information, they cannot remove the Gaussian noise completely. LRGTV, by taking
advantage of the whole 3D structure and spatial–spectral total variation regularization,
can obtain satisfactory denoising results. However, it fails to recover the local details well.
The performance of the proposed method is close to that of the LRTDGS algorithm mainly
because we use the logarithm norm and PnP prior to describe the global structure and
nonlocal similarity of the HSI image.
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subcase (the standard deviation of zero-mean Gaussian noise is G = 0.10, and the noise proportion of
S&P noise is S = 0.20).

The visual results of the different denoising methods for the Pavia dataset are pre-
sented in Figures 3 and 4. The noise intensity in these figures is the same as that in
Figures 1 and 2. Figures 3 and 4 show that the denoising performance of the proposed
method is satisfactory. However, Figure 4 illustrates that LRGTV is the best algorithm,
mainly because it employs the global structure and the spectral information in the low-rank
constraint. Compared with the LRGTV method, the proposed method is more sensitive to
S&P noise when the noise level is strong. We will address this issue in our future work.
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standard deviation of zero-mean Gaussian noise is G = 0.10, and the noise proportion of S&P noise is
S = 0.20).

Figures 5–8 provide the PSNR and SSIM values of each band for the Simu–Indian
and Pavia datasets, respectively. As shown in Figures 5 and 6, the proposed algorithm
presents satisfactory PSNR and SSIM values for almost all bands in the Simu–Indian
dataset, indicating that the proposed algorithm outperforms the algorithms for comparison
in mixed noise removal. As mentioned above, and as illustrated in Figures 7 and 8, LRGTV
achieves the best PSNR and SSIM values for each band in the Pavia dataset. However, the
performance of the proposed method is relatively weak. The main reason for this result is
not yet clear and will be addressed in our next work.
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4.2. Real Experiments

Only the Hyper-spectral Digital Imagery Collection Experiment urban dataset, which
can be downloaded online [52], is utilized in this experiment and described in this paper
due to space limitations. The size of the urban image is 307 × 307 × 210. Figure 9 shows
the real-world urban data.
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Figure 9. Real-world urban data.

Figures 10 and 11 present bands 83 and 205 of the restored images. As shown in
Figure 10, the restoration result of A-BM3D is oversmoothed, causing the local details
to become distorted. Most other methods, such as LRMR and LRGTV, can effectively
remove noise from the urban image. Overall, the results show that the proposed algorithm
performs satisfactorily. However, when the band is in the range of [199, 210], the stripes
are considered to be the low-rank part, which is assumed to be the clean data, in the
low-rank decomposition. Although we use PnP-based regularization to mine the spatial
information of the real urban image, the proposed method cannot completely remove the
stripes in Figure 11. Therefore, we will explore and address the reason for this problem in
our future work.
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Figure 11. Restoration results on HYDICE urban image set: moderate noise band.

Figure 12 shows the vertical mean profiles of band 205 before and after restoration.
Concretely, it illustrates the spectral curves at one spatial location of the restored results
by different algorithms. In this figure, the horizontal axis represents the band index,
and the vertical axis represents the mean digital number value of each column. Rapid
fluctuations are observed in the curve given the presence of mixed noise. After restoration,
the fluctuations are more or less suppressed. Here, the proposed method appears to
perform satisfactorily in accordance with the visual results presented in Figure 11. In
summary, the above observations in Figure 12 prove that the proposed algorithm achieves
satisfied results on mixed noise removal and fine details preservation. The reason why our
method performs well is that it utilizes the logarithm norm-based rank function to exploit
the global information and PnP regularization module to preserve the details of the image.
Furthermore, the small singular values can be eliminated by using the logarithm-norm rank
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function. It helps to reconstruct the global structure information. However, the elimination
of small singular values results in the loss of image details. This can be restored by using
the BM3D regularization method.
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4.3. Performance Analysis

Generally speaking, HSI mixed noise removal is a highly ill-posed problem. In this
work, we introduce a PnP prior to make the problem produce feasible results. The non-
convex optimization of the proposed model is challenging, and with the idea of auxiliary
variables and the ADMM scheme, one problem that has been noted is convergence.

Therefore, we show the traces of the quality index PSNR with respect to the iter-
ations in Figure 13 to further verify the stability of the proposed algorithm. Figure 13
provides the curve of PSNR vs. iteration number for the Simu–Indian and Pavia datasets.



Mathematics 2022, 10, 3810 15 of 18

The Gaussian and S&P noise intensities are set as 0.10 and 0.20, respectively. Figure 13
shows that, when the iteration number exceeds 60, the PSNR value tends to be stable.
Therefore, the effectiveness of the proposed algorithm is further demonstrated by these
experimental results.
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Finally, we provide the computational time of the different methods in Table 4. Note
that all the results are implemented in MATLAB R2018. The Gaussian and S&P noise
intensities are also set as 0.10 and 0.20, respectively. As shown in Table 4, most of the
denoising methods have high computational efficiency. A-BM3D has the shortest running
time. However, the proposed algorithm has relatively low computational efficiency, mainly
because we use the PnP-based BM3D module to restore the HSI image, which is highly
time-consuming. Concretely, this is mainly because the whole HSI image has been divided
into image patches, and each image patch is restored by using the BM3D module separately.

Table 4. Computational times of different methods (unit: s).

HSI Image A-BM3D LRMR LRGTV LRTDGS Proposed

Simu-Indian 0.0906 62.9295 119.9487 74.8305 961.2586
Pavia 0.1807 54.4320 92.1933 49.3622 723.0967
Urban 0.5035 292.0146 507.7214 254.9293 1669.3409

5. Conclusions

We propose a logarithm norm nonconvex approximation-based HSI algorithm for
mixed noise removal. Specifically, the logarithm norm-based nonconvex low-rank is used
to characterize the global spatial–spectral correlation among all hyperspectral image bands,
and PnP-based regularization is introduced to further exploit the local detailed information
of HSI. Then, we develop the ADMM optimization scheme to address the proposed model.
Finally, through simulations, real experiments, and discussion, we demonstrate quantita-
tively and qualitatively that the proposed algorithm achieves satisfactory performance,
because the logarithm norm-based low-rank can help restore the global information of the
target hyperspectral image, while the embedded BM3D denoiser helps preserve the image
details and remove the image structure noise. Our future work will include investigating a
novel mixed noise removal algorithm by applying other technologies, such as LSM model-
ing, deep convolution neural network, attention mechanism, and transformer frameworks.
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