
Citation: Carneiro, E.M.; Forster,

C.H.Q.; Mialaret, LF.S..; Dias, L.A.V.;

da Cunha, A.M. High-Cardinality

Categorical Attributes and Credit

Card Fraud Detectio. Mathematics

2022, 10, 3808. https://doi.org/

10.3390/math10203808

Academic Editors: Fan Zhang,

Songhe Feng, Yongsheng Zhou

and Junlin Hu

Received: 9 September 2022

Accepted: 11 October 2022

Published: 15 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

High-Cardinality Categorical Attributes and Credit Card
Fraud Detection
Emanuel Mineda Carneiro 1,2,* , Carlos Henrique Quartucci Forster 2 , Lineu Fernando Stege Mialaret 3,
Luiz Alberto Vieira Dias 2 and Adilson Marques da Cunha 2

1 Sao Paulo State Technological College (Faculdade de Tecnologia—Fatec),
Sao Jose dos Campos 12247-014, Brazil

2 Brazilian Aeronautics Institute of Technology (Instituto Tecnologico de Aeronautica—ITA),
Sao Jose dos Campos 12228-900, Brazil

3 Federal Institute of Education, Science and Technology of Sao Paulo (Instituto Federal de Sao Paulo—IFSP),
Jacarei 12322-030, Brazil

* Correspondence: emanuel.mineda@fatec.sp.gov.br

Abstract: Credit card transactions may contain some categorical attributes with large domains,
involving up to hundreds of possible values, also known as high-cardinality attributes. The inclusion
of such attributes makes analysis harder, due to results with poorer generalization and higher resource
usage. A common practice is, therefore, to ignore such attributes, removing them, albeit wasting the
information they provided. Contrariwise, this paper reports our findings on the positive impacts of
using high-cardinality attributes on credit card fraud detection. Thus, we present a new algorithm
for domain reduction that preserves the fraud-detection capabilities. Experiments applying a deep
feedforward neural network on real datasets from a major Brazilian financial institution have shown
that, when measured by the F-1 metric, the inclusion of such attributes does improve fraud-detection
quality. As a main contribution, this proposed algorithm was able to reduce attribute cardinality,
improving the training times of a model while preserving its predictive capabilities.

Keywords: credit card fraud; fraud-detection system; high-cardinality attribute; pattern recognition;
clustering; deep learning

MSC: 68T07

1. Introduction

Credit card frauds occur when card information is stolen and purchases are made
without the permission of the cardholders [1]. They are responsible for global yearly
losses of over billions of dollars and, since an all-time low in 2010, these losses have been
increasing yearly as a percentage of the total volume of transactions and are projected to
reach a total of $43.78 billion by 2025 [2]. This phenomenon is so widespread that 30% of
cardholders have reportedly experienced some kind of card fraud from 2012 to 2016 [3].

Regarding transaction entry mode, more than half of the card frauds in the United
States are generated by transactions that do not make use of physical cards. This kind of
fraud is known as Card-Not-Present (CNP) and means to prevent, combat, and limit them
are in high demand [2].

In order to reduce their losses, credit card issuers make use of fraud-detection sys-
tems. These systems generally implement and support both an automatic and a manual
process. The former is responsible for assigning a fraud likelihood score to incoming trans-
actions, while the latter allows fraud investigators to provide binary feedback (fraudulent
or legitimate) on transactions with a high fraudulence score [1].

Fraudsters constantly change their strategies in order to avoid detection. As a result,
traditional rule-based fraud-detection systems turn obsolete very fast [4]. This motivates

Mathematics 2022, 10, 3808. https://doi.org/10.3390/math10203808 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10203808
https://doi.org/10.3390/math10203808
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2166-9873
https://orcid.org/0000-0003-3390-1051
https://doi.org/10.3390/math10203808
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10203808?type=check_update&version=1

Mathematics 2022, 10, 3808 2 of 23

research on the applicability of Machine Learning (ML) techniques to this problem. Themes
like comparison between classification techniques [5–7], evaluation metrics [8], feature selec-
tion [9], feature engineering [10,11], class imbalance [8,11–13], dimensionality reduction [14],
ensemble learning [4,9,15,16], concept drift [13], one-class classification [17], sequence
classification [1], and so on have already been previously discussed by other authors.

Credit card transactions contain some attributes with large domains, up to hundreds
of values, such as the Merchant Category Code (MCC) or ones related to customer or
merchant addresses. These attributes are often absent from public datasets, for obvious
privacy reasons. For that reason, finding real and complete datasets for research purposes
is difficult [4]. While researching a credit card fraud-detection solution for a Brazilian
corporation, we had the opportunity to work with such data and were challenged by
dealing with this kind of attribute.

This article reports our findings on the impact of using high-cardinality attributes on
credit card fraud detection. We also present an algorithm, named Value Clustering for
Categorical Attributes (VCCA), that aims to reduce the cardinality of their domains while
preserving fraud-detection capabilities.

The remainder of this article is organized as follows: Section 2 summarizes a fraud-
detection system of a major Brazilian financial institution; Section 3 presents a brief review
on techniques for dealing with high-cardinality attributes; Section 4 synthesizes the method-
ology and the main technologies used in this research; Section 5 presents and discusses
experimental results; and finally, Section 6 summarizes our main conclusions and sugges-
tions for future work.

2. Fraud Detection System of a Major Brazilian Financial Institution

In order to pursue this research, we have been given access to data and business
knowledge regarding the fraud-detection system of a major Brazilian financial institution,
as detailed in this section.

The fraud-detection system architecture was comprised of an acceptance check and an
offline sanity check. The acceptance check was responsible for checking the integrity of
the transaction, which was rejected in some situations because, for instance, the informed
Personal Identification Number (PIN) was wrong, the account was blocked, or the amount
exceeded the credit limit. Once a transaction is accepted, a fraudulence score is calculated.
Contrary to the typical fraud-detection system architecture presented by [10], there was no
online sanity check which was responsible for automatically rejecting a transaction. The
fraudulence score was calculated and processed by the offline sanity check, implemented
as a rule-based system, maintained manually at regular intervals. A transaction with
a score greater than a given threshold would generate an alert and be sent to a fraud
investigator, who could either dismiss the alert or contact the credit card holder to verify if
the transaction was legitimate.

Once a transaction was found to be fraudulent, it was reversed and a chargeback
occurred. Credit card holders were also able to dispute transactions for 180 days. In such a
case, an investigation was performed, and the merchant should provide evidence that the
transaction was performed by the credit card holder. If a merchant failed to provide enough
evidence, the transaction was considered fraudulent, reversed, and the payer refunded. As
a result of this process, it takes a long time for a financial institution to identify credit card
frauds, with around 80% of them being identified in a 2-month window [5].

Alerts were handled manually by fraud investigators, making a high number of false
alerts (also known as false positives) undesirable, as personnel would be overburdened
and unable to verify all transactions. The financial institution also needed to detect as many
frauds as possible, to minimize losses. Regarding these requirements, their fraud-detection
system was unreliable, as real alerts, associated with fraudulent transactions, comprised
only roughly 10% of all alerts generated. This low accuracy was one of the main factors for
not using an online sanity check, as automatically denying legitimate transactions would
negatively impact customer satisfaction.

Mathematics 2022, 10, 3808 3 of 23

3. High-Cardinality Categorical Attributes

Categorical attributes with large domains containing more than 100 distinct values,
like some of the ones found on credit card transactions, are named High-Cardinality
(HC) attributes [18]. Dealing with these attributes by creating dummy variables, the most
common approach, causes dimensions of the attribute space to quickly explode due to the
Cartesian products. For instance, a dataset with an attribute comprised of hundreds of
values would result in a new dataset with hundreds of attributes, one binary attribute for
each value. The inclusion of such attributes typically hinders generalization, as they could
result, for example, in the creation of “lookup tables” [19].

In order to avoid these problems, HC attributes are often dismissed, but by doing
so there is evidence that classification accuracy is jeopardized [18]. With this in mind,
new forms to represent HC attributes from a particular domain are desirable and their
cardinality should be neither too rough to make objects indistinguishable nor too fine to
become redundant [20]. Therefore, one key issue is to find a mapping of the attribute
domain to a new domain with minimal cardinality, but still preserving its semantics [21].

There are several approaches for reducing the domain of categorical attributes, also
named symbolic or nominal attributes. Most of these approaches treat this domain reduc-
tion as a grouping problem, partitioning the set of values into a finite number of groups [22].
Aside from the grouping approach, another explored possibility is to transform a categorical
attribute into a numeric one.

3.1. Numeric Encoding

Numeric encoding consists in mapping values from a categorical attribute to a cor-
responding numeric, discrete or continuous, attribute. Integer encoding is the simplest
approach to accomplish this and consists in attributing a random integer to each value of
the categorical attribute. Variations of this approach apply different metrics, like frequency,
to the categorical attribute to generate corresponding numeric values.

Target Encoding [23] greatly improves over these simple approaches by including the
target attribute in the encoding process. This algorithm differs depending on the type of
the target attribute. For a numeric target attribute, a value vi of the categorical attribute is
mapped to the mean value of the target attribute for all associated records (records where
the categorical attribute assumes value vi). For a categorical target attribute, each value
vi of the categorical attribute is mapped to the posterior probability of the target attribute
value associated with it.

Following the same principle, Ref. [18] presented three new Target Encoding methods
that transform categorical attributes into continuous attributes whose values are correlated
with a target attribute. They also showed that, by using this kind of transformation, HC
attributes could be used in a real prediction task, churn prediction, and were able to increase
classifier accuracy. These transformation methods have low complexity and can be applied
on any dataset, regardless of dimensionality or size.

Quantile Encoding is another variation of Target Encoding specifically for numeric
target attributes and was presented by [24]. This approach replaced the mean function by
the quantile and also added a regularization term to avoid overfitting.

The Conjugate Bayesian Model (CBM) Encoder was proposed by [25] and is based
on traditional Bayesian statistics. Initially, this approach encoded categorical attributes
with moments of the posterior distributions on each unique value through Bayes’ theorem.
Afterward, the learning algorithm improved upon this encoding by accounting for variance
of posterior distributions and interactions among other features.

Entity embedding uses Artificial Neural Networks (ANNs) to map a one-hot encoded
categorical attribute into a reduced set of numeric attributes [26]. This approach includes an
additional layer between inputs generated by one-hot encoding and the first hidden layer
of an ANN. This layer, which presents lesser cardinality, maps the binary inputs generated
by one-hot encoding for a categorical variable in a function approximation problem into
Euclidean spaces. This mapping is learned by the ANN during its training. There are

Mathematics 2022, 10, 3808 4 of 23

variations of this approach using Deep Learning [27] and mapping the inputs into a single
neuron, which can be seen as a dictionary [28].

While numeric encoding approaches have several benefits, such as low computational
cost and ease of implementation, they change the attribute type, which could impair
interpretability. The simpler ones could also lead to information loss, which can negatively
impact on the accuracy of ML algorithms.

3.2. Grouping

The grouping approach for cardinality reduction of a categorical attribute consists in
partitioning its values based upon a similarity metric.

One of such grouping approaches was introduced by [29,30] as the Optimal Family
of Partitions (OFP) problem, also known as the Optimal Symbolic Value Partition (OSVP)
problem, which aims to combine attribute values into a minimum number of groups, while
completely preserving the original decision table.

Unfortunately, the solution for this problem was proved to be NP-Hard. Henceforth,
sub-optimal solutions, not guaranteed to provide the minimum number of groups, were
proposed using several approaches: the Rough Set Theory combined with a greedy algo-
rithm [21,31], the Rough Set Theory combined with Attribute Value Taxonomies (AVT) [32],
the Granular Computing combined with automatically generated AVT [33], among others.

In order to work, these solutions require a dataset solely composed of categorical
attributes. As credit card transactions possess both categorical and continuous attributes, a
series of transformations would be necessary before applying any of these approaches.

There are also grouping approaches that preserve the classification capabilities of
datasets to an extent, using some criteria to keep losses within a predetermined confidence
level. Target Encoding [23] suggested a grouping approach, where numeric values gener-
ated by it could be combined in a greedy bottom-up way. Two values could be combined
into a new value if doing so did not affect a given metric, gain ratio. This process continued
until it was not possible to combine any value without affecting the metric.

Khiops [22] was a similar grouping approach based on a greedy bottom-up algorithm,
with a stop rule that makes use of a confidence level computed with chi-square statistics.

While the previously presented grouping approaches try to guarantee preservation
of the original decision table to a certain degree, they also present complexity that could
prevent their usage in problems involving high dimensional or big data datasets. Some of
these approaches also require domain knowledge about the attributes, like the ones based
on AVTs, which can be a problem as categorical attributes in credit card datasets are often
anonymized, in order to provide privacy protection.

Some grouping approaches do not use any metric to guarantee preservation of the
original decision table and group values using an unsupervised process.

Following this line of research, Similarity Encoding [34] treats the high-cardinality
problem as a data-cleaning problem, assuming the existence of multiple redundant values.
This type of algorithm uses Natural Language Processing (NLP) techniques, such as 3-g [34],
Gamma-Poisson matrix factorization on substring counts, and min-hash encoder [35], to
group semantically similar values.

Using a numeric approach, Hashing [36] maps values to a new low cardinality space
using hash. Depending on the desired size of this new space, multiple unrelated values can
be mapped to the same hash, a problem which is called collision.

For our research, values of HC attributes would initially be manually grouped using
heuristics provided by fraud investigators. However, as the research progressed, this was
deemed infeasible due to the amount of values found. We were then asked to automatically
group values in a way that could be verified and changed by fraud investigators afterwards.
Our first attempt [37] produced promising results but did not meet our time constraints
due to the complexity of the chosen clustering algorithm. This led our team to create the
algorithm presented in this article, which is a top-down variation of the grouping approach
proposed by [23].

Mathematics 2022, 10, 3808 5 of 23

4. Materials and Methods

This section presents the proposed algorithm of Value Clustering for Categorical
Attributes (VCCA) and the techniques and the metrics used in the experiments.

4.1. Techniques

Deep FeedForward Networks (FFN), also known as MultiLayer Perceptron (MLP)
ANN, are a class of universal approximators [38–40] that have been successfully used
in multiple recent studies on credit fraud detection [41,42]. An FFN can be seen as a
multilayered chain of functions, where the length of the chain defines the depth of the
model. Such terminology gave birth to the Deep Learning concept [43]. In this research
we decided to use a fully connected FFN as the classifier, to validate the impact of HC
attributes on fraud detection.

The FFN implementation provided by Keras [44] was used in an architecture contain-
ing one input layer, two hidden layers (H1 and H2), and one output layer, as shown in
Figure 1. Attributes from a credit card transaction were fed to the input layer and processed
by the hidden layers, resulting in a unique output containing a fraud score, where values
higher than a threshold were translated as fraudulent transactions. The Rectified Linear
Activation Function (ReLU) [45], presented in Equation (1), was used as an activation
function for the hidden layers. The sigmoid function, presented in Equation (2), was used
on the output neuron. Binary Cross-Entropy was used as a cost/loss function. To lower
the complexity of the model during training and reduce overfitting, we used L2 regular-
ization [46], which adds a penalty term, proportional to a new hyperparameter α, to the
loss function. The loss function with L2 regularization is presented in Equation (3), where
N is the number of transactions in the training dataset, y is the predicted value, p is the
probability of a transaction being fraudulent, M is the number of weights in the FFN, and
w is the value of a weight.

Figure 1. Fully connected feedforward MLP with two hidden layers.

f (x) = max(0, x) (1)

f (x) =
1

1 + e−x (2)

loss =
1
N

N

∑
i=1
−(yi ∗ log (pi) + (1− yi) ∗ log (1− pi)) + α ∗

M

∑
i=1

w2
i (3)

An FFN works only with numerical attributes, so it was necessary to binarize categori-
cal attributes, converting them into dummy variables. The One-Hot Encoding algorithm
creates a new binary attribute for each existing value in the original categorical attribute.
The original attribute is excluded at the end of the process. An implementation from
Scikit-Learn [47] was used for this transformation.

Mathematics 2022, 10, 3808 6 of 23

Our proposed algorithm, VCCA, makes use of a discretizer to reduce the cardinality
of categorical attributes. The Nested Means algorithm [48] was chosen for its simplicity
and performance. It is an algorithm based upon ordinary univariate statistical procedures
for splitting data and iteratively using the arithmetic mean to divide a class into two new
classes. At the end of the process, it generates up to 2i classes, where i correspond to the
number of iterations.

For numeric attributes, we have taken the Napierian logarithm of the ones with a
large range of values, where more than 32% of the records have a value where the distance
from the mean is greater than the standard deviation. All numeric attributes were also
standardized, using the Scikit-Learn implementation of the StandardScaler algorithm.

As credit card datasets are highly skewed, the model was provided with the classes
weights, proportional to the occurrence of each class (fraudulent and legitimate transac-
tions). Each weight is calculated following Equation (4), where |c| is the number of records
associated with the class and N is the total number of records in the dataset. Accordingly,
bias on the output neuron was initialized, as the Napierian logarithm of the quotient be-
tween the number of fraudulent transactions, |t|, and the number of legitimate transactions,
| f |, as shown in Equation (5).

weight(c) =
N

2 ∗ |c| (4)

initial_bias = log
|t|
| f | (5)

To compare results from ML models, to have multiple experiment results obtained
from different datasets is necessary. To comply with this requirement, an implementa-
tion from Scikit-Learn of the stratified n-fold cross-validation was used to generate 10
different datasets.

4.2. The Proposed Algorithm of Value Clustering for Categorical Attributes

The inclusion of HC attributes often results in longer classifier training times and
higher resource consumption. In order to solve this issue while avoiding downsides of
available approaches, presented in Section 3, we devised a low-complexity top-down
grouping algorithm, named VCCA.

At the base of the algorithm is the probability of fraudulence, P(t|v), of a transaction
containing an attribute A with a given value v. In this scenario, there is a fraud flag attribute
which assumes a true value t when the transaction is fraudulent. P(t|v) is presented in
Equation (6), where |tv| represents the number of fraudulent transactions with a value v
for attribute A and |v| represents the number of transactions with value v for attribute A.

P(t|v) = |tv||v| (6)

We used Information Gain (IG) as a metric to select categorical attributes to use in our
fraud-detection system. To preserve this metric, we analyzed the IG equation and found
out that grouping values of an attribute with close enough P(t|v) preserves this metric.

Theorem 1. Grouping values of an attribute with close enough P(t|v) preserves Information Gain.

Proof. For an attribute A, with categorical values {v1, . . . , vx, vy, . . . , vn}, in a set of train-
ing examples T containing a binary target attribute Y, the Information Gain IG(T, A) can
be calculated as:

Mathematics 2022, 10, 3808 7 of 23

IG(T, A) = H(T)

− |v1|
|T| P(t|v1)log2(P(t|v1))− |v1|

|T| (1− P(t|v1))log2(1− P(t|v1))

− . . .

− |vx|
|T| P(t|vx)log2(P(t|vx))− |vx|

|T| (1− P(t|vx))log2(1− P(t|vx))

− |yy|
|T| P(t|vy)log2(P(t|vy))− |vy|

|T| (1− P(t|vy))log2(1− P(t|vy))

− . . .

− |vn|
|T| P(t|vn)log2(P(t|vn))− |vn|

|T| (1− P(t|vn))log2(1− P(t|vn))

(7)

Looking at Equation (7), grouping two different values vx and vy under a new label vxy
would result in a new probability P(t|vxy) and an error exy, proportional to the difference
between the original probabilities P(t|vx) and P(t|vy), in a way that:

− |vx|
|T| P(t|vx)log2(P(t|vx))− |vx|

|T| (1− P(t|vx))log2(1− P(t|vx))

− |vy|
|T| P(t|vy)log2(P(t|vy))− |vy|

|T| (1− P(t|vy))log2(1− P(t|vy)) =

− |vx|+ |vy|
|T| P(t|vxy)log2(P(t|vxy))

− |vx|+ |vy|
|T| (1− P(t|vxy))log2(1− P(t|vxy)) + exy

(8)

When, in Equation (8), P(t|vx) approaches P(t|vy), we can write it in terms of a
constant k and vy, in a way that |tvx| = k|tvy| and |vx| = k|vx|:

lim
P(t|vx)→P(t|vy)

P(t|vx) =
|tvx|
|vx| =

k|tvy|
k|vy| (9)

Considering Equation (9), when P(t|vx) approaches P(t|vy), P(t|vxy) = P(t|vy):

lim
P(t|vx)→P(t|vy)

P(t|vxy) =
|tvx|+ |tvy|
|vx|+ |vy| =

k|tvy|+ |tvy|
k|vy|+ |vy| = P(t|vy) (10)

Finally, we can rewrite Equation (8), when P(t|vx) approaches P(t|vy) as:

lim
P(t|vx)→P(t|vy)

− |vx|
|T| P(t|vy)log2(P(t|vy))

− |vx|
|T| (1− P(t|vy))log2(1− P(t|vy))

− |vy|
|T| P(t|vy)log2(P(t|vy))

− |vy|
|T| (1− P(t|vy))log2(1− P(t|vy)) =

− |vx|+ |vy|
|T| P(t|vy)log2(P(t|vy))

− |vx|+ |vy|
|T| (1− P(t|vy))log2(1− P(t|vy)) + exy

(11)

Mathematics 2022, 10, 3808 8 of 23

By simplifying Equation (11), we obtain Equation (12):

lim
P(t|vx)→P(t|vy)

exy = 0 (12)

The VCCA is a supervised algorithm designed for decision problems with binary
target attributes, consisting of two classes with values limited to positive and negative
examples. It consists of two steps: transformation and supervised discretization.

In the first step, it considers an HC attribute A, with a domain containing n values.
In this first step, P(t|v) is calculated for each value v of A. The final result of this step is
a conversion table associating each categorical value to a corresponding numerical ratio.
This conversion table is ordered by P(t|v) value, in order to speed up the next step.

The second step uses a supervised discretization algorithm to group the P(t|v) values
calculated in the previous step. Grouping quality is decided by comparing a chosen metric
applied to both original attribute values and the values grouped through discretization. As
previously stated, we have decided on IG as the grouping quality metric and the Nested
Means algorithm as the discretizer.

Beginning with two groups, Nested Means is applied iteratively, in a top-down
approach, generating an increasing number of groups until the IG calculated for the
grouped values surpasses a similarity value S, defined as the percentage of the IG calculated
for the original values. Due to the way Nested Means divides the dataset, it is possible that
an odd number of groups is generated. Algorithm 1 details both steps.

Algorithm 1: The VCCA algorithm
Input: Categorical attribute A
Output: Conversion table

1 begin Transformation
1.1 Compute an ordered list P of Ratios for values of attribute A;

end
2 begin Supervised Discretization

2.1 Compute IG for original values;
2.2 Iteration = 1;
2.3 GroupedIG = 0;
2.4 while S > GroupedIG / IG do

2.4.1 Use Nested Means to divide P into 2Iteration groups;
2.4.2 Compute GroupedIG as the IG for the grouped values;
2.4.3 Iteration = Iteration + 1;

end
end

Figure 2 presents an example of the VCCA application on the habitat attribute, taken
from the Mushroom dataset of the UCI Machine Learning Repository [49], considering a
similarity S of 95%.

The end result of the algorithm is a conversion table that associates values with groups.
New grouped attributes with lesser cardinality can then be created by replacing, for each
record, values of HC attributes for their associated groups. It is recommended to use only a
portion of the dataset to generate the conversion table, to avoid overfitting. When creating
a grouped attribute, values not contained in the conversion table can appear and should be
translated into a default group, instead of being left untranslated.

Mathematics 2022, 10, 3808 9 of 23

Figure 2. VCCA example.

Regarding time complexity, we consider a training dataset T, composed of N records.
Computing a list P comprised of P(t|v), the number of positive records and the number
of negative records associated with each of the |v| values of an attribute A (1.1) could
be accomplished in O(N), considering the use of a hashmap to store P. By using P, IG
calculation (2.1 and 2.4.2) for all values takes O(V), as calculating IG for each single value
can be achieved in constant time.

Sorting P (2.2) by P(t|v) can be achieved in O(V log2 V) by using a sort algorithm like
merge sort.

In the worst case scenario, where the grouped attribute A′ has the same number of
values as the original attribute A, there would occur log2V iterations in the main loop (2.5),
making its cost O(V log2 V).

Taking all these factors into consideration, the total complexity for the algorithm is
expected to be O(N log2 N), when |v| ≈ N, or O(N + |v| log2 |v|), when |v| � N. As only
attributes where |v| � N are used for training, to avoid overfitting, the latter is expected.
Table 1 presents the expected complexity for all algorithm steps.

Table 1. The expected complexity by step.

Step Expected Complexity

1 O(N)
1.1 O(N)
2 O(V log2 V)
2.1 O(V)
2.2 O(V log2 V)
2.3 O(1)
2.3 O(1)
2.5 O(V log2 V)
2.5.1 O(V)
2.5.2 O(V)
2.5.3 O(1)

4.3. Metrics

As seen in Section 2, two requirements should be met for a fraud-detection system:
identify most of the fraudulent transactions and, at the same time, generate as few false
alerts as possible. The first requirement could be measured through the Recall, also known
as True Positive Rate (TPR) metric, presented in Equation (13), while the second one
could be measured by the Precision metric, presented in Equation (14). TP stands for True
Positives, the number of alerts generated for fraudulent transactions; FN stands for False
Negatives, the number of fraudulent transactions that did not generate alerts; and FP
stands for False Positives, the number of alerts generated for legitimate transactions.

Mathematics 2022, 10, 3808 10 of 23

Recall =
TP

TP + FN
(13)

Precision =
TP

TP + FP
(14)

As both metrics should achieve high values, in order to fulfill the requirements for
a fraud-detection system, it was necessary to introduce a third metric, F-1, which is the
harmonic mean of Recall and Precision. This metric is presented in Equation (15).

F-1 =
2 ∗ Recall ∗ Precision

Recall + Precision
(15)

Receiver Operating Characteristic (ROC) curves are also largely used to evaluate the
results of fraud-detection systems. As the output of such systems often has a probability of
fraud, results are binarized according to a predefined threshold (usually 50%). An ROC
curve is plotted using Recall for the y axis and False Positive Rate (FPR), presented in
Equation (16), for the x axis. Each point is generated by calculating Recall and FPR for
different values of the threshold. In this context, the Area Under the ROC Curve (AUC)
is a metric that summarizes the ROC curve and measures the ability of a fraud-detection
system to distinguish between fraudulent and legitimate transactions.

FPR =
FP

TN + FP
(16)

For highly skewed datasets, like the ones associated with credit card fraud, it was
verified that Precision–Recall curves provide a better representation of a classifier per-
formance [50]. This curve uses Precision instead of FPR for the x axis. The associated
performance metric is called Area Under the Precision-Recall Curve (PRC).

5. Results and Discussion

This Section describes the experimental scenarios and the datasets used to evaluate
the influence of HC attributes on credit card detection. It also presents the discussion and
evaluation concerning the results for all three experiments.

5.1. Experiments

For this research, we were given access to two datasets, containing real anonymized
credit card data from a major Brazilian financial institution, henceforth named Dataset 1
and Dataset 2. These datasets were from different private labels, store-branded credit cards
managed by a financial institution, containing credit card transactions from December 2013
to April 2014. Additionally, we have also used a public simulated credit card transaction
dataset [51], henceforth named Dataset 3, to enable reproducibility.

Both Datasets 1 and 2 had the same structure, where each record contained informa-
tion about the credit card holder, the current transaction, the last transaction, transaction
statistics per credit card (e.g., speed, average value), and a flag indicating if the current
transaction was legitimate or fraudulent. Several HC attributes were present, such as Zone
Information Postal (ZIP) code for both credit card holder and merchant, MCC, and so on.

Dataset 1 was composed of 11829 real credit card transactions. This dataset was highly
imbalanced, as only 40 out of the 11829 transactions, roughly 0.34%, were fraudulent.

Regarding entry mode, 75% of all transactions (fraudulent and legitimate) used mag-
netic stripe reading, while the remaining were CNP. However, only for the fraudulent
transactions, this proportion was reversed, with 70% of them being CNP, which means that
the majority of frauds did not occur with a physical credit card. Figure 3 presents fraud
distribution per month on Dataset 1.

Mathematics 2022, 10, 3808 11 of 23

20
13

/12

20
14

/01

20
14

/02

20
14

/03

20
14

/04

0

5

10

15

20

25

Month

Fr
au

ds

Frauds per month

Figure 3. Frauds per month on Dataset 1.

Dataset 2 was composed of 27569 real credit card transactions. This dataset was even
more imbalanced than Dataset 1, with only 51 fraudulent transactions out of the 27569,
roughly 0.18%.

Regarding entry mode, 80% of all transactions (fraudulent and legitimate) from this
dataset used a chip card, 2% used magnetic stripe reading, and the remaining were CNP.
Nonetheless, all fraudulent transactions were CNP, which means that all frauds occurred
without a physical credit card. Figure 4 presents fraud distribution per month on Dataset 2.

20
13

/12

20
14

/01

20
14

/02

20
14

/03

20
14

/04

0

5

10

15

20

25

30

35

Month

Fr
au

ds

Frauds per month

Figure 4. Frauds per month in Dataset 2.

Dataset 3 was a rare find as it is public and provided both categorical and numerical
attributes. Because of hardware constraints, only the smaller dataset, available on file
fraudTest.csv, was used in the experiments. Transactions were dated from June 2020 to
December 2020 for a total of 555,719 records, from which only 2145, 0.9%, were fraudulent.
Figure 5 presents fraud distribution per month. Table 2 presents all attributes used in the
experiments.

Mathematics 2022, 10, 3808 12 of 23

20
20

/06

20
20

/07

20
20

/08

20
20

/09

20
20

/10

20
20

/11

20
20

/12

200

300

400

Month

Fr
au

ds

Frauds per month

Figure 5. Frauds per month in Dataset 3.

Table 2. Attributes.

Name Description Type Origin

gender Card holder gender Categorical Dataset
age Card holder age Numerical Calculated
job Card holder job Categorical Dataset
city Card holder city Categorical Dataset
city_pop Card holder city population Numerical Dataset
state Card holder state Categorical Dataset
lat Card holder latitude Numerical Dataset
lon Card holder longitude Numerical Dataset
category Merchant category Categorical Dataset
merch_lat Merchant latitude Numerical Dataset
merch_lon Merchant longitude Numerical Dataset
amt Transaction amount Numerical Dataset
trans_hour Transaction hour Numerical Calculated
day_of_week Transaction day of week Categorical Calculated
month Transaction month Numerical Calculated
is_fraud Transaction fraud flag Categorical Dataset

For each dataset, we held experiments in three different scenarios: the original dataset,
containing all attributes, named henceforth HC; the original dataset without HC attributes,
with more than 100 different values, named henceforth No-HC; and a new dataset, named
henceforth VCCA, where all categorical attributes, including HC ones, from the original
dataset were grouped by VCCA using a Similarity S of 99.9999%.

Figure 6 presents an outline of the experiments. We have used stratified 10-fold cross
validation on each dataset (I), generating 10 folds with the same fraud ratio (II). From these
folds, 10 different sets of training and test datasets are generated (III). For each set, stratified
sampling is used to generate a validation dataset (IV). At this point, the training and the
validation datasets are used by the VCCA algorithm to generate the conversion table. The
training and the validation dataset are then used to train the FFN (V) and the resulting
model is evaluated on the test dataset. Training and evaluation are executed 100 times for
each dataset.

Mathematics 2022, 10, 3808 13 of 23

Figure 6. Experiments.

Results of the different models were compared by using the Wilcoxon signed-ranked
test, as recommended by Demsar [52], with a significance level of 0.05. The entire pro-
cess of FFN training and evaluation followed recommendations made by Flexer [53]:
using different training and test datasets; having multiple runs with a resampling tech-
nique, in our case 10-fold cross-validation; reporting mean, variance, and confidence
interval; and computing a statistical test, the Wilcoxon signed-ranked test, for a comparison
of performances.

Two different optimization methods were considered to train the FFN: Adam [54],
and RMSProp [55]. Default values were used for most hyperparameters. For Adam, the
learning rate was set to 0.001, beta 1 was set to 0.9, beta 2 was set to 0.999, and epsilon was
set to 1 × 10−7. Finally, for RMSProp, the learning rate was set to 0.001, rho was set to 0.9,
and epsilon was set to 1 × 10−7.

For each dataset, the following FFN hyperparameters were tuned by exploring dif-
ferent configurations: optimizer, hidden layer size, dropout rate, and l2 regularizer. For
most datasets, models without a dropout rate performed better. The maximum number of
epochs was defined as 100 with an early stop configured to watch the PRC metric applied
to the validation set, with a patience of 10 epochs without increase.

5.2. Dataset 1

Table 3 presents the number of values, |v|, and IG for all categorical attributes in the
original training dataset for the first fold. It also contains the number of values, |v′|, and IG,
IG′, obtained by applying the VCCA. Per a Non-Disclosure Agreement (NDA), attribute
names and values were omitted. Using one hot encoding resulted in 4875 binary attributes
for the HC dataset and 104 for the VCCA dataset.

Table 4 presents hyperparameters used for this dataset. The FFN presents similar
configurations with differences only in the number of neurons at each hidden layer.

Mathematics 2022, 10, 3808 14 of 23

Table 3. The categorical attributes and their IG from Dataset 1.

Attribute |v| IG |v′| IG′

c 587 0.020087454009060313 9 0.020087454009060313
d 199 0.01038105195206505 9 0.01038105195206505
e 20 0.005017041759478355 7 0.005017041759478355
f 2 0.0001723760259424098 2 0.0001723760259424098
g 13 0.013065745196519488 6 0.013065745196519488
h 18 0.010828126068959505 5 0.010828126068959505
i 185 0.012616077454649672 10 0.012616077454649668
j 4 0.0034157174977478555 4 0.0034157174977478555
k 428 0.018796128663501527 7 0.018796128663501527
l 25 0.003151780053255858 5 0.003151780053255858
m 1575 0.007888460862140696 4 0.007888460862140696
o 5 0.003897359833765539 4 0.003897359833765539
p 188 0.012821572812932829 11 0.012821572812932829
q 18 0.009203556840586557 5 0.00920355684058656
r 1578 0.007300173818738483 7 0.007300173818738483
s 26 0.0029986812882387 5 0.0029986812882387033
t 4 0.002688904270427419 4 0.002688904270427419

Table 4. The hyperparameters used for Dataset 1.

No-HC HC VCCA

First Hidden Layer Size 64 32 64
Second Hidden Layer Size 16 32 8
Optimizer RMSProp RMSProp RMSProp
L2 Regularizer 0.001 0.001 0.001

Evaluation

Table 5 presents metrics applied to each dataset, after applying the trained FFN on
the test datasets. Per the Wilcoxon signed-ranks test [52], both HC and VCCA trained FFN
models presented significantly higher values for all metrics. There was also no significant
disparity in metrics values between HC and VCCA trained FFN models. Table 6 presents
the variance for the same metrics. Figure 7 presents mean values for metrics applied on
each fold and a 95% confidence interval.

Table 5. The Mean of Metrics for Dataset 1.

Fold
F-1 AUC PRC

No-HC HC VCCA No-HC HC VCCA No-HC HC VCCA

1 0.4737 0.7607 0.7486 0.8858 0.9984 0.9917 0.5836 0.8724 0.8278
2 0.3973 0.7732 0.6936 0.9673 0.9933 0.9967 0.6919 0.9142 0.8425
3 0.4444 0.6295 0.6222 0.9658 0.9947 0.9994 0.479 0.8733 0.8974
4 0.3905 0.5994 0.7084 0.9912 0.9995 0.9967 0.4721 0.9214 0.9518
5 0.3184 0.6639 0.7489 0.9844 0.9945 0.9922 0.4526 0.637 0.8113
6 0.3526 0.523 0.4746 0.858 0.8642 0.8657 0.3964 0.4909 0.4658
7 0.0137 0.254 0.4646 0.8484 0.8676 0.8661 0.061 0.1754 0.3567
8 0.2935 0.534 0.5241 0.9409 0.9978 0.9922 0.4442 0.5807 0.7098
9 0.3982 0.4862 0.4614 0.9789 0.9974 0.9858 0.3601 0.4522 0.3901
10 0.5926 0.8416 0.7705 0.9577 0.9971 0.99 0.6779 0.9864 0.958

Mathematics 2022, 10, 3808 15 of 23

Table 6. The Variance of Metrics for Dataset 1.

Fold
F-1 AUC PRC

No-HC HC VCCA No-HC HC VCCA No-HC HC VCCA

1 0.0152 0.0096 0.0339 0.0025 0.0001 0.0018 0.0139 0.0074 0.0263
2 0.0347 0.0202 0.0161 0.0042 0.0027 0.0003 0.0478 0.0166 0.0163
3 0.031 0.0214 0.0104 0.0039 0.0009 0 0.0229 0.0206 0.009
4 0.0126 0.0048 0.0254 0.0023 0 0.0003 0.0102 0.0175 0.0371
5 0.0129 0.0428 0.0468 0.0009 0.0003 0.0025 0.0184 0.0449 0.0577
6 0.0162 0.0082 0.0126 0.0011 0 0.0006 0.0133 0.0038 0.011
7 0.002 0.0057 0.0139 0.0011 0 0.0015 0.0003 0.0012 0.0124
8 0.0064 0.0095 0.0147 0.0046 0 0.0026 0.0103 0.0118 0.0076
9 0.0099 0.0037 0.011 0.0034 0 0.004 0.0091 0.0015 0.0076
10 0.109 0.0161 0.0265 0.0083 0.0008 0.0034 0.107 0.0099 0.0363

1 2 3 4 5 6 7 8 9 10

0

0.5

1

Fold

F-
1

F-1 per fold

No-HC
HC
VCCA

1 2 3 4 5 6 7 8 9 10

0.8

0.9

1

1.1

Fold

A
U

C

AUC per fold

No-HC
HC
VCCA

1 2 3 4 5 6 7 8 9 10

0

0.5

1

Fold

PR
C

PRC per fold

No-HC
HC
VCCA

Figure 7. Mean values for the metrics applied on Dataset 1.

The worst training times are presented in Table 7 for each scenario and fold. Data
transformation took at most 0.52 s, 2.24 s, and 3.34 s for No-HC, HC, and VCCA datasets.
The latter dataset required more time for data transformation because of the VCCA al-
gorithm. Data transformation times were included in the training time. Folds required
significantly lower training times for both the No-HC and VCCA datasets, when compared
to the HC dataset. This can be explained by the fact that hundreds of dummy inputs were
generated for the categorical attributes of the HC dataset, which significantly raised its FFN
complexity. Training times were significantly higher for the VCCA dataset, when compared
to the No-HC dataset, because it required additional transformations.

Table 7. The training times in seconds for Dataset 1.

Fold No-HC HC VCCA VCCA (%)

1 12.94 26.02 14.68 56.42
2 13.43 22.76 15.20 66.78
3 12.58 24.11 15.07 62.50
4 13.27 20.31 13.44 66.17
5 15.66 33.63 15.37 45.70
6 14.70 30.88 18.67 60.46
7 16.03 28.15 19.25 68.38
8 13.71 18.63 15.48 83.09
9 17.37 30.59 19.16 62.63
10 17.96 27.58 18.75 67.98

Mathematics 2022, 10, 3808 16 of 23

In summary, in this set of experiments, we were able to verify that the inclusion of
HC attributes improved fraud-detection quality, measured through F-1, AUC, and PRC
metrics. We also verified that the VCCA algorithm was able to reduce training times, while
maintaining the benefits obtained with the inclusion of HC attributes.

5.3. Dataset 2

Table 8 presents the number of values, |v|, and IG for all categorical attributes in the
original training dataset for the first fold. It also contains the number of values, |v′|, and
IG, IG′, obtained by applying the VCCA. Per the same NDA of Dataset 1, attribute names
and values were omitted. Using one hot encoding resulted in 10384 binary attributes for
the HC dataset and 108 for the VCCA dataset.

Table 8. The categorical attributes and their IG from Dataset 2.

Attribute |v| IG |v′| IG′

a 2 0.00019165172400172417 2 0.00019165172400172417
b 3 0.0005656457858254846 3 0.0005656457858254846
c 414 0.010965553523071556 6 0.010965553523071556
d 128 0.008359619642109994 6 0.008359619642109994
e 20 0.004630761867383492 4 0.004630761867383492
f 3 0.00028618741327195163 2 0.00028618741327195163
g 28 0.00395328094102812 3 0.00395328094102812
h 53 0.00625993642734945 5 0.006259936427349448
i 290 0.010018709402812331 9 0.010018709402812331
j 6 0.004324161191009918 3 0.004324161191009918
k 1295 0.010829713469237199 10 0.010829713469237199
l 26 0.004875998819042033 4 0.004875998819042033
m 3893 0.006676635146988344 6 0.006676635146988344
n 2 0.0000003671349237989452 2 0.0000003671349237989452
o 5 0.0005324192509037727 3 0.0005324192509037727
p 287 0.00850518645299473 13 0.00850518645299473
q 51 0.004936240899563283 5 0.004936240899563283
r 3844 0.006550636310641834 11 0.006550636310641832
s 27 0.004161004607392469 7 0.004161004607392469
t 7 0.0031338015517482255 4 0.0031338015517482255

Table 9 presents hyperparameters used for this dataset. The FFN model for the VCCA
dataset additionally used a drop rate of 0.2.

Table 9. The hyperparameters used for Dataset 2.

No-HC HC VCCA

First Hidden Layer Size 64 64 64
Second Hidden Layer Size 32 16 4
Optimizer RMSProp adam RMSProp
L2 Regularizer 0.001 0.001 0.001

Evaluation

Table 10 presents metrics applied to each dataset, after using the trained FFN on the
test dataset. Per the Wilcoxon signed-ranks test [52], both HC and VCCA trained FFN
models presented significantly higher values for the F-1 score, without any significant
disparity between them. For values obtained from the AUC metric, the HC trained FFN
models presented significantly higher values, compared to the other models. Conversely,
the VCCA trained FFN model had significantly lower values than the others for the AUC
metric. Regarding the PRC metric, there was no significant disparity between values when
comparing the FFN models trained for HC and VCCA with the one trained for No-HC.
Conversely, the HC trained FFN model has presented significantly higher values for this

Mathematics 2022, 10, 3808 17 of 23

metric, when compared directly with the one trained for the VCCA. Table 11 presents the
variance for the metrics. Figure 8 presents mean values for metrics applied on each fold
and a 95% confidence interval.

Table 10. The Mean of Metrics from Dataset 2.

Fold
F-1 AUC PRC

No-HC HC VCCA No-HC HC VCCA No-HC HC VCCA

1 0.2593 0.6212 0.6252 0.9981 0.9993 0.9892 0.3748 0.5059 0.473
2 0.2521 0.4798 0.4193 0.9987 0.9989 0.9889 0.4114 0.4724 0.4951
3 0.2191 0.2671 0.3705 0.9995 0.9994 0.9843 0.6161 0.5671 0.5381
4 0.2582 0.5402 0.4944 0.9977 0.9955 0.9785 0.4372 0.5029 0.401
5 0.3362 0.5012 0.5006 0.9954 0.9987 0.9583 0.53 0.5683 0.5691
6 0.3365 0.479 0.4398 0.9984 0.999 0.964 0.4404 0.5194 0.4698
7 0.2789 0.4431 0.3537 0.9989 0.9987 0.9633 0.5533 0.4712 0.379
8 0.2895 0.534 0.5486 0.9989 0.9993 0.9743 0.6592 0.6071 0.5366
9 0.2296 0.6152 0.5454 0.9992 0.9996 0.9496 0.559 0.6517 0.5958
10 0.1964 0.5033 0.5351 0.9999 1 0.965 0.8968 1 0.9299

Table 11. The Variance of Metrics from Dataset 2.

Fold
F-1 AUC PRC

No-HC HC VCCA No-HC HC VCCA No-HC HC VCCA

1 0.0084 0.0035 0.0117 0 0 0.0049 0.0022 0.0009 0.0072
2 0.0029 0.0038 0.0087 0 0 0.0049 0.002 0.0007 0.0205
3 0.003 0.0035 0.0084 0 0 0.0073 0.0034 0.0029 0.0209
4 0.0032 0.0032 0.0144 0 0.0011 0.0096 0.0031 0.0025 0.0088
5 0.0063 0.0058 0.0322 0 0 0.0185 0.0022 0.0022 0.0341
6 0.0066 0.0009 0.0154 0 0 0.0164 0.0011 0.0022 0.0197
7 0.0062 0.0005 0.0153 0 0 0.0163 0.0037 0.0019 0.0287
8 0.003 0.0004 0.0188 0 0 0.012 0.0047 0.0017 0.0189
9 0.0036 0.0258 0.0642 0 0 0.0227 0.0048 0.0012 0.0426
10 0.005 0.0006 0.0268 0 0 0.0164 0.004 0 0.0655

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Fold

F-
1

F-1 per fold

No-HC
HC
VCCA

1 2 3 4 5 6 7 8 9 10
0.6

0.8

1

1.2

Fold

A
U

C

AUC per fold

No-HC
HC
VCCA

1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

Fold

PR
C

PRC per fold

No-HC
HC
VCCA

Figure 8. Mean values for the metrics applied on Dataset 2.

The worst training times are presented in Table 12 for each scenario and fold. Data
transformation took at most 1.26 s, 8.25 s, and 4.52 s for No-HC, HC, and the VCCA
datasets. Unexpectedly, the HC dataset required more time for data transformation than
the VCCA dataset. In this instance, this happened because one hot encoding took much
more time processing HC attributes. Data transformation times were included in the
training time. Folds required significantly lower training times for both the No-HC and the

Mathematics 2022, 10, 3808 18 of 23

VCCA datasets, when compared to the HC dataset. This can be explained by the fact that
hundreds of dummy inputs were generated for the categorical attributes of the HC dataset,
which significantly raised its FFN complexity. Training times were significantly higher for
the VCCA dataset, when compared to the No-HC dataset, because it required additional
transformation.

Table 12. The training times in seconds for Dataset 2.

Fold No-HC HC VCCA VCCA (%)

1 14.71 116.47 18.20 15.63
2 10.14 44.74 14.04 31.38
3 15.56 55.40 15.71 28.36
4 17.46 78.39 20.66 26.36
5 18.45 106.61 22.38 20.99
6 18.46 79.64 19.87 24.95
7 22.53 85.16 25.43 29.86
8 21.76 92.89 24.14 25.99
9 19.66 56.55 20.08 35.51
10 20.46 45.92 19.72 42.94

In summary, in this set of experiments, we were able to verify that the inclusion of
HC attributes improved fraud-detection quality, measured through the F-1 metric. For the
AUC metric, the inclusion of HC attributes improved fraud detection only for the dataset
where VCCA was not applied. Moreover, there was no significant improvement in fraud
detection with the inclusion of HC attributes when considering the PRC metric. We were
also able to verify that the VCCA algorithm reduced training times, while maintaining the
benefits obtained with the inclusion of HC attributes, but only for the F-1 metric.

5.4. Dataset 3

Table 13 presents the number of values, |v|, and IG for all categorical attributes in
the original training dataset for the first fold. It also includes the number of values, |v′|,
and IG, IG′, obtained by applying the VCCA. Per a Non-Disclosure Agreement (NDA),
attribute names and values were also omitted. Using one hot encoding resulted in 10384
binary attributes for the HC dataset and 108 for the VCCA dataset.

Table 13. The categorical attributes and their IG for Dataset 3.

Attribute |v| IG |v′| IG′

category 14 0.0019799792770756885 14 0.0019799792770756885
gender 2 0.0000006409831799781 2 0.0000006409831799781
city 849 0.0103333005133997846 177 0.0103332999129037914
state 50 0.0006413767623995176 45 0.0006413767623995245
job 478 0.0060285748349879244 166 0.0060285744210841971
day_of_week 7 0.0001846527228808251 7 0.0001846527228808251

Table 14 presents hyperparameters used for this dataset. The FFN presented similar
configurations with differences only in the number of neurons in the first hidden layer for
the No-HC dataset.

Table 14. The hyperparameters used for the Dataset 3.

No-HC HC VCCA

First Hidden Layer Size 64 32 32
Second Hidden Layer Size 16 16 16
Optimizer adam adam adam
L2 Regularizer 0.001 0.001 0.001

Mathematics 2022, 10, 3808 19 of 23

Evaluation

Table 15 presents metrics applied to each dataset after using the trained FFN on
the test set. Per the Wilcoxon signed-ranks test [52], both HC and VCCA trained FFN
models presented significantly higher values for all metrics. The VCCA model presented
significantly lower values for the F-1 and PRC metrics, but significantly higher values for
the AUC metric, compared to the HC model. Table 16 presents the variance for the metrics.
Figure 9 presents mean values for metrics applied on each fold and a 95% confidence
interval.

Table 15. The Mean of Metrics from Dataset 3.

F-1 AUC PRC

Fold No-HC HC VCCA No-HC HC VCCA No-HC HC VCCA

1 0.2298 0.4387 0.4317 0.9917 0.9904 0.9905 0.733 0.8394 0.8229
2 0.2331 0.4437 0.4383 0.9825 0.9905 0.9923 0.6973 0.8152 0.8002
3 0.2514 0.4461 0.4194 0.9937 0.9985 0.9985 0.7342 0.8694 0.8467
4 0.2386 0.4361 0.4073 0.9908 0.9983 0.9985 0.7074 0.8353 0.8186
5 0.2263 0.429 0.4181 0.99 0.9978 0.998 0.6818 0.826 0.8093
6 0.2468 0.4297 0.4218 0.9918 0.996 0.9968 0.7306 0.8226 0.8024
7 0.239 0.445 0.4205 0.9943 0.9988 0.999 0.7329 0.8573 0.8477
8 0.2255 0.4564 0.4324 0.9943 0.998 0.9984 0.7484 0.8657 0.843
9 0.2385 0.4366 0.3889 0.9927 0.9984 0.9982 0.7519 0.8755 0.841
10 0.2383 0.4442 0.4269 0.9923 0.9981 0.9982 0.7543 0.8358 0.8236

Table 16. The Variance of Metrics from Dataset 3.

F-1 AUC PRC

Fold No-HC HC VCCA No-HC HC VCCA No-HC HC VCCA

1 0.0029 0.0044 0.0053 0 0 0 0.0006 0.0007 0.0011
2 0.0025 0.0049 0.005 0 0 0 0.0004 0.0008 0.0009
3 0.0036 0.005 0.0045 0 0 0 0.0007 0.0006 0.0008
4 0.0027 0.0054 0.0052 0 0 0 0.0007 0.0008 0.001
5 0.0026 0.0054 0.0058 0 0 0 0.0011 0.0014 0.0012
6 0.0024 0.0062 0.005 0 0 0 0.0006 0.0013 0.0012
7 0.0032 0.0041 0.0045 0 0 0 0.0006 0.0009 0.0009
8 0.0026 0.0051 0.0054 0 0 0 0.0007 0.0006 0.0009
9 0.0029 0.0049 0.0046 0 0 0 0.0009 0.0006 0.001
10 0.0023 0.0044 0.0051 0 0 0 0.0007 0.0007 0.001

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

Fold

F-
1

F-1 per fold

No-HC
HC
VCCA

1 2 3 4 5 6 7 8 9 10

0.98

0.99

1

Fold

A
U

C

AUC per fold

No-HC
HC
VCCA

1 2 3 4 5 6 7 8 9 10
0.6

0.7

0.8

0.9

Fold

PR
C

PRC per fold

No-HC
HC
VCCA

Figure 9. Mean values for the metrics applied on dataset 3.

Mathematics 2022, 10, 3808 20 of 23

The worst training times are presented in Table 17 for each scenario and fold. Data
transformation took at most 5.6 s, 20.12 s, and 21.36 s for No-HC, HC, and the VCCA
datasets. As expected, the VCCA dataset took more time for data transformation. Data
transformation times were included in the training time. Folds required significantly
lower training times for both the No-HC and the VCCA datasets, when compared to
the HC dataset. This can be explained by the fact that hundreds of dummy inputs were
generated for the categorical attributes of the HC dataset, which significantly raised its FFN
complexity. Training times were significantly higher for the VCCA dataset, when compared
to the No-HC dataset, because it required additional transformation.

Table 17. The training times in seconds for Dataset 3.

Fold No-HC HC VCCA VCCA (%)

1 164.94 391.94 232.28 59.26
2 195.97 380.57 243.34 63.94
3 162.02 336.06 226.62 67.43
4 181.93 314.25 238.56 75.91
5 166.18 356.02 240.85 67.65
6 183.79 353.9 232.66 65.74
7 162.81 361.18 273.42 75.70
8 196.52 418.69 244.34 58.36
9 214.63 345.03 285.8 82.83
10 206.16 410.03 266.18 64.91

In summary, in this set of experiments, we were able to verify that the inclusion of
HC attributes improved fraud-detection quality, measured through all metrics. We also
verified that the VCCA algorithm was able to reduce training times, while maintaining the
benefits obtained with the inclusion of HC attributes for the F-1 metric.

6. Conclusions

In this article, we analyzed the impact of High-Cardinality (HC) attributes on credit
card fraud detection. In order to achieve that, we trained a deep fully connected FFN
for three datasets in three scenarios: without HC attributes, including HC attributes, and
including HC attributes transformed using the new proposed algorithm named Value
Clustering for Categorical Attributes (VCCA).

Results indicate that the inclusion of HC attributes can improve detection quality,
measured by F-1, in credit card fraud detection. For other metrics, such as AUC and PRC,
there are cases, such as the experiment run on Dataset 2, where including HC attributes
will not bring any significant benefits.

The VCCA, Value Clustering for Categorical Attributes, approach presented in this
article, has shown promising results by allowing the inclusion of HC attributes with reduced
training times without significantly compromising detection quality, which can reduce
costs. The algorithm has provided the automatic creation of a conversion table that could
be verified and modified by fraud investigators.

This article focuses solely on credit card fraud detection using the Deep Learning
domain. Future works could verify the impact of HC attributes, as well as the applicability
of the VCCA algorithm, in other knowledge domains. The use of other Machine Learning
classifiers, such as Random Forests and Support-Vector Machines, could also be investi-
gated. Finally, it would be desirable to make a comparison between approaches for dealing
with HC attributes, such as the ones mentioned in Section 3.

Author Contributions: E.M.C.: Conceptualization, Methodology, Software, Investigation, Data
Curation, Writing—Original Draft, Visualization. C.H.Q.F.: Formal Analysis, Writing—Review &
Editing. L.F.S.M.: Conceptualization, Methodology, Investigation, Validation. L.A.V.D.: Formal
Analysis, Writing—Review & Editing, Project Administration, Funding Acquisition. A.M.d.C.:

Mathematics 2022, 10, 3808 21 of 23

Resources, Writing—Review & Editing, Supervision, Project Administration, Funding Acquisition.
All authors have read and agreed to the published version of the manuscript.

Funding: General and financial support during this investigation: the Brazilian Aeronautics Institute
of Technology (ITA); the Casimiro Montenegro Filho Foundation (FCMF); the 2RP Net Enterprise;
and the Brazilian Ministry of Education (Ministério da EduCação-MEC).

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://www.kaggle.com/kartik2112/fraud-detection, accessed on 4 July 2022.

Acknowledgments: The authors wish to thank the Brazilian Aeronautics Institute of Technology
(ITA), the Casimiro Montenegro Filho Foundation (FCMF), the 2RP Net Enterprise, and the Brazilian
Ministry of Education (Ministério da EduCação - MEC) for their support and research infrastructure
and also the Software Engineering Research Group (GPES) members for their assistance and advice.
We also wish to thank professor Paulo Marcelo Tasinaffo for his support and insightful comments.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CNP Card-Not-Present
ML Machine Learning
MCC Merchant Category Code
VCCA Value Clustering for Categorical Attributes
PIN Personal Identification Number
HC High-Cardinality
CBM Conjugate Bayesian Model
ANN Artificial Neural Network
OFP Optimal Family of Partitions
OSVP Optimal Symbolic Value Partition
AVT Attribute Value Taxonomy
NLP Natural Language Processing
FFN FeedForward Networks
MLP MultiLayer Perceptron
ReLU Rectified Linear Activation Function
IG Information Gain
TPR True Positive Rate
ROC Receiver Operating Characteristic
FPR False Positive Rate
AUC Area Under the ROC Curve
PRC Area Under the Precision-Recall Curve
ZIP Zone Information Postal
NDA Non-Disclosure Agreement

References
1. Jurgovsky, J.; Granitzer, M.; Ziegler, K.; Calabretto, S.; Portier, P.E.; He-Guelton, L.; Caelen, O. Sequence classification for

credit-card fraud detection. Expert Syst. Appl. 2018, 100, 234–245. https://doi.org/10.1016/j.eswa.2018.01.037.
2. HSN Consultants, Inc. Card Fraud Losses Reach $22.80 Billion; Technical Report 1118; The Nilson Report, Issue 1118, Oxnard, CA,

USA, 2017. Available online: https://nilsonreport.com/publication_newsletter_archive_issue.php?issue=1118 (accessed on 4
July 2022).

3. Knieff, B. 2016 Global Consumer Card Fraud: Where Card Fraud Is Coming From; Technical Report; Aite Group LLC, Boston, MA,
USA, 2016. Available online: https://aite-novarica.com/report/2016-global-consumer-card-fraud-where-card-fraud-coming
(accessed on 4 July 2022).

4. Sohony, I.; Pratap, R.; Nambiar, U. Ensemble Learning for Credit Card Fraud Detection. In Proceedings of the ACM India Joint
International Conference on Data Science and Management of Data (CoDS-COMAD ’18), Goa, India, 11–13 January 2018; ACM:
New York, NY, USA, 2018; pp. 289–294. https://doi.org/10.1145/3152494.3156815.

5. Gadi, M.F.A.; Wang, X.; do Lago, A.P. Credit Card Fraud Detection with Artificial Immune System. In Proceedings of the
Artificial Immune Systems, Phuket, Thailand, 10–13 August 2008; Bentley, P.J., Lee, D., Jung, S., Eds.; Springer: Berlin/Heidelberg,
Germany, 2008; pp. 119–131.

https://www.kaggle.com/kartik2112/fraud-detection
https://nilsonreport.com/publication_newsletter_archive_issue.php?issue=1118
https://aite-novarica.com/report/2016-global-consumer-card-fraud-where-card-fraud-coming

Mathematics 2022, 10, 3808 22 of 23

6. Singh, R.; Rani, R. Comparative Evaluation of Predictive Modeling Techniques on Credit Card Data. Int. J. Comput. Theory Eng.
2011, 598–603. https://doi.org/10.7763/IJCTE.2011.V3.377.

7. Ngai, E.W.T.; Hu, Y.; Wong, Y.H.; Chen, Y.; Sun, X. The Application of Data Mining Techniques in Financial Fraud
Detection: A Classification Framework and an Academic Review of Literature. Decis. Support Syst. 2011, 50, 559–569.
https://doi.org/10.1016/j.dss.2010.08.006.

8. Pozzolo, A.D.; Caelen, O.; Borgne, Y.A.L.; Waterschoot, S.; Bontempi, G. Learned lessons in credit card fraud detection from a
practitioner perspective. Expert Syst. Appl. 2014, 41, 4915–4928. https://doi.org/10.1016/j.eswa.2014.02.026.

9. Fadaei Noghani, F.; Moattar, M. Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection. J. AI
Data Min. 2017, 5, 235–243. https://doi.org/10.22044/jadm.2016.788.

10. Vlasselaer, V.V.; Bravo, C.; Caelen, O.; Eliassi-Rad, T.; Akoglu, L.; Snoeck, M.; Baesens, B. APATE: A novel approach for
automated credit card transaction fraud detection using network-based extensions. Decis. Support Syst. 2015, 75, 38–48.
https://doi.org/10.1016/j.dss.2015.04.013.

11. Bahnsen, A.C.; Aouada, D.; Stojanovic, A.; Ottersten, B. Feature engineering strategies for credit card fraud detection. Expert Syst.
Appl. 2016, 51, 134–142. https://doi.org/10.1016/j.eswa.2015.12.030.

12. Wang, C.; Han, D. Credit card fraud forecasting model based on clustering analysis and integrated support vector machine. Clust.
Comput. 2018. https://doi.org/10.1007/s10586-018-2118-y.

13. Somasundaram, A.; Reddy, S. Parallel and incremental credit card fraud detection model to handle concept drift and data
imbalance. Neural Comput. Appl. 2018. https://doi.org/10.1007/s00521-018-3633-8.

14. Mahmoudi, N.; Duman, E. Detecting credit card fraud by Modified Fisher Discriminant Analysis. Expert Syst. Appl. 2015,
42, 2510–2516. https://doi.org/10.1016/j.eswa.2014.10.037.

15. Zareapoor, M.; Shamsolmoali, P. Application of Credit Card Fraud Detection: Based on Bagging Ensemble Classifier. Procedia
Comput. Sci. 2015, 48, 679–685. https://doi.org/10.1016/j.procs.2015.04.201.

16. Bekirev, A.S.; Klimov, V.V.; Kuzin, M.V.; Shchukin, B.A. Payment card fraud detection using neural network committee and
clustering. Opt. Mem. Neural Netw. 2015, 24, 193–200. https://doi.org/10.3103/S1060992X15030030.

17. Juszczak, P.; Adams, N.M.; Hand, D.J.; Whitrow, C.; Weston, D.J. Off-the-peg and bespoke classifiers for fraud detection. Comput.
Stat. Data Anal. 2008, 52, 4521–4532. https://doi.org/10.1016/j.csda.2008.03.014.

18. Moeyersoms, J.; Martens, D. Including high-cardinality attributes in predictive models: A case study in churn prediction in the
energy sector. Decis. Support Syst. 2015, 72, 72–81.

19. Perlich, C.; Provost, F. Distribution-based aggregation for relational learning with identifier attributes. Mach. Learn. 2006,
62, 65–105. https://doi.org/10.1007/s10994-006-6064-1.

20. Muto, Y.; Kudo, M.; Murai, T. Reduction of Attribute Values for Kansei Representation. JACIII 2006, 10, 666–672.
https://doi.org/10.20965/jaciii.2006.p0666.

21. Min, F.; Liu, Q.; Fang, C.; Zhang, J. Reduction Based Symbolic Value Partition. In Proceedings of the Advances in Hybrid
Information Technology, First International Conference, ICHIT 2006, Jeju Island, Korea, 9–11 November 2006; pp. 20–30.
https://doi.org/10.1007/978-3-540-77368-9_3.

22. Boullé, M. A robust method for partitioning the values of categorical attributes. In Proceedings of the Extraction et gestion des
connaissances (EGC’2004), Clermont Ferrand, France, 20–23 January 2004; pp. 173–184.

23. Micci-Barreca, D. A Preprocessing Scheme for High-Cardinality Categorical Attributes in Classification and Prediction Problems.
SIGKDD Explor. Newsl. 2001, 3, 27–32. https://doi.org/10.1145/507533.507538.

24. Mougan, C.; Masip, D.; Nin, J.; Pujol, O. Quantile Encoder: Tackling High Cardinality Categorical Features in Regression Problems.
In Proceedings of the Modeling Decisions for Artificial Intelligence: 18th International Conference, MDAI 2021, Umeå, Sweden,
27–30 September 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 168–180. https://doi.org/10.1007/978-3-030-85529-1_14.

25. Slakey, A.; Salas, D.; Schamroth, Y. Encoding Categorical Variables with Conjugate Bayesian Models for WeWork Lead Scoring
Engine. arXiv 2019, arXiv:1904.13001.

26. Guo, C.; Berkhahn, F. Entity Embeddings of Categorical Variables. arXiv 2016, arXiv:1604.06737.
27. Dahouda, M.K.; Joe, I. A Deep-Learned Embedding Technique for Categorical Features Encoding. IEEE Access 2021, 9, 114381–

114391. https://doi.org/10.1109/ACCESS.2021.3104357.
28. Arat, M.M. Learning From High-Cardinality Categorical Features in Deep Neural Networks. J. Adv. Res. Nat. Appl. Sci. 2022,

8, 222–236. https://doi.org/10.28979/jarnas.1014469.
29. Nguyen, H.S. Discretization of Real Value Attributes, Boolean Reasoning Approach. Ph.D. Thesis, Warsaw University, Warsaw,

Poland, 1997.
30. Nguyen, S.H. Regularity Analysis and Its Applications in Data Mining. Ph.D. Thesis, Warsaw University, Warsaw, Poland, 1999.
31. Min, F.; Liu, Q.; Fang, C. Rough sets approach to symbolic value partition. Int. J. Approx. Reason. 2008, 49, 689–700.
32. Ye, M.; Wu, X.; Hu, X.; Hu, D. Knowledge reduction for decision tables with attribute value taxonomies. Knowl.-Based Syst. 2014,

56, 68–78.
33. Wen, L.; Min, F. A Granular Computing Approach to Symbolic Value Partitioning. Fundam. Inform. 2015, 142, 337–371.

https://doi.org/10.3233/FI-2015-1297.
34. Cerda, P.; Varoquaux, G.; Kégl, B. Similarity Encoding for learning with dirty categorical variables. Mach. Learn. 2018,

107, 1477–1494. https://doi.org/10.1007/s10994-018-5724-2.

Mathematics 2022, 10, 3808 23 of 23

35. Cerda, P.; Varoquaux, G. Encoding High-Cardinality String Categorical Variables. IEEE Trans. Knowl. Data Eng. 2022,
34, 1164–1176. https://doi.org/10.1109/TKDE.2020.2992529.

36. Weinberger, K.Q.; Dasgupta, A.; Attenberg, J.; Langford, J.; Smola, A.J. Feature Hashing for Large Scale Multitask Learning. In
Proceedings of the 26th Annual International Conference on Machine Learning (ICML ’09), Montreal, QC, Canada, 14–18 June
2009; Association for Computing Machinery: New York, NY, USA; pp. 1113–1120. https://doi.org/10.1145/1553374.1553516.

37. Carneiro, E.M.; Dias, L.A.V.; Cunha, A.M.; Mialaret, L.F.S. Cluster Analysis and Artificial Neural Networks A Case Study in
Credit Card Fraud Detection. In Proceedings of the 12th International Conference on Information Technology–New Generations,
Las Vegas, NV, USA, 13–15 April 2015. https://doi.org/10.1109/ITNG.2015.25.

38. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989,
2, 359–366.

39. Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control. Signals Syst. (MCSS) 1989, 2, 303–314.
https://doi.org/10.1007/BF02551274.

40. Haykin, S. Neural Networks: A Comprehensive Foundation, 2nd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1998.
41. Adewumi, A.O.; Akinyelu, A.A. A survey of machine-learning and nature-inspired based credit card fraud detection techniques.

Int. J. Syst. Assur. Eng. Manag. 2017, 8, 937–953.
42. Al-Hashedi, K.G.; Magalingam, P. Financial fraud detection applying data mining techniques: A comprehensive review from

2009 to 2019. Comput. Sci. Rev. 2021, 40, 100402. https://doi.org/10.1016/j.cosrev.2021.100402.
43. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; Adaptive Computation and Machine Learning; MIT Press: Cambridge,

MA, USA, 2016.
44. Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 4 July 2022).
45. Jarrett, K.; Kavukcuoglu, K.; Ranzato, M.; Lecun, Y. What is the Best Multi-Stage Architecture for Object Recognition? In

Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 27 September–4 October 2009;
Volume 12. https://doi.org/10.1109/ICCV.2009.5459469.

46. Tikhonov, A.N.; Arsenin, V.Y. Solutions of Ill-Posed Problems; V. H. Winston & Sons.: Washington, DC, USA; John Wiley & Sons:
New York, NY, USA, 1977; p. xiii+258. Translated from the Russian, Preface by translation editor Fritz John, Scripta Series in
Mathematics.

47. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

48. Scripter, M.W. Nested-Means map classes for statistical maps. Ann. Assoc. Am. Geogr. 1970, 60, 385–392. https://doi.org/10.1111/
j.1467-8306.1970.tb00727.x.

49. Lichman, M. [dataset] UCI Machine Learning Repository. 2013. Available online: https://archive.ics.uci.edu/ml/datasets/
mushroom (accessed on 14 July 2022).

50. Davis, J.; Goadrich, M. The relationship between Precision-Recall and ROC curves. In Proceedings of the ICML ’06: Proceedings
of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; ACM: New York, NY, USA,
2006; pp. 233–240. https://doi.org/10.1145/1143844.1143874.

51. Shenoy, K.; Brandon, H. [dataset] Credit Card Transactions Fraud Detection Dataset. 2020. Available online: https://www.
kaggle.com/kartik2112/fraud-detection (accessed on 14 July 2022).

52. Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30.
53. Flexer, A. Statistical Evaluation of Neural Network Experiments: Minimum Requirements and Current Practice. In Proceedings

of the 13th European Meeting on Cybernetics and Systems Research, Vienna, Austria, 9–12 April 1996; Volume 2.
54. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on

Learning Representations (ICLR 2015), San Diego, CA, USA, 7–9 May 2015.
55. Tieleman, T.; Hinton, G. Lecture 6.5-Rmsprop: Divide the Gradient by a Running Average of Its Recent Magnitude. 2012.

Available online: https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf (accessed on 14 July 2022).

https://keras.io
https://archive.ics.uci.edu/ml/datasets/mushroom
https://archive.ics.uci.edu/ml/datasets/mushroom
https://www.kaggle.com/kartik2112/fraud-detection
https://www.kaggle.com/kartik2112/fraud-detection
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

	Introduction
	Fraud Detection System of a Major Brazilian Financial Institution
	High-Cardinality Categorical Attributes
	Numeric Encoding
	Grouping

	Materials and Methods
	Techniques
	The Proposed Algorithm of Value Clustering for Categorical Attributes
	Metrics

	Results and Discussion
	Experiments
	Dataset 1
	Dataset 2
	Dataset 3

	Conclusions
	References

