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Abstract: COVID-19 is one of the largest issues that humanity still has to cope with and has an
impact on the daily lives of billions of people. Researchers from all around the world have made
various attempts to establish accurate mathematical models of COVID-19 spread. In many branches
of science, it is difficult to make accurate predictions about short time series with extremely irregular
behavior. Artificial neural networks (ANNSs) have lately been extensively used for such applications.
Although ANNs may mimic the nonlinear behavior of short time series, they frequently struggle
to handle all turbulences. Alternative methods must be used as a result. In order to reduce errors
and boost forecasting confidence, a novel methodology that combines Time Delay Neural Networks
is suggested in this work. Six separate datasets are used for its validation showing the number
of confirmed daily COVID-19 infections in 2021 for six world countries. It is demonstrated that
the method may greatly improve the individual networks” forecasting accuracy independent of
their topologies, which broadens the applicability of the approach. A series of additional predictive
experiments involving state-of-the-art Extreme Learning Machine modeling were performed to
quantitatively compare the accuracy of the proposed methodology with that of similar methodologies.
It is shown that the forecasting accuracy of the system outperforms ELM modeling and is in the range
of other state-of-the art solutions.

Keywords: COVID-19; artificial neural networks; short-term prediction; time delay neural networks;

extreme learning machine

MSC: 68T07; 68T20

1. Introduction

COVID-19, a global pandemic, expressed its initial wave of infection in China’s Wuhan
area [1]. It began on December 19th and, according to the World Health Organization
(WHAO), its expansion is still a large source of concern. All suggested preventative and
control mechanisms continue to have limited impact on preventing or slowing the spread
of the virus across the world (isolation, detection tests and prophylactic measures). Since
its initial report, until the 24th of August 2022, almost 600 million individuals have been
infected, while nearly 6.5 million people have died as a result of infection by the virus,
making it one of the deadliest in history [2]. The basic and most crucial feature concern-
ing COVID-19 is that it is spreading fast via human-to-human transmission, while the
symptoms of COVID-19 can range from fatal to undetectable (around 20% of infected
people, especially children). Other significant elements of the COVID-19 pandemic include
a high infection rate, variable incubation periods, patients being contagious throughout the
incubation period, and symptomatic illness [3,4]. The elderly and those with weakened
immune systems, as well as people with special health conditions, are more vulnerable to
the serious effects of this pandemic [5,6]. Given the severity and extent of the epidemic,
we may infer that a worldwide pandemic, such as COVID-19, has a critical impact on
population health, social-cultural activities, and economic development.
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As a result, to offer proper and timely health care, it is critical to estimate the severity
of the event and identify the number of cases prior to the event [7]. Efficient healthcare
system planning is vital for providing prompt and precise treatment to persons suffering
from COVID-19 symptoms. Consequently, models for predicting the course of events
during a pandemic are required. Many researches have been published in the literature to
anticipate the propagation of the COVID-19 outbreak using various mathematical models.

The use of machine learning techniques for projecting COVID-19 infections is a chal-
lenging and actual, but also relatively new scientific task. Many researches and results
have been conducted and reported since 2019. In [8], both traditional statistical time series
analysis approaches as well as new, machine learning forecasting approaches using Recur-
rent Neural Networks have been employed. The findings imply that the logistic growth
model best describes the pandemic’s behavior, that there is sufficient correlation between
climatic and movement factors and illness numbers, and that the Long Short-Term Memory
(LSTM) network may be successfully used to forecast daily cases. A similar comparison of
forecasting methodologies for the same task was performed in [9]. The classical methods
of mathematical modeling in this case showed some weaknesses. As the solution to the
problem, a new forecasting neural topology in the form of a Recurrent Neural Network
with two layers of LSTM blocks and a 1-D Convolutional Neural Network (CNN) was
constructed and trained. The neural network-based approach outperformed the traditional
mathematical methodology, again. Another study proposed the application of a CNN and
temporal Component Transformation (CT) called CNN-CT for the COVID-19 prediction in
the US, Mexico, Brazil, and Colombia [10]. Further transformation of the structure implies
adjustments of the predictions made by CNN using Autoregressive Integrated Moving
Average (ARIMA) and Exponential Smoothing (ES) methods. Such hybrid methodology
achieves competitive results with similar state-of-the-art forecasting methodologies. For
COVID-19 spread time series forecasting, another popular neural network topology is the
multilayer Perceptron, a feedforward type of architecture that is based on the Perceptron
neuron model [11]. In this research, it was expected that the neural network learns to
predict 6 days later from 20 days of contextualization. This was achieved after the execution
of many structural variations in the suggested topology.

Many mathematical methods for predicting the future often become inaccurate or
incorrect when analyzed parameters during forecasting of a certain variable are not well
known or understood. Sometimes, there is simply insufficient data on everything that
influences the predicted variable. If a specific hypothesis is set incorrectly due to bad
assessment, i.e., human error, the forecast will be incorrect. Although predicting is based
on past occurrences, no one can ensure that history will repeat itself in the same way every
time [12]. Sometimes, the key reason for the limitation of the ANN based learning i.e.,
low accuracy is the random initialization of the network, and the applications of some
preselected neural structures with a fixed number of neurons in the network’s layers.
Some alternative approaches that could offer more accurate models for solving many
forecasting tasks, such as specific neural-like structures based on the Successive Geometric
Data Transformations (SGTM), could be used [13,14]. With this new concept of artificial
intelligence, both unsupervised and supervised trainings of the neural-like structures could
be conducted, in both cases becoming a non-iterative process [15].

On the other hand, according to studies in the field of COVID-19 prediction using
statistical approaches, a basic prediction time of several hundred samples is required to
achieve satisfactory prediction accuracy [16,17]. Such time series data is presented as a set
of trends, random and seasonal components; these models also have a fairly small number
of parameters. Time series with a strong trend and seasonal component can be predicted
with a shorter base period [18]. Clearly, the quantity of data available in this situation is
sufficient enough to use any other prediction approach [19-21], but when we look at a curve
illustrating the number of infected patients during one year, we can obviously see that
historical values of infected patients are not very helpful when it comes to prediction. As a
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result, we offer the challenge of predicting the number of infected cases in the following
day as a deterministic prediction based on very short time series.

In systems theory, artificial neural network models have emerged as a quick and
simple modeling and forecasting tool. Because of its computational efficiency and capacity
to characterize an unknown system with a small quantity of data, it is one of the most
frequently used prediction models in the literature [22]. The ANN forecasting models
have achieved acceptable results in various fields, such as ecology [23], economy [24],
industry [25,26], communication [27], and medicine [28].

In our study, we employed an ANN that was modified to forecast the number of
infected people on a daily basis. The created model will aid decision-makers, doctors, and
medical assistants in preparing and understanding the size of the risk, as well as taking
adequate precautions to avoid major leaps. A timely assessment of the risk’s magnitude
and the necessary planning can both be supported by forecasting techniques. It will be
shown that the created forecasting system can successfully model the trend of time series
representing six world countries and their daily new confirmed COVID-19 infection cases.
Due to the previous success in using Time Delay Neural Network (TDNN) topologies for
short-term time series predictions, we have selected this topology as a basic building block
for the construction of a new optimal forecasting system. It will be shown that combined
forecasts of individual TDNN, with different numbers of neurons in the hidden layer,
produce better forecasts that the individual blocks. This will be confirmed on six different
datasets representing COVID-19 spread in the Netherlands, Chile, Malaysia, Spain, Canada,
and South Africa, for the year 2021. According to the well-known forecasting performance
measure procedures, it will be shown that this kind of individual forecasts’ manipulation,
can significantly improve forecasting accuracy and reliability.

To demonstrate the effectiveness of the suggested forecasting methodology and to
comprehend the benefits of its employing, it was compared to the ELM algorithm, which is
an extensively used prediction approach. The same datasets were used for constructing
and training the ELM forecasting networks. A number of additional forecasting tests using
this cutting-edge approach were carried out in order to create a feeling about the order
of accuracy of the proposed methodology. The results of the performance assessments,
again, demonstrate higher forecasting accuracy of the optimal TDNN based forecasting
methodology compared to the latest state-of-the-art ELM forecasting.

The remainder of this paper is organized as follows. The study areas and correspond-
ing datasets with their properties, as well as the detailed description of the optimal neural
network-based forecasting methodology are presented in Section 2. The application of the
methodology, its validation, and the analysis of its accuracy for six selected countries and
their datasets are discussed in Section 3. The paper ends with the concluding section and
ideas for future work.

2. Materials and Methods
2.1. Study Area and Data

Six countries will be the focus of the study and the validation of the new forecasting
approach. They are the Netherlands, Chile, Malaysia, Spain, Canada, and South Africa [29].
As can be noticed, these countries differ in a variety of ways that one may find to be
correlated with the magnitude of the daily COVID-19 spread. As seen in Figure 1, they are
distributed throughout many continents, have various characteristics, including diverse
religions [30], socio-political aspects [31], economic and medical developments [32], climatic
variations [33], population, and density and territorial sizes [34], etc.
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Figure 1. Study areas: Canada, Spain, the Netherlands, South Africa, Chile, and Malaysia.

Databases used for this research represent the daily confirmed cases of COVID-19
infections for the selected countries. This parameter was regularly reported for each
country over different media and is highly important for the societies and all their systems.
They are available at the internet platform of the World Health Organization [35] and are
systematically updated. Each dataset comprises of 365 samples corresponding to the new
daily confirmed cases for the year 2021. These time series are graphically represented in
Figure 2.
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Figure 2. Trends of COVID-19 spread for six world countries in 2021.

In order to display the variability of COVID-19 spread for six different countries,
Table 1, with the descriptive statistics of the corresponding dataset is given next.
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Table 1. Descriptive statistics of the COVID-19 daily spread datasets for Chile, the Netherlands,
Canada, Spain, South Africa, and Malaysia for 2021.

Desc1:ip't ive Chile Netherlands Canada Spain South Africa Malaysia
Statistics
N‘;fgiz of 365 365 365 365 365 365
Mean 3290.54 6348.32 4147.86 11,340.40 6575.88 7249.05
Median 2903 47585 3230 7020 3514 5343
25th Percentile 12385 7493.75 2343.5 4192 1195.25 3086
75th Percentile 5360.75 17,959.25 5079 15,095.5 11488 8636.2.5
Int‘i{gggétﬂe 4122.25 4969.25 2735.5 10,903.5 10,292.75 5550.25
Minimum 421 588 377 1464 259 1211
Maximum 7321 22,471 32370 88,040 23437 21,808
Range 6900 32,400 31993 86,576 23178 20,597
Variance 4,951,854.29 27,420,731.59 13255497.17  134,112,484.02  40,227,254.55 35,589,921.39
ggl:ggi 2225.28 5236.48 3640.81 11,580.69 6342.50 5965.73
Skew 0.38 1.61 3.53 2.75 0.79 1.22
Kurtosis —1.24 2.08 19.53 11.44 —0.66 0.19

Brief informative coefficients known as descriptive statistics are used to assess a
particular dataset, which may be a sample of a population or a representation of the
complete population [36]. Measures of central tendency, measures of variability, and
measures of distribution are three types of descriptive statistics. The distribution of values,
expressed as percentages or numbers, summarizes the frequency of each possible value
of the variable. Measures of central tendency calculate the average or center of a dataset
using one of three methods: mean, mode, and median. Measures of variability informs how
dispersed the samples are. The spread is composed of three components: range, standard
deviation, and variance.

As mentioned before, the datasets used throughout this study were acquired from the
World Health Organization web platform. They are represented in the form of non-linear
time series data pairs, defined with a date, and the non-negative integer value of newly
confirmed COVID-19 cases. The data were collected with daily time intervals and could be
downloaded in an xIsx file format for the particular time interval. For the observed datasets
for the year 2021, with 365 daily samples, the minimal number of new confirmed cases
of COVID-19 infections ranged from 259 in South Africa, to 1464 in Spain. The maximal
number of new confirmed cases goes from 7321 in Chile up to 88,040 in Spain. According
to the descriptive statistics of the datasets, the average number of daily confirmed COVID-
19 cases was between 3290 in Chile and 11,340 in Spain. All these counts confirm the
significant variation of data and its non-periodicity at the annual level.

2.2. Forecasting Methodogy

Generally, neural network-based computing and forecasting approaches arose from the
need to uncover, understand, and imitate the brain’s information-processing capabilities [8].
The entire brain is made up of approximately 86 billion neurons that accept data from
the environment, isolate and recombine the most important ones, and make judgments
regarding the organism’s requirements. In order to perform complicated nonlinear input-
output transformations, artificial neural networks (ANN) replicate such brain capabilities.
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A time series is a succession of numerical data that occurs at regular intervals across
time and is gathered in a sequential way. Short time series are distinguished by a lack of
trend information, unpredictability, and periodicity, which makes their prediction a difficult
job. Typically, time series situations with very short sample lengths N are inapplicable for
producing statistically accurate forecasting variations. This study will concentrate on such
time series and their predictions.

We shall explain a novel way for dealing with irregular series. In time series prediction,
the neural network topology for a specific task involves determining the number of layers
and total number of nodes in each layer. Because there is no theoretical foundation for
establishing these characteristics, they are normally established by experimenting with the
available data. It has been demonstrated that neural networks with one hidden layer can
approximate any nonlinear function with the appropriate number of nodes in the hidden
layer, and a suitable dataset for training [37-39]. Estimating the number of input nodes that
are delayed observations of the same variable is important in time series analysis because
it aids in understanding the autocorrelation structure of the data. The number of output
nodes may be calculated quite easily. In this work, the Box-Jenkins method’s iterative
technique is applied to perform multistep forward forecasting utilizing one output node.
The anticipation of the future value includes using the predicted value as an input. It is
usually preferable to choose a model with few hidden layer nodes since it performs better
at out-of-sample forecasting and does not have fitting issues. The neural network topology
cell used throughout this study represents a variant of a Time Delay Neural Network [37,40].
This basic neural network cell (Time Delay Neural Network Cell —_TDNNC) is used as a
building block for modeling an optimal short-term forecasting neural system. This concept
may be used for various types and topologies of neural networks, as well as for comparable
Al-based forecasting systems, to increase their accuracy.

TDNN is the type of neural configuration similar to feedforward neural networks,
except that the discretized input signals are shifted in time using delay elements, and they
are forwarded to the input layer of neurons. Because of that, time series data are suitable
for inputs, since they represent a set of samples or measurements of an unknown function
f(t) that were gathered over time at regular intervals Af. This network has only one output,
which is sufficient for one-step-ahead prediction and for the implementation of some kind
of dynamic short-term memory.

As mentioned before, a time series: (t;, y;),i=1, 2,..., N (N is the number of available
samples) is a collection of observables of an unknown function # = f(t) collected at regular
time intervals At, where t;,1 = t; + At. Data collected in the past are utilized to estimate the
future trends of the observed variable during the forecasting process. In order to enable
one-step-ahead predictions, it is necessary to find the optimal mathematical form of the
function f(t) that can correctly carry out the following transformation:

yI+1) =f(ti) =9I+ 1) +¢, 1)

where ¢ denotes the acceptable forecasting error, while (i + 1) is the desired output value.

The development of ANNS as a tool with remarkable capabilities for identifying and
modeling patterns of time series data that are difficult to identify by conventional statistical
approaches has taken place during the past few decades. However, there is one aspect that
most current ANN implementations for prediction share. In order to reach high prediction
accuracy, a rather large time series is required. Typically, there have to be at least 50 data
points to take into account [41]. However, the general opinion is that data from the recent
past are more important than older ones and should have a significantly greater impact
on the final prediction result. Based on this, we conclude that even in the case where we
have a long time series at our disposal, we should apply methods that rely on short series.
This, together with other studies that we have conducted in short-term forecasting [42-44],
were the reasons that led us to select the Time Delay Neural Network architecture as the
foundation for this research. A structure of a basic TDNNC is shown in Figure 3 and will
be briefly explained next.
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Figure 3. Time Delay Neural Network basic cell.

The topology requires a neural network with one input, which is then delayed and
delivered to the input layer neurons. For this purpose, after experimenting with a different
number of delay blocks, it was decided to use nine previous observations for the neural
network training and prediction, and accordingly nine neurons in the input layer. The
hidden layer neurons are activated by the sigmoid activation (logistic) function. Finally,
the neurons in the output layer have a linear activation function, and since the aim is
to perform one-step-ahead prediction, only one output of the network and, accordingly,
only one neuron in the output layer is sufficient for the task. During the ANN training, a
variation of the steepest-descent minimization algorithm is used [45-47].

A generalized form for obtaining the TDNNC output signal, i.e., prediction in the next
time instant is given by:

h
j=

4 s . ‘
y(t+1)= (Pout'< W) Phid- (Z w;gd'l/(t — i)+ Gllqlz]‘d) + Gz]mt> 2)
i=0

1 =

where ¢+ and ¢p;; represent the activation functions at the output and hidden layer,

respectively, i denominates the number of the neurons in the hidden layer, w;{ 4 Tepresents
the weight function (sigmoid shape) between the i-th neuron in the input layer and the

j-th neuron in the hidden layer, and finally, wéut denominates the weight function (linear
function) between the j-th neuron in the hidden layer and the neuron in the output layer.
Threshold values for the neurons in the hidden layer and one for the output layer are

denoted with 9;{ ,and Géut, respectively. As shown in Figure 3, there are always 9 neurons
in the input layer, while the number of neurons in the hidden layer can vary from 3 to 10.

For the initialization of the network parameters, the methodology in [48-50] was used.
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The quantity of valuable information in the data and its quality are important elements
in determining how well a machine learning algorithm can learn. As a result, it is vital
that we inspect and preprocess a dataset before feeding it to a learning algorithm [51]. This
facilitates mathematical calculations during the training and forecasting process. It implies
shifting, normalizing, and smoothing the pairs of data [15]. In the case of our COVID-19
prediction, the time variable and corresponding response had to be transformed using the
following Equation (2):

=1t —t ©)

Here, t* stands for a constant time instant that reduces the time variables in order to
have value 1 for fj as the first sample in the dataset, value 2 for the second sample, etc.
Equation (3) gives the transformation of the response y:

y=y -M ()

where y* represents the current instance of the target function, while M represents a
constant, which could be used to reduce the relative difference between the response values,
if necessary. It should be noted that the available datasets were already accommodated
when acquired. All six time series sets have no extreme jumps, no negative values, no
trend, and no seasonality. During the data acquisition, it was possible to select an option
7-day-moving-average, which further smoothed the fluctuation of the data trend in the
7-days’ time window, which is especially important when dealing with the data collected
for the non-working days and weekends. The corresponding formula for a simple moving
average procedure (SMA) is given as (5):

_YiaatVYiot.. . FVYiN
N

SMAN ®)

In this equation, y;_1, ... , y;—n represent the values of the target function from the
N-days wide time slot.

When analyzing the architecture shown in Figure 3, it should be emphasized that
the main idea for developing and using this structure is to force the network to learn
the same input-output mapping several times through several shifts in time. In this
way, it is supposed that the previous samples of data will have a larger influence on the
future outcomes. At the same time, the network captures complex intricately entwined
deterministic relationships that influence the occurrences and trends of the observed
variable. When dealing with a univariate time series dataset, the resulting function needs
to perform the following transformation:

y(t+1)=fy(), y(t—=1), y(t=1), y(t=1)..., y(t—8)) +e(t+1) 6)

where ¢(f 4 1) represents the error of the prediction at the time ¢ + 1, i.e., the difference
between the expected value at that time and the value that the network obtains.

The aim of the training is to minimize the predicting error by optimizing the network
parameters. After the training, the TDNNC will perform an approximation of the function
that represents the given time series and will also be able to extrapolate the values outside
the time interval, i.e., to forecast.

Figure 4 depicts the methodology for improving the accuracy and certainty of the
short time series ANN prediction that we propose. The purpose of this research is to create
tools and procedures that will improve the accuracy of many existing individual forecasting
TDNNC blocks while simultaneously utilizing the best of them.
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Figure 4. Optimal Time Delay Neural Network based Algorithm for Short-Term Prediction.

We start with a short time series (only nine samples) that expresses one variable over
a short period of time and that can be properly accommodated in order to facilitate their
learning. The accuracies of forecasts are then assessed as a result of altering the number
of neurons in the hidden layer of the single TDNNC. Eight different TDNNCs are built
and trained using the same datasets, starting with one that has three neurons in the hidden
layer and ending with one that has ten neurons in the hidden layer.

When a set of eight TDNNCs is trained, as mentioned before, this requires a learning
set of nine samples (in our case, this is shown to be enough) in order to create the first
forecast at their outputs, that is, the extrapolated values of their trend functions. We also
calculate the first forecasting error for the particular network. Now, we shift the learning
set of nine samples for one time step and repeat the training process. By entering every
further sample set at the input, the networks better learn and predict the trend and its
change. As already mentioned, this process repeats for the entire group of eight networks
for each time step of the entire time series.

Since each dataset is very small, and the TDNNCs are very simple, each forecasted
value requires a minimal amount of time and mathematical effort to be completed.

At the end of this process, all networks are trained with the entire time series dataset.
The output of this procedure can be systematized as a forecasting matrix, in which rows
correspond to the time instances for which the forecasts were produced, while the columns
correspond to the number of hidden neurons in a specific TDNNC. There are eight columns
in the forecasting matrix.

We introduce the forecast of the full group of TDNNCs to boost the confidence of the
prediction and its accuracy, since it is impossible to determine which of the eight TDNNCs
is more accurate for a specific portion of the entire time series dataset. Specifically, we first
exclude two forecasts that represent the minimal and maximal predicted values out of the
eight forecasts made for the same short time series. In this way, it is the most likely that the
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worst-case forecasting values that could converge in a wrong direction are discarded from
further forecasts. This process leaves us now with six individual forecasted values to deal
with. Further improvement implies averaging all of them. The averaged value represents
the final forecast of the system. It will be shown that these few manipulations with the
individual TDNNC's forecasts may significantly increase the accuracy of the predictions. In
addition, this procedure, despite its dedication to the short time series datasets, by shifting
and repeating the procedure, successfully and efficiently deals with a long time series.

2.3. Prediction Accuracy Measures

Root-Mean-Square-Error or RMSE: While training regression or time series models,
RMSE is one of the most commonly used metrics to assess the accuracy of the forecasted
values of the model vs. the actual or observed values. When the target or response variable
is a continuous number, it assesses the inaccuracy in our anticipated values. It shows how
far apart the data is from the line of best fit. It is also an important criterion for selecting
the best performing model among several forecasting models trained on a same dataset. It
can be calculated using Equation (7):

N A N\2
RMSE = w (7)

where N represents the number of observations, while y; and j; are the obtained and
expected value of the forecast, respectively.

Mean Absolute Percentage Error: Another performance measure for the forecasting
system that will be used here is the Mean Absolute Percentage Error or MAPE. It shows,
on average, how accurate the anticipated quantities were in relation to the actual values
by averaging the absolute percentage errors of each entry in a dataset. Larger datasets can
typically be more effectively analyzed using MAPE, although zero-valued datasets cannot
have their MAPE calculated. The equation for calculating MAPE is given as (8):

100% &
APE =
M N L

i=1

9 —yi

8
7 ®)

Coefficient of determination or R?: This coefficient can range between 0 and 1 and shows
how well a forecasting model predicts the outcome. It is a measure of the goodness of fit. Its
higher value corresponds to a better prediction for a model. It can be calculated as (9):

N 2
RZ =1— Zf\il(yl _yl)
A2
L (0 - 7)
where ¥ represents the mean of the observed variable.

©)

3. Results and Discussion

The forecasting performance of the suggested methodology is evaluated with datasets
recorded for six countries for the year 2021. For each of six countries (Chile, the Netherlands,
Spain, Canada, South Africa, and Malaysia), eight different TDNNCs are constructed.
After applying training and forecast procedures, we have obtained final forecasts. They
are systematized against their corresponding expected values on the graphs shown in
Figure 5a—f. Bearing in mind that the characteristics of different sets of data vary from
country to country, it can be noticed that the suggested forecasting system performed
very well.
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Figure 5. Prediction diagrams of COVID-19 daily confirmed infection cases obtained for the year
2021, versus the real daily number of infection cases for (a) Chile, (b) the Netherlands, (c) Canada, (d)
Spain, (e) South Africa, and (f) Malaysia.

In order to confirm the increase in the forecasting accuracy of this system in comparison
to the initial individual TDNNC structures, we have calculated the relative percentage
forecasting errors for all six countries for eight TDNNC blocks with the number of neurons
in the hidden layer ranging from three to ten.

The relative percentual forecasting error for the suggested forecasting system is shown
in the first column of Table 2, while the relative, i.e., percentual differences, between the
accuracy of the suggested forecasting system and the individual TDNNCs'’ forecasts are
shown in the remaining eight columns. It can be noticed that the entire system outperforms
the individual TDNNCs when observing the forecasting error for the year 2021 and fulfills
the expectations. Using the suggested system, the increase in relative accuracy goes from
0.45% in the case of Malaysian TDNNC with 10 hidden neurons, to 32.42% in the case
of TDNNC with four hidden neurons. This is also illustrated in Figure 6. Here, the X-
axes denote the individual TDNNCs realization, while the Y-axes denote the percentual
increase of the forecasting accuracy (relative error) between their individual forecasts and
the forecasts of the optimal TDNNC based forecasting system that incorporates several
individual TDNNCs. For example, the forecasting accuracy of the system (calculated as the
averaged relative error of the forecasts) is larger than the accuracy achieved using only a
single TDNNC for the same prediction. These increases are graphically represented with
bars in different colors in Figure 6, where each color corresponds to a particular country.

Table 2. Averaged relative error of the entire forecasting system in [%] with the relative accuracy
increases achieved using the optimal TDNNC based forecasting methodology in comparison with
the individual TDNNCs.

Err. of
the
System

System System System System System System System
vs.3h.n. vs.4h.n. vs.5h.n. vs.6h.n. vs.7h.n. vs.8h.n. vs.9h.n.
TDNNC TDNNC TDNNC TDNNC TDNNC TDNNC TDNNC

System
vs. 10 h.
n.
TDNNC

Chile

1.90

4.52% 5.00% 4.52% 4.52% 9.52% 7.77% 6.86% 7.77%

Netherl.

2.75

8.94% 10.42% 7.41% 4.52% 8.33% 4.84% 2.13% 1.45%

Canada

3.75

4.58% 3.35% 5.06% 10.29% 2.09% 6.01% 6.25% 2.85%

Spain

3.16

10.73% 12.46% 9.71% 5.39% 7.6% 11.23% 10.73% 11.23%

S. Africa

3.24

5.54% 4.98% 4.71% 7.16% 5.81% 4.42% 2.11% 2.99%

Malaysia

2.23

18.91% 32.42% 16.48% 3.04% 5.11% 1.76% 1.76% 0.45%
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Figure 6. Relative forecasting accuracy improvement from individual TDNNC blocks with the num-
ber of neurons in the hidden layer varying from three to ten, to the constructed optimal forecasting
system, for six world countries.

As another measure of performance, we have calculated the RMSE, MAPE and R? of
the system’s forecasts for all six analyzed countries. This is shown in Table 3.

Table 3. Performance measures (RMSE, MAPE and R?) for the optimal forecasting system, and for
the Extreme Learning Machine forecasting methodology for different countries.

Country
Accuracy Chile Netherlands Canada Spain S. Africa Malaysia
Measure
Optimal RMSE 88.67 253.80 393.74 786.68 429.43 192.30
; neural MAPE [%] 1.90 2.75 3.75 3.15 3.24 2.3
orecasting
system R2 0.9984 0.9977 0.9896 0.9955 0.9955 0.9990
Extreme RMSE 265.46 1110.15 3134.49 7380.34 2867.22 1283.14
Learning MAPE [%] 4.66 7.8 22.94 16.68 10.77 5.69
Machi
achmne R2 0.99 0.96 0.67 0.79 0.69 0.96

In order to compare the suggested methodology with alternative ones, we have
conducted new research and a large number of experiments that employ the Extreme
Learning Machine (ELM) algorithm for the same forecasting tasks [2-54]. ELM is a relatively
new machine learning paradigm. Among all neural network topologies, this is one of the
most efficient ones because its parameters are set only once, and because of the high-
speed non-iterative training. Due to its simplicity, this algorithm is easy to understand,
implement, and solve complex problems with. However, the proposed optimal TDNNC
based prediction method shows a better prediction ability than this state-of-the-art machine
learning method. The comparison of the performance measure values for these two
methodologies, for six analyzed countries, is also systematized in Table 3. It could be
noticed that the suggested methodology outperforms the alternative ELM methodology
when considering every type of performance measure.

It was already mentioned that, throughout this study, we have analyzed only one
COVID-19 related parameter. That is the number of daily new infections. As shown, these
datasets vary in different manners and are very uncorrelated since each country experiences
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different influences and different types of factors to the number of daily new infections.
Because of this, we find that the selected datasets can be used for the verification of the
suggested methodology.

When forecasting the daily infections of COVID-19, the results generated using the
suggested Time Delay Neural Networks-based methods offer several advantages. In
particular, it is extremely unappreciative to utilize mathematical techniques and models to
anticipate future trends of infection in various parts of the world. The observed variable is
extremely susceptible to turbulence and many different influences. Our system coped well
with this problem.

The results in forecasting the new daily COVID-19 infections are of great importance
for every country in the world. It can help to estimate the future medical needs of staff,
hospital beds, medications, food, money, etc. Because of the inherent characteristics of
uncertainty, randomness, and nonlinearity, the COVID-19 cases are still an ongoing world
problem. In the case of this forecasting task, we have achieved satisfactory results and
different types of forecasting performance measures confirm that. After performing six
ELM model accuracy measures’ calculations, the values obtained for RMSE ranged from
1283.14 for Malaysia to 7380.34 for Spain. The MAPE values ranged from 4.66 for Chile
to 22.94 for Canada. Finally, the R? as a measure of goodness of fit ranged from 0.67 for
Canada to 0.99 for Chile. The corresponding performance measures in the case of the
suggested forecasting methodology performed better than ELM modeling, considering all
analyzed types of forecasting errors, as shown in Table 3. For example, the calculated R?
values for our methodology ranged from 0.9896 for Canada to 0.9990 for Malaysia.

Furthermore, in order to evaluate the effectiveness of the proposed methodology, we
have conducted a search for some alternative solutions to COVID-19 related prediction
problems that are available in the recent literature. These findings for six world countries
are systematized in Table 4.

Table 4. Systematization of the current state-of-the-art COVID-19 related forecasting solutions, and
their reported performance measures for six analyzed countries.

Country Methodology Performance Measure Ref.
RMSE Predlc‘;(l)/o;\ Error MAPE [%]
Different expone.ntlal smoothing 1.06-1.74 ) 74 [55]
algorithms
Chile Penalized LASSO regression model
. c . - - 0.32-5.22 [56]
with an error correction mechanism
Linear programing method 5.76-16.15 - 5.9-8.2 [57]
Netherlands NIPA - - 0.04 [58]
Logistic function - - 0.07 [58]
LSTM 34.83-51.46 6.6-7.33 - [59]
Canada Multiple Temporal Convolutional
- 6-9.47 [60]
network
Sutte ARIMA - - 0.036 [61]
Spain
Fuzzy Fractal Approach - 3.58139 - [62]
S. Africa Hybrid-Euler - 0.56-35.63 - [63,64]
ANFIS 46.85 - 1.31 [65]
Malaysia

ARIMA - - 16.01 [66]
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Alternatively, we have analyzed the prediction results and accuracy of new COVID-19
infections in other world regions by applying some alternative neural network approaches.
Using a Multi-Layer Perceptron model, with an Extreme Learning Machine learning pro-
cedure and different methods of input parameters selection, for predicting COVID-19 in
Karnataka State, India, the accuracy reached between 7% and 20%, expressed as the MAPE,
and between 29 and 105, expressed as an RMS Error [67]. A classic predictor approach with
deep learning architecture using a NAdam training model was described and trained for in
a few world countries in [68]. This methodology achieved an accuracy of between 68.7% for
the Ontario region in Canada to 100% for the Shanghai, Jilin, and Fujian regions in China. A
nonlinear autoregressive neural network time series model has been developed for forecast-
ing COVID-19 cases in [69]. It applies a standard two-layer feed-forward Backpropagation
(BP) learning algorithm with sigmoid activation in the hidden layer and linear activation
in the output layer and reaches an accuracy of between 0.987 and 1, expressed as the R
value. In addition, three deep learning forecasting methodologies for the prediction of
COVID-19 confirmations in Australia and the Jordan states were described in [70]. They are
the prophet algorithm, ARIMA, and the Long Short-Term Memory (LSTM) neural network.
The average accuracy in this study ranged between 88.43% and 94.8%. Considering some
Asia-Pacific countries, the latest deep learning techniques were implemented to forecast
COVID-19 outbreaks in Pakistan, Afghanistan, India, and Bangladesh [71]. In this study,
LSTM, Recurrent Neural Network (RNN), and Gated Recurrent Units (GRU) were applied
to quantify the intensity of the pandemic spread in the future. They reach an accuracy of
about 90%.

We are aware that the datasets and methodologies that we have analyzed differ from
solution to solution, but the most important performance measures, such as MAPE, or
the relative percentual forecasting error, of our methodology are in the range of the latest
state-of-the-art forecasting COVID-19 methodologies.

4. Conclusions and Future Work

This research proposes a unique way for improving the prediction accuracy of various
ANN-based forecasting systems. We provided several effective enhancements for the
prediction of short time series by analyzing six separate time series datasets that represent a
daily increase in confirmed COVID-19 infections for six countries: Spain, Canada, Malaysia,
South Africa, the Netherlands, and Chile. The suggested methodology has been verified on
six different datasets. After Time Delay Neural Network blocks models were constructed
and trained, their accuracy was assessed using a variety of performance evaluation metrics
and statistical tests.

The forecasts of the most accurate individual networks are averaged in a new optimal
forecasting system using the highest performing TDNNC topologies, taking into account
the number of neurons in the hidden layer. One may conclude that the findings from
these case studies related to six worldwide countries show that the average of the six
most accurate TDNN individual forecasts could accurately and more confidently predict
the trend of future changes, and that the forecast’s accuracy and reliability outperformed
those of the individual TDNNC forecasts and even some of the most recent state-of-the-art
forecasting techniques, such as the Extreme Learning Machine. Furthermore, we discovered
that the accuracy could be improved by up to 32% in the case of Malaysian forecasting.
According to the research described in this paper, we may expect the method’s applicability
to be expanded to other Al forecasting and modeling methodologies, as well as various
types of ANN topologies.

Our future studies will be focused on additional error reductions and the discussion
of the least number of neurons in the ANN layers that could accomplish this.
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