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Abstract: Climate disasters such as floods and droughts often bring heavy losses to human life, na-
tional economy, and public safety. El Niño/Southern Oscillation (ENSO) is one of the most important
inter-annual climate signals in the tropics and has a global impact on atmospheric circulation and
precipitation. To address the impact of climate change, accurate ENSO forecasts can help prevent
related climate disasters. Traditional prediction methods mainly include statistical methods and
dynamic methods. However, due to the variability and diversity of the temporal and spatial evolution
of ENSO, traditional methods still have great uncertainty in predicting ENSO. In recent years, with
the rapid development of artificial intelligence technology, it has gradually penetrated into all aspects
of people’s lives, and the climate field has also benefited. For example, deep learning methods in
artificial intelligence can automatically learn and train from a large amount of sample data, obtain
excellent feature representation, and effectively improve the performance of various learning tasks.
It is widely used in computer vision, natural language processing, and other fields. In 2019, Ham
et al. used a convolutional neural network (CNN) model in ENSO forecasting 18 months in advance,
and the winter ENSO forecasting skill could reach 0.64, far exceeding the dynamic model with a
forecasting skill of 0.5. The research results were regarded as the pioneering work of deep learning in
the field of weather forecasting. This paper introduces the traditional ENSO forecasting methods and
focuses on summarizing the various latest artificial intelligence methods and their forecasting effects
for ENSO forecasting, so as to provide useful reference for future research by researchers.

Keywords: climate disasters; ENSO forecasting; artificial intelligence; machine learning; deep learning
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1. Introduction

Climate change is a difficult problem facing the world today, and it affects people’s
production and life to a large extent. The most prominent El Niño-Southern Oscillation
(ENSO) phenomenon is the most important interannual signal of short-term climate change
on the earth [1]. It will have a great impact on the climate, environment, and socio-
economics on a global scale.

ENSO is wind and sea surface temperature oscillations that occur in the equatorial
eastern Pacific. In 1969, Bjerknes [2] proposed that El Niño and the Southern Oscillation are
two different manifestations of the same physical phenomenon in nature, which is reflected
in the ocean as the El Niño phenomenon and in the atmosphere as the Southern Oscillation
phenomenon. El Niño refers to the phenomenon of abnormal warming of the ocean every
two to seven years (every four years on average) in the equatorial eastern Pacific Ocean,
and the opposite cold phenomenon is called La Niña [3]. The Southern Oscillation refers
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to the mutual movement of the atmosphere between the eastern tropical Pacific and the
western tropical Pacific, and the cycle is also approximately four years. El Niño and La
Niña are closely related to the Southern Oscillation. When the Southern Oscillation index
has a persistent negative value, an El Niño phenomenon will occur in that year, and on the
contrary, a La Niña phenomenon will occur in that year.

Since ENSO is a global ocean–atmosphere interaction, it has a huge impact on crop
yields, temperature, and rainfall on Earth. In 1997-1998, fires triggered by an unusual
drought caused by ENSO destroyed large swathes of tropical rainforest worldwide [4]. Hur-
ricanes caused considerable damage in the United States from 1925-1997, with an average
annual loss of $5.2 billion [5]. In ENSO years, flood risk anomalies exist in basins spanning
almost half of the Earth’s surface [6]. The World Health Organization estimates that over
the past 30 years, anthropogenic warming and precipitation have claimed 150,000 lives
each year [7]. In order to deal with the threat of such climate disasters, knowing and
understanding the laws of climate change and making effective climate predictions in
advance are crucial to reducing disaster losses around the world.

ENSO prediction is one of the most important issues in climate science, affecting both
interannual climate predictions and decadal predictions of near-term global climate change.
Since the 1980s, scientists from all over the world have been working on ENSO prediction
research [8]. Since the relevant time scale of SST variability in most of the tropical Pacific
Ocean is about 1 year, the ENSO event dominates the SST variability [9], and the occurrence
of ENSO is reflected by the sea surface temperature anomaly (SSTA); therefore, ENSO is
predicted. The phenomenon is equivalent to predicting SSTA. In addition, among all the
indices, Niño3.4 is the most commonly used index to measure ENSO phenomena, and the
Niño3.4 index is the mean sea temperature in the range of 5◦ N~5◦ S 170◦ W~120◦ W.

ENSO projections are by far the most successful of short-term climate predictions.
Traditional ENSO prediction models are mainly divided into two categories: statistical
models and dynamic models. Statistical models analyze and predict ENSO through a
series of statistical methods, such as the linear transpose model (LIM), nonlinear canonical
correlation analysis (NLCCA), singular spectrum analysis (SSA), etc. Essentially, this is
accidental, they do not take full advantage of the laws of physics. The dynamic models
are mainly based on the dynamic theory of atmosphere–ocean interaction, such as the
intermediate coupled model (ICM), the hybrid coupled model (HCM), and the coupled
circulation model (CGCM) [10]. It is successful in short-term prediction, but it does
not make full use of the large amount of existing real historical data. For long-term
prediction, the pure dynamic method is difficult to work. Practice has shown that both
dynamic methods and statistical methods have a certain accuracy, and both can reflect
some of the laws of atmospheric motion [11–13], but due to the variability and diversity of
ENSO spatiotemporal evolution, traditional methods of predicting ENSO still have great
deficiencies, especially in the 21st century; the intensified influence of the extratropical
atmosphere on the tropics makes ENSO more complex and unpredictable.

The concept of artificial intelligence first came from the Dartmouth Conference on
Computers in 1956, and its essence is to hope that machines can think and respond similarly
to human brains. Machine learning is an important way to realize artificial intelligence. As
the most important branch of machine learning, deep learning has developed rapidly in
recent years and is now widely used in image recognition, natural language processing,
and other fields.

The concept of deep learning, which refers to the machine learning process of obtaining
a deep network structure containing multiple levels through a certain training method
based on sample data, was first proposed by Hinton et al. [14] at the University of Toronto
in 2006. Figure 1 shows the relationship among artificial intelligence, machine learning,
artificial neural networks and deep learning. Unlike machine learning, the deep learning
feature extraction process is performed automatically through deep neural networks. The
features in the neural network are obtained through learning. Under normal circumstances,
when the network layer is shallow, the extracted features are less representative of the
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original data. When the number of network layers is deep, the features extracted by the
model will be more representative. When the task to be solved is more complex, the
parameter requirements of the model are also higher, and the number of network layers at
this time is often deeper, which means that more complex tasks can be solved. Therefore,
it can be considered that the deeper the network layer, the stronger the feature extraction
ability. Currently, the commonly used deep neural network models mainly include CNN,
recurrent neural network (RNN), deep belief network (DBN), and the deep autoencoder
and generative adversarial network (GAN).

Figure 1. The relationship between artificial intelligence, machine learning, artificial neural networks,
and deep learning.

With the wide application of machine learning and deep learning in various fields in
recent years, some scholars have begun to use machine learning or deep learning technology
to predict meteorological elements (wind speed, temperature, etc.) or climate phenomena,
such as ENSO, and have obtained better results. This paper will summarize the previous
research results and make a more complete summary of ENSO predictions combined with
deep learning.

This paper is organized as follows: Section 1 outlines the main learning knowledge and
development status in ENSO forecasting; Section 2 focuses on traditional ENSO forecasting
methods; Section 3 is the key part of this paper, introducing the related models and theories
of deep learning in artificial intelligence and the existing ENSO prediction methods and
applications of deep learning in artificial intelligence; Section 4 summarizes the ENSO
forecasting methods in tabular form and discusses the existing deficiencies and future
development directions of ENSO predictions; finally, Section 5 provides a summary of the
full text.

2. Traditional Methods

In this section, we will focus on the existing theories or conclusions of traditional ENSO
forecasting methods. There are generally two methods for traditional ENSO prediction,
namely, the statistical model and the dynamic model. The following will list the currently
commonly used ENSO forecast methods and related ENSO forecast knowledge.

2.1. Climate Dynamics Methods

The dynamic method uses dynamic equations to model the ocean, atmosphere, land,
and other spheres and their interactions and uses the computer to gradually integrate
to simulate the evolution of the atmosphere. Since the first coupled ENSO model was
developed [15,16], various types of coupled models have been designed and used for ENSO
simulation and prediction. The coupling models mainly include the simple coupled model



Mathematics 2022, 10, 3793 4 of 22

(SCM) [17], intermediate coupled model (ICM) [16], hybrid coupled model (HCM) [18],
and fully coupled circulation models (GCMs) [19]. Dynamical models have become the
main tool for studying the mechanism, simulation, and prediction of ENSO, and the
prediction time reaches 6–12 months. Ref. [17] identified several free equatorial modes
for simple coupled ocean–atmosphere models and found that they included unstable and
damped modes at large regional scales and long periods, systematically exploring the
effects of ocean thermodynamics on the behavior of unstable modes. Ref. [16] developed
an atmosphere–ocean coupled model to study the ENSO phenomenon. In the absence
of anomalous external forcing, the coupled model reproduces some key features of the
observed phenomenon. The results show that the mean sea surface temperature, wind,
and ocean current field determine the characteristic spatial structure of the ENSO anomaly.
Ref. [18] conducted a series of hindcast and prediction experiments using the HCM of the
tropical ocean–atmosphere system. It shows real skills in forecasting fall/winter tropical
Pacific SST up to 18 months in advance. Ref. [19] used an integrated ocean–atmosphere
circulation model (OAGCM) for climate prediction. Both model performance and data
assimilation schemes for climate simulations were improved to yield better forecasting skills.
Most OAGCMs can now proficiently predict the Indian Ocean Dipole (IOD) 1–2 seasons in
advance, with ENSOs up to 6–9 months ahead.

In recent years, many forecasting systems have been put into use. The National
Climate Center of China Meteorological Administration (BCC/CMA) developed the ENSO
Monitoring, Analysis and Prediction System (SEMAP2) [20]. The system consists of five
subsystems: real-time monitoring of tropical atmosphere and ocean, dynamic diagnosis,
physical-based statistical prediction, model ensemble prediction, and simulation-based
model prediction [21] correction, which can realize the feedback process of ENSO changes
and dynamics in the recent year real-time monitoring and can provide users with forecasts
of the ENSO index and related main variable processes in the coming year. Since the spring
of 2013, SEMAP2 has been applied to ENSO business meetings organized by the National
Climate Center several consecutive times and given forecast opinions, with good results
and was adopted by forecasters many times. Especially in the spring of 2014, the prediction
of the evolution trend of El Niño in summer and autumn was basically in line with reality
and more accurately predicted the weak central EI Nino event in the winter of 2014/15 and
accurately predicted the development of El Niño since the spring of 2015. Trends and Type
Conversions. The forecasting system is still in use to this day. The fifth-generation seasonal
forecast system SEAS5 was put into use in November 2017 by the European Centre for
Medium-Range Weather Forecasts. It is a coupled dynamical model that includes higher
resolution models of the atmosphere, ocean, and sea ice. An important improvement
in SEAS5 is the weakening of the cold tongue bias in the equatorial Pacific, while the
amplitude of El Niño is closer to the actual value and improves the prediction ability of El
Niño in the central and western Pacific, making it show particular advantages in ENSO
predictions. When the forecast period is 9 months, the correlation coefficient of SEAS5 to
ENSO forecast reaches more than 0.7 [22].

If the starting time of the prediction model is advanced by more than 6 months,
the prediction ability of the traditional method model will be greatly reduced due to
the phenomenon of the spring predictability barrier (SPB) [1]. The SPB phenomenon was
discovered by Webster et al. [23] in the dynamic prediction model. Wang et al. [24] proposed
that the largest vertical temperature gradient and the weakest east–west thermal difference
in spring are conducive to the growth of the coupled system disturbance, which in turn
makes the spring sea-air coupling the most unstable, which is conducive to the generation
of the SPB phenomenon. Chen et al. [25] proposed a novel ENSO prediction model (EPM)
that combines tropical states and extratropical ocean–atmosphere interactions, which
can significantly improve ENSO forecasting skills beyond the spring-predictable barriers.
Although dynamical models are successful in short-term predictions, pure dynamical
methods are ineffective for long-term predictions.
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2.2. Mathematical Statistical Methods

The statistical ENSO prediction method is to realize the analysis and prediction of
ENSO phenomenon by sorting, summarizing, and analyzing historical ENSO indicators.
Statistical models include linear statistical models and nonlinear statistical models. The
former is constructed using linear methods such as multiple linear regression, canonical
correlation, and Markov chains, while the latter is mainly constructed using machine
learning methods such as Bayesian and neural networks.

2.2.1. Traditional Linear Statistical Methods

Among the traditional linear statistical methods, there are two outstanding classi-
cal methods, Holt Winters (HW) method and autoregressive integrated moving average
(ARIMA) method. The HW method is a short-term statistical method [26] that proposes a
forecasting expression for exponentially weighted moving averages for forecasting time
series with seasonal patterns and repeating forms, using a technique called “exponential
smoothing”, reducing the volatility of time-series data, allowing for a clearer understanding
of its rationale [27]. In 2014, Mike et al. used the HW model to predict the SST index in
the Niño3 region from 1933 to 2012 by 1 month and 12 months in advance, with a root
mean square error of 0.303 and 1.309. To address the shortcoming that the HW model is
not suitable for periodically stationary time series, they proposed an improved HW model
called the dynamic seasonal model (DSM). Experiments show that this model predicts
monthly Nino3 in sample analysis Area, and is better than the deterministic seasonal
model and HW model in terms of sea surface temperature index and intraday stock return
changes [28].

ARIMA, also known as the integrated moving average autoregressive model, is one
of the time series forecasting analysis methods. In 2011, Matthieu et al. [29] developed a
time-series analysis method using ARIMA to investigate the temporal correlation between
monthly P. falciparum case numbers and ENSO measured by SOI at Cayenne General
Hospital from 1996 to 2009. Results showed that an El Niño lag of 3 months had a positive
effect on P. falciparum cases (p < 0.001), and adding SOI data to the ARIMA model reduced
the Akaike information criterion (AIC) [30] by 4%. However, ARIMA cannot return
estimates of seasonal components [31]. In addition, Penland et al. [32] proposed to represent
the Indo-Pacific SSTAs as a stable linear process driven by spatially coherent stochastic
forcing, obtain the relevant parameters that best fit the stable linear process through
observations, and then make assumptions about stability and linearity. The experimental
results show that the optimal model can achieve a sample correlation of 67% between
two time series predicted 7 months in advance. The multiple linear regression model
proposed by Tseng et al. [33] only relies on five evolutions of thermocline depth anomalies
and zonal surface wind modulation over a 25-day period. It successfully post-reported
all ENSOs except the 2000/01 La Niña. Xue et al. [34] established a forecast model using
the linear Markov model, using sea surface temperature, sea level height, and wind stress
as predictors. When the forecast period is 6 months, its forecast-related skill reaches 0.8.
Kondrashov et al. [35] obtained the stochastic forcing model of ENSO by polynomial
regression analysis. When the forecast period is 6 months, the correlation coefficient
exceeds 0.6.

The ENSO phenomenon is a highly complex and dynamic pattern whose trend over
time is nonlinear. Traditional statistical methods have poor fitting effect on nonlinear data
sets, and are not ideal for complex pattern recognition and knowledge discovery.

2.2.2. Machine Learning Methods

The ML-based ENSO prediction method is realized by learning and mining historical
ENSO index features and establishing an ENSO prediction model. In 1998, Tangang et al. [36]
and Jiang Guorong et al. [37] found that the combination of the neural network algorithm
and empirical orthogonal function analysis method can have unexpected effects on ENSO
forecasting. In 2009, Silvestre and William [38] proposed two nonlinear regression models,
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Bayesian neural network (BNN) and support vector regression (SVR). Temperature can be
used as a predictor of SST anomalies in the tropical Pacific for 3–15 months. The results
show that the BNN model has better overall prediction performance than the SVR model.
Liu Kefeng et al. [39] also found that the multi-step hierarchical prediction method based
on the combination of support vector machine and wavelet decomposition method can
effectively predict the time series of sea temperature anomalies. Feng et al. [40] proposed
a toolbox “climatelearn”, combined with some machine learning methods, to predict the
occurrence of El Niño and Niño3.4 indices. In 2016, in terms of ENSO forecasting, the
zero-mean random error model of ICM was proposed [41], called the ensemble-mean
model, which showed better results than the deterministic ICM on ENSO forecasting.
Peter D et al. [42] combined the classic autoregressive synthetic moving average technique
with an artificial neural network to predict the ENSO index. In addition, Li Chentong used
the decision tree algorithm to establish a multi-modal ENSO prediction result intelligent
consultation system. He used four decision tree model methods (boosting-based GBDT,
XGBoost, lightGBM, and bagging-based RF), respectively, and established a multi-modal
ENSO forecasting result intelligent consultation system according to different advance
forecasting times.

ML-based methods, especially those based on deep networks, tend to be more complex,
take longer to compute, and have poor predictive ability for very long sequences of ENSO
indices. In addition, for the long-time series Niño 3.4 index and SOI data, they not only
have approximately periodic interannual variation characteristics but also have a large
amount of high-frequency random noise due to seasonal variation, which seriously reduces
the predictive ability of numerical simulation models. Therefore, ENSO events are still
difficult to predict with a lead time of more than one year.

3. Deep Learning Methods

With the rapid development of big data and deep learning methods in recent years,
prediction methods based on deep learning have been widely used in various fields, and
some scholars have begun to use deep learning to improve ENSO forecasting skills. This
section mainly introduces the related models and theories of spatiotemporal sequences in
deep learning and the application of deep learning in ENSO prediction, including shallow
neural networks, CNNs, RNNs, and graph neural networks (GNN).

3.1. Shallow Neural Networks

In 1986, Rumelhar and Hinton [43] proposed the back-propagation algorithm, which
solved the complex calculation problem of the two-layer neural network, which led to the
research upsurge of the two-layer neural network in the industry. In addition to an input
layer and an output layer, a two-layer neural network also includes an intermediate layer,
where both the intermediate layer and the output layer are computational layers. Its matrix
change formula is: (

W(1) ∗ a(1)
)
= a(2)

g
(

W(2) ∗ a(2)
)
= z (1)

In each layer of the neural network, except for the output layer, there will be a bias
unit. As in linear regression models and logistic regression models. The matrix operation
of the neural network after considering the bias is as follows:

g
(

W(1) ∗ a(1) + b(1)
)
= a(2)

g
(

W(2) ∗ a(2) + b(2)
)
= z (2)

Different from the single-layer neural network, it is theoretically proven that the two-
layer neural network can approximate any continuous function infinitely, that is to say,
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in the face of complex nonlinear classification tasks, the two-layer neural network can
better classify.

The multi-layer neural network continues to add layers after the output layer of the
two-layer neural network. Its advantage is that it can represent features in a deeper way and
has a stronger ability to simulate functions. The BP neural network is a concept proposed
by scientists headed by Rumelhart and McClelland in 1986. It is a multi-layer feedforward
neural network trained according to the error back-propagation algorithm. In other words,
it is a feedforward multi-layer perceptron (MLP) trained using the BP algorithm. The
BP neural network is widely used in meteorological forecasting. The classic BP neural
network is generally divided into three layers, namely, the input layer, the hidden layer,
and the output layer. The main idea of its training is: input data, use the back-propagation
algorithm to continuously adjust and train the weights and thresholds of the network,
adjust the weights and thresholds according to the prediction error, and output the results
that are close to the expectations until the predicted results can reach the expectations. The
topology of the BP neural network is shown in Figure 2.

Figure 2. BP neural network topology diagram.

When the BP neural network processes data, the network should be initialized first
and the network parameters should be set; The second step is to calculate the output of
the hidden layer, the output formula is shown in Formula (3), where X represents the
input variable, ωij, a are the input connection weight of the layer and the hidden layer
and the threshold of the hidden layer, l is the number of nodes in the hidden layer, f is
the activation function of the hidden layer; then the output layer is calculated, and the
predicted output Y of the BP network is shown in formula (4), Among them, H is the
output of the hidden layer, ωij, b are the connection weights and thresholds, respectively;
The formula for calculating the error is shown in (5), where Yk is the predicted value of the
network, Ok is the actual expected value; We update the weights and update the network
connection weights ωij, ωjk through the prediction error e. The formula is shown in (6),
and η is the learning rate; the network thresholds a and b are updated according to the
prediction error e, and the formula is shown in (7); Finally, determine whether the iteration
can end. If the algorithm iteration does not end, we return to the second step until the
algorithm ends.

Hj = f

(
n

∑
i=1

ωijxi + aj

)
, j = 1, 2, . . . , l (3)

Yk =
l

∑
j=1

Hjωjk + bk, k = 1, 2, . . . , m (4)

ek = Yk −Ok, k = 1, 2, . . . , m (5)

ωij = ωij + ηHj
(
1− Hj

)
xi

m
∑

k=1
ωjkek, i = 1, 2, . . . , n; j = 1, 2, . . . , l

ωjk = ωjk + ηHjek, j = 1, . . . , l; k = 1, . . . , m
(6)
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aj = aj + ηHj(1− H)xi
m
∑

k=1
ωjkek, j = 1, . . . , l

bk = bk + ηek, k = 1, . . . , m
(7)

Many researchers initially tried to apply shallow neural networks to ENSO prediction
and achieved good results. Jiang Guorong et al. [37] used the back-propagation (BP)
algorithm for ENSO forecasting, which could better predict the changing trend of SST in
key areas. However, forecast skill assessment depends on forecast time, which is inversely
proportional. Baawain et al. [44] designed a three-layer multi-layer perceptron model,
and the hidden layer and output layer were trained using a logical activation function
through an error back-propagation algorithm. Ravi et al. [45] used the ANN model to select
the Niño1+2, Niño3, Niño3.4, and Niño4 indices as the predictors of the Indian summer
monsoon rainfall index (ISMRI) for prediction. The results show that the neural network
model has better predictive power than all linear regression models. Mekanik et al. [46]
found through experiments that using the lagged ENSO-DMI index combined with ANN
to predict spring rainfall can achieve a 96.96% correlation. This method can be used in
areas of the world where there is a relationship between rainfall and large-scale climate
patterns that cannot be established by linear methods. Petersik and Dijkstra et al. [47]
used an ensemble of Gaussian density neural networks and quantile regression neural
networks to train ENSO indices and ocean heat content with a small amount of data to
predict ENSO. For 1963–2017 assessments, these models are highly correlated with longer
lead times. However, the shallow neural network has limited ability to represent complex
functions, and its generalization ability for complex classification problems is restricted to
a certain extent, and the shallow neural network tends to fall into a local minimum during
training, which is prone to overfitting during testing. The multi-layer neural network can
represent complex functions with fewer parameters by learning a deep nonlinear network
structure and has strong feature learning ability. A multi-layer neural network has great
potential to solve complex nonlinear stochastic problems with many influencing factors
such as climate prediction.

3.2. Convolutional Neural Networks

Research on CNNs began in the 1980s and 1990s, and time delay networks and LeNet-5
were the first CNNs. Yann LeCun et al. [48] proposed a CNN algorithm based on gradient
learning in 1998 and applied it to handwritten digit recognition. In 2012, Hinton et al. [49]
won the classification competition, which opened the prelude to the gradual domination of
CNNs in the field of computer vision.

As a type of neural network, CNN can effectively extract features contained in images,
so it is widely used in fields involving image processing (such as image recognition, object
detection, etc.) [49,50]. For meteorological data, the distribution field of a certain element at
a certain time can be regarded as an image, and it can be used as the input of CNN. Using
CNN to solve it is actually a nonlinear regression of the global ocean element field and the
Nino3.4 regional SST in the next few months.

The main structure of CNN includes input layer, convolution layer, pooling layer,
fully connected layer, and output layer. The main function of the convolution layer is to
enhance the original signal features and reduce noise through convolution operations. The
expression for convolution in calculus is:

S(t) =
∫

x(t− a)w(a)da (8)

The discrete form is:
s(t) = ∑

a
x(t− a)ω(a) (9)

This formula can be expressed as a matrix:

(t) = (X ∗W)(t) (10)
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Among them, ∗ represents the convolution operation; if it is a two-dimensional convolution,
it is represented as:

s(i, j) = (X ∗W)(i, j) = ∑
m

∑
n

x(i−m, j− n)w(m, n) (11)

The convolution formula in CNN is slightly different from the definition in mathemat-
ics. For example, for two-dimensional convolution, it is defined as:

s(i, j) = (X ∗W)(i, j) = ∑
m

∑
n

x(i + m, j + n)w(m, n) (12)

Among them, W is the convolution kernel, and X is the input. If X is a two-dimensional
input matrix, then W is also a two-dimensional matrix. However, if X is a multidimensional
tensor, then W is also a multidimensional tensor.

The main purpose of the pooling layer is to reduce the amount of data processing and
speed up network training while retaining useful information. Commonly used pooling
operations include average pooling and maximum pooling. The results of max pooling
and average pooling are as follows:

yil+1 , jil+1 , d =
1

HW ∑
0≤i≤H,0≤j≤W

xl
il+1 × H + i, jl+1 ×W + j, dl (13)

yil+1 , jil+1 , d = max
0≤i≤H,0≤j≤W

xl
il+1 × H + i, jl+1 ×W + j, dl (14)

The activation function layer is also called the nonlinear mapping layer. The purpose
is to increase the expressive ability (nonlinearity) of the entire network. The main activation
functions include the sigmoid function, the tanh function, and the relu function. The
formula of the activation function is shown in (15). After several layers of convolution and
pooling operations, the obtained feature maps are expanded row by row, connected into
vectors, and input into the fully connected network. The fully connected layer integrates
the features in the feature map to obtain the high-level meaning of the image features,
which is then used for image classification.

sigmoid(x) =
1

1 + e−x

tanh(x) =
1− e−2x

1 + e−2x (15)

relu(x) =
{

0 (x ≤ 0)
x (x > 0)

CNNs are applied in many fields of weather forecasting, and they are also helpful
for ENSO forecasting. In September 2019, Ham et al. [51] first proposed using a CNN
for ENSO prediction. The model structure is shown in Figure 3. CNN requires a large
number of images for training in order to improve the accuracy of prediction. Despite the
large scale of meteorological data, the use of CNNs in ENSO forecasting has encountered
difficulties with data shortages. Ham et al. proposed to combine climate models with
artificial intelligence methods, using dozens of global climate models from CMIP5 to
generate a series of simulated data based on historical ocean data. As a result, scientists not
only have a set of actual historical observations but also thousands of simulation results for
training. The research results show that when the prediction time is more than 6 months,
the prediction ability of the CNN method for the Nino3.4 index is significantly higher than
that of the current international best dynamic prediction system. When tested on real data
from 1984 to 2017, CNN was able to predict El Niño events 18 months in advance. At the
time, the research results were regarded as the pioneering work of deep learning in the
field of weather forecasting.
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Figure 3. Structure of the CNN model for ENSO prediction [51].

However, the defects of CNN itself, including fixed input vector size and inconsistent
input and output size, limit its application in time-series forecasting. In 2020, Yan et al. [52]
proposed the ensemble empirical mode decomposition-temporal convolutional network
(EEMD-TCN) hybrid method, which decomposes the variable Niño3.4 exponent and
SOI into relatively flat subcomponents; then, The TCN model is used to predict each
subcomponent in advance, and finally, the sub-prediction results are combined to obtain
the final ENSO prediction result. The TCN residual module diagram is shown in Figure 4.
TCN is a variant of CNN that uses random convolution and dilation for sequential data
with temporality and large receptive fields. Empirical mode decomposition can decompose
high-frequency time series Niño 3.4 index and SOI data into multiple adaptive orthogonal
components, improving the prediction accuracy of the model. The experimental results
show that the TCN method has a good effect in the advance prediction of ENSO, which
has important guiding significance for the research into ENSO. In response to the problem
of data shortage, in addition to [51] using climate models to generate a large amount of
simulated data, in 2021, Hu [53] et al. used dropout and transfer learning to overcome the
problem of insufficient data during model training and proposed a model based on a deep
residual convolutional neural network. The model effectively predicts the Niño 3.4 index
with a lead time of 20 months during the 1984–2017 evaluation period, three months
more than the existing optimal model. In addition, they also use heterogeneous transfer
learning. This model achieved 83.3% accuracy for forecasting the 12-month-lead EI Niño
type. However, many forecasts only consider temporality and the lack of spatial features
in ENSO. In 2022, Zhao [54] et al. proposed an end-to-end spatial temporal semantic
network, named STSNet, which consists of three main modules: (1) Geographic semantic
enhancement module (GSEM) distinguishes various latitude and longitude through a
learnable adaptive weight matrix; (2) A novel spatiotemporal convolutional module(STCM)
is designed specially to extract the multidimensional features by alternating the execution
of temporal and spatial convolution and temporal attention; (3) Combining and exploiting
multi-scale temporal information in a three-stream temporal scale module (3sTSM) to
further improve performance. Figure 5 illustrates the pipeline of the proposed STSNet. The
results show that STSNet can simultaneously provide effective ENSO predictions for 16
months with higher correlation and lower bias compared to other deep learning models.
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Figure 4. The TCN residual module [52].
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Figure 5. The pipeline of the proposed STSNet [54].

3.3. Recurrent Neural Network

When the input data has dependencies and is a sequential pattern, the results of CNNs
are generally not very good, because there is no correlation between the previous input
of the CNN and the next input. In 1982, Hopfield [55] proposed RNN. RNN is used to
solve the problem that the training sample input is a continuous sequence, and the length
of the sequence is different, such as the problem based on the time series. RNNs enable
deep learning models to make breakthroughs in solving problems in NLP domains such as
speech recognition [56], language models [57], machine translation [58], and time series
analysis. In 1997, Jurgen Schmidhuber et al. [59] proposed long short-term memory (LSTM),
a novel RNN variant structure that uses gating units and memory mechanisms to capture
long-term temporal dependencies, and successfully solves gradient disappearance and
the explosion problem, which controls the flow of information through learnable gates.
The structure comparison of RNN and LSTM is shown in Figure 6. Among them, LSTM
introduces the concepts of the forgetting gate, input gate, and output gate, thus, modifying
the calculation method of the hidden state in RNN. The formula is as follows:

It = σ(XtWxi + Ht−1Whi + bi) (16)

Ft = σ
(

XtWx f + Ht−1Wh f + b f

)
(17)

Ot = σ(XtWxo + Ht−1Who + bo) (18)

Among them, Wxi, Wx f , Wxo and Whi, Wh f , Who are all learnable weight parameters,
and bi, b f , bo are learnable offset parameters. The candidate cell in long short-term memory
∼
Ct uses the hyperbolic tangent function tanh in the range [−1, 1] as the activation function:

∼
Ct = tanh(XtWxc + Ht−1Whc + bc) (19)

The flow of information in the hidden state can be controlled by input gates, forget-
ting gates, and output gates with element values in the range [0, 1]: this can usually be

performed with the element-wise multiplication operator �. The calculation of the cell
∼
Ct

at the current moment combines the information of the cell at the previous moment and
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the candidate cell at the current moment, and controls the flow of information through the
forgetting gate and the input gate:

Ct = Ft � Ct−1 + It �
∼
Ct (20)

Next, the information flow from the cell to the hidden layer variable Ht can be con-
trolled by the output gate:

Ht = Ot � tanh(Ct) (21)

In 2017, Zhang, Wang [60], and others defined the SST prediction problem as a time-
series regression problem and used LSTM as the main layer of the network structure to
predict the Bohai Sea temperature. The experimental results compared with SVR show
that the LSTM network has better prediction performance. In 2018, Clifford et al. [61] used
the “climate complex network” to extract meteorological data features, used the extracted
features as predictors, and used LSTM to predict the Nino3.4 index. Experiments show
that training LSTM models on network metric time series datasets has great potential for
predicting ENSO phenomena many steps ahead. In 2021, Zhou et al. [62] used LSTM to
build a tropical Pacific Niño3.4 index forecast model and analyzed the seasonal forecast
error of the model. The results show that for the 1997/1998 and 2015/2016 strong eastern-
type El Niño events, the model can more accurately predict the trends and peaks of the
events, and the anomalous correlation coefficient (ACC) reaches more than 0.93. However,
for the 1991/1992 and 2002/2003 weak central El Niño events, it did not perform well in
peak forecasting.

Figure 6. Comparison of the RNN and LSTM structure.

Shi X et al. [63] proposed the concept of convolutional long short-term memory
(ConvLSTM) and established an end-to-end trainable for the precipitation now-prediction
problem by stacking multiple ConvLSTM layers to form an encoder–decoder structure The
model diagram is shown in Figure 7. ConvLSTM is designed to solve the problem of 3D
data prediction; the unit can receive 2D matrices and even higher dimensional inputs at
each time step. The key improvement is that the Hadamard product between the weights
and the input is replaced by a convolution operation, as shown in Equation (22). It can
not only establish temporal relationships similar to LSTM but also describe local spatial
features by extracting features similar to CNN.

it = σ(Wxi ∗ Xt + Whi ∗ Xt−1 + bi)
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ft = σ
(

Wx f ∗ Xt + Wh f ∗ Ht−1 + b f

)
ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + bo) (22)
∼
Ct = tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc)

Ct = ft � Ct−1 + it �
∼
Ct

Ht = ot � tanh(Ct)

Figure 7. Encoding-forecasting ConvLSTM network [63].

Among them, “∗” represents the convolution operation, “�” represents Hadamard
product. The difference between ConvLSTM and LSTM is only that the input-to-state and
state-to-state parts are replaced by fully connected calculations with convolution calculations.

In 2019, Dandan He et al. [64] established a deep learning ENSO prediction model
(DLENSO) using ConvLSTM to predict ENSO by directly predicting SST in the tropical
Pacific. DLENSO is a sequence-to-sequence model. Its encoder and decoder are both Con-
vLSTM, and the input and prediction targets are both spatiotemporal sequences. DLENSO
is superior to the LSTM model and the deterministic prediction model and is almost equiv-
alent to the ensemble average in the medium and long-term prediction models. To capture
both spatial and temporal correlations in SST and improve prediction skills over longer
time horizons, Mu [65] et al. proposed the ConvLSTM-RM model, which is a hybrid of
convolutional LSTM and rolling mechanism, and used it to build an end-to-end trainable
model for the ENSO prediction problem. Their experiments on historical SST datasets show
that ConvLSTM-RM outperforms seven well-known methods on multiple time horizons (6
months, 9 months, and 12 months). The deep learning methods used above are all super-
vised learning, the training data are all labeled, and the cost of data labeling is often huge. In
recent years, unsupervised learning has been mined and gradually developed. The biggest
advantage of unsupervised learning is that it does not need to label the data so it can save a
lot of manpower and resources. At the same time, compared with the limited labels marked
by supervised learning, the features that can be learned by unsupervised learning are more
adaptive and rich. In 2021, Geng et al. [66] regarded ENSO prediction as an unsupervised
spatiotemporal prediction problem and designed a dense convolution–long short-term
memory (DC-LSTM). The model diagram is shown in Figure 8. To obtain a more adequately
trained model, they added historical simulated data to the training set. The experimental
results show that the DC-LSTM method is more suitable for large area and single factor
prediction. During the 1994–2010 validation period, the full-season correlation ability of
the Nino3.4 index of DC-LSTM was higher than that of the existing dynamic models and
regression neural networks, and the prediction effect for a lead time of up to 20 months
was much higher than [51]. In 2022, Lu et al. [67] developed a new hybrid model, POP-Net,
to predict SST in Niño 3.4 regions by combining POP analysis procedures with CNN and
LSTM. POP-Net achieved a high correlation of 17-month lead-time predictions (correlation
coefficient over 0.5) during the 1994–2020 validation period. In addition, POP-Net also
mitigates SPB.
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Figure 8. Model structure diagram of DC-LSTM [66].

RNNs also have their own flaws. The RNN is often used to process sequence data,
but the disadvantage is that it is not suitable for long sequences, and the gradient is easy
to vanish. LSTM is proposed to deal with the problem of gradient disappearance. It
is especially suitable for long sequences, but the disadvantage is the large amount of
calculation; GRU is proposed to simplify the calculation of LSTM; obviously, GRU lost a
gate in LSTM. Obviously, if the parameters are less, the natural calculation will be faster.
When the training set is large, the performance is naturally not as good as LSTM.

3.4. Graph Neural Networks

The concept of GNN was first proposed by Gori [68] and others in 2005. The RNN
framework was used to deal with undirected graphs, directed graphs, labeled graphs, and
cyclic graphs. The feature map and node aggregation of the method generate a vector
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representation for each node, which cannot well deal with the complex and changeable
graph data in reality. Bruna et al. [69] proposed to apply CNN to graphs, and through clever
transformation of convolution operators, they proposed the graph convolutional network
(GCN) and derived many variants. The proposal of GCN is the “pioneering work” of the
graph neural network. For the first time, the convolution operation in image processing is
simply used in the processing of graph structure data, which reduces the computational
complexity of the graph neural network model. The calculation of the Laplacian matrix in
the calculation process has since become past tense. Supposing we have a batch of graph
data, which has N nodes and each node has its own characteristics, we let the characteristics
of these nodes form an N × D-dimensional matrix X, and then the relationship between
each node will also form an N × D. An N-dimensional matrix A is called an adjacency
matrix. X and A are the inputs to our model, and the formula for GCN is as follows:

H(l+1) = σ

(
˜

D
− 1

2 ˜
A

˜
D
− 1

2
H(l)W(l)

)
(23)

Among them,
˜
A = A + I, I is the identity matrix;

˜
D is the degree matrix of

˜
A; H is the

feature of each layer; for the input layer, H is X; σ is the nonlinear activation function. The
model of GCN is shown in Figure 9.

Figure 9. Graph convolutional neural networks [68].

In 2021, Cachay et al. [70] first proposed the application of a graph neural network in
seasonal forecasting and published it in NIPS. They advocated defining the ONI prediction
problem as a graph regression problem and modeled it using GNNs that generalized
convolutions to non-Euclidean data, thus, allowing us to model large-scale global con-
nections as edges of the graph, except in graph convolutional neural networks, and they
also designed a new graph-connected learning module to enable GNN models to learn
large-scale spatial interactions together with practical ENSO prediction tasks. The model
surpasses the state-of-the-art deep learning-based CNN model in ENSO prediction, and
is also more effective than the LSTM model and the dynamic model, and its correlation
coefficients in ENSO predictions 1 month, 3 months, and 6 months ahead of time reach
0.97, 0.92, and 0.78. The heat map of its effect is shown in Figure 10. Simply using the
graphical model can achieve such excellent results. If the graphical model is combined with
the power coupler, will there be new gains? Practice brings true knowledge. Bin [71] et al.
designed a graph-based multivariate air–sea coupler (ASC) using the features of multiple
physical variables to learn multivariate synergy through graph convolution. Based on this
coupler, an ENSO deep learning prediction model, ENSO-ASC, was proposed, which uses
stacked ConvLSTM layers as the skeleton of the encoder to extract spatiotemporal features,
and the decoder consists of stacked transform convolutional layers and upsampling layers.
The model structure diagram is shown in Figure 11. The experimental results show that
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ENSO-ASC outperforms other models; sea surface temperature and zonal wind are two
important predictors; and the Niño 3.4 index has correlations of over 0.78, 0.65, and 0.5
for lead times of 6, 12, and 18 months, respectively. Through this case, we can see that
combining deep learning models with multivariate air–sea couplers or other dynamical
models can improve the effectiveness and superiority of predicting ENSO and analyzing
underlying dynamical mechanisms in a complex manner.

Figure 10. Heatmap of the effect of GNN predicting ENSO [70]. (a–d) respectively represent the heat
map of GNN’s prediction of ENSO on a time scale of 1, 3, 6 and 9 months in advance.

Figure 11. The structure of ENSO-ASC [71].

However, many recent cross-domain studies have found that GNN models do not
provide the expected performance. When the researchers compared them to simpler tree-
based baseline models, GNNs could not even outperform the baseline models. GNN can
only perform feature denoising and cannot learn nonlinear manifolds. GNNs can, therefore,
be viewed as a mechanism for graph learning models (e.g., for feature denoising) rather
than as a complete end-to-end model. It has to be said that GNN, as an emerging neural
network, has great prospects for development.

4. Discussion

We summarize the traditional and deep learning methods for ENSO prediction listed
in this paper in Table 1. More than half a century of ENSO research has achieved significant
results, especially the possibility of real-time prediction of its advance month–season scale,
such as the current linear statistical models or the dynamic models based on mathematical
equations can predict ENSO at least 6 months in advance. We have achieved better real-time
forecasting, but there are still large errors and uncertainties in forecasting skills. On the
other hand, deep learning methods were put into use in ENSO forecasting and have greatly
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improved our forecasting ability for ENSO. The experimental indicators show that most
spatiotemporal neural networks are suitable for ENSO prediction. Although deep learning
methods can improve the accuracy of ENSO forecasting, artificial intelligence methods
are not developed for the field of science, and research using neural networks to predict
climate phenomena is still in its infancy, so there are still many problems.

Table 1. Summary of deep learning and its application in ENSO forecasting.

Method Specific Method Generalize Features

Traditional
Method

Dynamic Methods

Using dynamic equations, the
ocean, atmosphere, land, and other
spheres and their interactions are

modeled, and the computer is
gradually integrated to simulate
the evolution of the atmosphere.
Ranging from relatively simple

physical models to comprehensive
fully coupled models.

The averaging skills of dynamic
models are generally better than
statistical models, but in practice,

it is difficult to simulate the
interannual average variation of
sea surface temperature due to
uncertainty in initial conditions.

The emergence of SPB
phenomenon.

Statistical
Methods

Linear
Statistical
Methods

Realize the analysis and prediction
of ENSO phenomenon by sorting,

summarizing, and analyzing
historical ENSO indicators.

Statistical models require past
long-term forecast data to discover

potential relationships, but
observations of the tropical Pacific

did not begin until the 1990s.
Compared to complex dynamic

models, statistical models reduce
cost and are easier to develop.

Machine
Learning
Methods

Nonlinear statistical method, by
learning and mining historical

ENSO index features, using
machine learning models to

capture the nonlinear features of
ENSO for prediction.

Deep
Learning
Methods

Convolutional Neural Network

CNN is a kind of feed-forward
neural network with convolution

calculation and deep structure
from inputting original

information, self-learning features,
as the network goes from front to

back, combining features from
shallow to deep.

The forecasting skills of CNN are
much higher than the current

state-of-the-art dynamic models
and can also better predict the

detailed regional distribution of
SST, overcoming the weaknesses

of the dynamic prediction models.
CNN is less affected by SPB, but it

is not suitable for time-series
forecasting.

Recurrent Neural Network

RNNs are a pattern for text,
sequence data recognition. Its

input includes more than just the
currently seen input example. It

also includes information that the
network perceives at the last
minute. Using this property,

information can circulate in the
network for any length of time.
Including LSTM, ConvLSTM,

ConvGRU, etc.

RNN is suitable for solving
sequence problems with

continuous and different length of
training sample input, such as

time-series-based problems. The
model can more accurately predict

the trend and peak of strong El
Niño events, but it is not good for

weak El Niño peaks.

Graph Neural Network

GNN is a deep learning method
based on a graph structure, where
data is represented in the form of a

graph, and information flow is
explicitly modeled through edge

connections.

The gridded climate data can be
naturally mapped to the nodes of
GNN, and the prediction effect of
GNN in the first 6 months exceeds
the current state-of-the-art CNN
model. However, there are still
problems such as difficulty in

predicting extreme ENSO events
and limited training samples.
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First, deep learning has better modeling capabilities on the basis of big data, while the
number of climate observation samples is small, especially for extreme events. In this case,
the self-learning ability of deep learning methods is greatly limited, so the development of
deep learning methods for small sample events is a current development direction. Second,
in recent years, deep learning models have become more and more complex. Generally
speaking, the more complex the model, the better its learning ability, but the problem is
that the interpretability of the model results is worse.

In addition, when making long-term predictions, the prediction of ENSO event peaks
has the problem of underestimation and prediction lag. We could try to introduce some
random disturbance mechanisms so that the model can predict greater intensity. ENSO
will also have the SPB problem in long-term forecasting, which is a difficult point in
dynamic forecasting. More in-depth parameter adjustment work can be performed on
the learning rates of different optimizers in the deep learning model, perhaps by finding
hyperparameters that mitigate SPB in the training set. In addition, in order to improve the
accuracy and length of ENSO predictions, we could try the spatiotemporal prediction model
and graph neural network model recently proposed by AI, and use observation data and
simulated data for training to increase the amount of training data. With sufficient data, we
may be able to train a better model. At present, most of the research on artificial intelligence
to improve ENSO prediction and other aspects mainly stays on the direct application of
related artificial intelligence technology. Considering that phenomena such as ENSO in
earth science research have clear temporal and spatial structures and evolution laws of
physical processes, the ability to organically combine the temporal and spatial evolution
characteristics of ENSO based on physical analysis methods with artificial intelligence
methods based on big data to further improve ENSO Forecasting skills is a hot topic in
the field of climate change. It is also worth continuing to explore how to combine deep
learning with meteorology and climate in the future.

5. Conclusions

The severe cold and heat caused by the climate change caused by ENSO affect people’s
daily life, and improving the accuracy of ENSO prediction is still a direction that researchers
need to work on. This paper summarizes the main knowledge and development status of
ENSO forecasting, including traditional ENSO forecasting methods and the application
of artificial intelligence in ENSO forecasting. In this paper, artificial intelligence methods
are divided into machine learning methods and deep learning methods. In the section
on machine learning, the main methods such as decision tree, Bayesian, support vector
machine and ARIMA are reviewed in ENSO forecasting. In the deep learning section,
we summarized convolutional neural networks, recurrent neural networks, graph neural
networks and their variants, focusing on the performance of these models in ENSO predic-
tion. Table 1 provides an overview of various ENSO prediction methods and compares the
advantages and disadvantages of each method. From the introductions in Sections 2 and 3,
it can be seen that the application of deep learning in ENSO prediction is widely effective
and has great potential to further improve the prediction accuracy and length. By combin-
ing deep learning and meteorological science, researchers have drawn more conclusions,
contributing to better climate predictions in the future. Finally, we analyzed the problems
and research directions of artificial intelligence in ENSO prediction for future researchers’
reference and further development and better use of deep learning to expand more ways to
help predict ENSO and even other climate problems.

Author Contributions: Conceptualization, W.F. and Y.S.; methodology, W.F.; investigation, Y.S.;
resources, W.F.; writing—original draft preparation, W.F. and Y.S.; writing—review and editing, W.F.
and V.S.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant No.
42075007), the Open Grants of the State Key Laboratory of Severe Weather (No. 2021LASW-B19).

Institutional Review Board Statement: Not applicable.



Mathematics 2022, 10, 3793 20 of 22

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author would like to thank the researchers in the field of ENSO forecasting
and other related fields. This paper cites the research literature of several scholars. It would be
difficult for me to complete this review without being inspired by their research results. Thank you
for all the help we have received in writing this article.

Conflicts of Interest: The authors declare that they have no conflict of interest to report regarding
the present study.

References
1. McPhaden, M.J.; Zebiak, S.E.; Glantz, M.H. ENSO as an integrating concept in earth science. Science 2006, 314, 1740–1745.

[CrossRef] [PubMed]
2. Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev. 1969, 97, 163–172. [CrossRef]
3. Lin, J.; Qian, T. Switch between El Nino and La Nina is caused by subsurface ocean waves likely driven by lunar tidal forcing. Sci.

Rep. 2019, 9, 13106.
4. Siegert, F.; Ruecker, G.; Hinrichs, A. Increased damage from fires in logged forests during droughts caused by El Nino. Nature

2001, 414, 437–440. [CrossRef] [PubMed]
5. Pielke, R.A.; Landsea, C.N. La Nina, El Nino, and Atlantic Hurricane Damages in the United States. Bull. Am. Meteorol. Soc. 1999,

80, 2027–2034. [CrossRef]
6. Ward, P.J.; Jongman, B.; Kummu, M. Strong influence of El Niño southern oscillation on flood risk around the world. Proc. Natl.

Acad. Sci. USA 2014, 111, 15659–15664. [CrossRef] [PubMed]
7. Patz, J.A.; Campbell-Lendrum, D.; Holloway, T. Impact of regional climate change on human health. Nature 2005, 438, 310–317.

[CrossRef]
8. Tang, Y.; Zhang, R.H.; Liu, T. Progress in ENSO prediction and predictability study. Natl. Sci. Rev. 2018, 5, 826–839. [CrossRef]
9. Masson, S.; Terray, P.; Madec, G. Impact of intra-daily SST variability on ENSO characteristics in a coupled model. Clim. Dyn.

2012, 39, 681–707. [CrossRef]
10. Wang, Y.; Jiang, J.; Zhang, H. A scalable parallel algorithm for atmospheric general circulation models on a multi-core cluster.

Future Gener. Comput. Syst. 2017, 72, 1–10. [CrossRef]
11. Jin, E.K.; Kinter, J.L.; Wang, B. Current status of ENSO prediction skill in coupled ocean-atmosphere models. Clim. Dyn. 2008, 31,

647–664. [CrossRef]
12. Ren, F.M.; Yuan, Y.; Sun, C.H. Review of progress of ENSO studies in the past three decades. Adv. Meteorol. Sci. Technol. 2012, 2,

17–24.
13. Clarke, A.J. El Niño physics and El Niño predictability. Annu. Rev. Mar. Sci. 2014, 6, 79–99. [CrossRef] [PubMed]
14. Hinton, G.E.; Osindero, S.; The, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [CrossRef]
15. Cane, M.A.; Zebiak, S.E.; Dolan, S.C. Experimental forecasts of EL Nino. Nature 1986, 321, 827–832. [CrossRef]
16. Zebiak, S.E.; Cane, M.A. A model El Niñ-southern oscillation. Mon. Weather Rev. 1987, 115, 2262–2278. [CrossRef]
17. Hirst, A.C. Unstable and damped equatorial modes in simple coupled ocean-atmosphere models. J. Atmos. Sci. 1986, 43, 606–632.

[CrossRef]
18. Barnett, T.P.; Graham, N.; Pazan, S. ENSO and ENSO-related predictability. Part I: Prediction of equatorial Pacific sea surface

temperature with a hybrid coupled ocean-atmosphere model. J. Clim. 1993, 6, 1545–1566. [CrossRef]
19. Luo, J.J.; Yuan, C.; Sasaki, W.; Behera, S.K.; Masumoto, Y.; Yamagata, T.; Masson, S. Current status of intraseasonal-seasonal-to-

interannual prediction of the Indo-Pacific climate. In Indo-Pacific Climate Variability and Predictability; World Scientific Publishing
Company: Singapore, 2016; pp. 63–107.

20. Ren, H.L.; Liu, Y.; Zuo, J.Q. The new generation of ENSO prediction system in Beijing climate centre and its predictions for the
2014/2016 super El Niño event. Meteorology 2016, 42, 521–531.

21. Liu, Y.; Ren, H.L. Improving ENSO prediction in CFSv2 with an analogue-based correction method. Int. J. Climatol. 2017, 37,
5035–5046. [CrossRef]

22. Johnson, S.J.; Stockdale, T.N.; Ferranti, L. SEAS5: The new ECMWF seasonal forecast system. Geosci. Model Dev. 2019, 12,
1087–1117. [CrossRef]

23. Webster, P.J.; Yang, S. Monsoon and ENSO: Selectively interactive systems. Q. J. R. Meteorol. Soc. 1992, 118, 877–926. [CrossRef]
24. Wang, B.; Fang, Z. Chaotic oscillations of tropical climate: A dynamic system theory for ENSO. J. Atmos. Sci. 1996, 53, 2786–2802.

[CrossRef]
25. Chen, H.C.; Tseng, Y.H.; Hu, Z.Z. Enhancing the ENSO predictability beyond the spring barrier. Sci. Rep. 2020, 10, 984. [CrossRef]
26. Holt, C.C. Forecasting seasonals and trends by exponentially weighted moving averages. Int. J. Forecast. 2004, 20, 5–10. [CrossRef]
27. Chang, V.; Wills, G. A model to compare cloud and non-cloud storage of Big Data. Future Gener. Comput. Syst. 2016, 57, 56–76.

[CrossRef]
28. So, M.K.P.; Chung, R.S.W. Dynamic seasonality in time series. Comput. Stat. Data Anal. 2014, 70, 212–226. [CrossRef]

http://doi.org/10.1126/science.1132588
http://www.ncbi.nlm.nih.gov/pubmed/17170296
http://doi.org/10.1175/1520-0493(1969)097&lt;0163:ATFTEP&gt;2.3.CO;2
http://doi.org/10.1038/35106547
http://www.ncbi.nlm.nih.gov/pubmed/11719802
http://doi.org/10.1175/1520-0477(1999)080&lt;2027:LNAENO&gt;2.0.CO;2
http://doi.org/10.1073/pnas.1409822111
http://www.ncbi.nlm.nih.gov/pubmed/25331867
http://doi.org/10.1038/nature04188
http://doi.org/10.1093/nsr/nwy105
http://doi.org/10.1007/s00382-011-1247-2
http://doi.org/10.1016/j.future.2017.02.008
http://doi.org/10.1007/s00382-008-0397-3
http://doi.org/10.1146/annurev-marine-010213-135026
http://www.ncbi.nlm.nih.gov/pubmed/24405425
http://doi.org/10.1162/neco.2006.18.7.1527
http://doi.org/10.1038/321827a0
http://doi.org/10.1175/1520-0493(1987)115&lt;2262:AMENO&gt;2.0.CO;2
http://doi.org/10.1175/1520-0469(1986)043&lt;0606:UADEMI&gt;2.0.CO;2
http://doi.org/10.1175/1520-0442(1993)006&lt;1545:EAERPP&gt;2.0.CO;2
http://doi.org/10.1002/joc.5142
http://doi.org/10.5194/gmd-12-1087-2019
http://doi.org/10.1002/qj.49711850705
http://doi.org/10.1175/1520-0469(1996)053&lt;2786:COOTCA&gt;2.0.CO;2
http://doi.org/10.1038/s41598-020-57853-7
http://doi.org/10.1016/j.ijforecast.2003.09.015
http://doi.org/10.1016/j.future.2015.10.003
http://doi.org/10.1016/j.csda.2013.09.010


Mathematics 2022, 10, 3793 21 of 22

29. Hanf, M.; Adenis, A.; Nacher, M.; Carme, B. The role of El Niño Southern Oscillation (ENSO) on variations of monthly Plasmodium
falciparum malaria cases at the Cayenne General Hospital, 1996-2009, French Guiana. Malar J. 2011, 22, 10–100. [CrossRef]

30. Li, X.; Shang, X.; Morales-Esteban, A. Identifying P phase arrival of weak events: The akaike information criterion picking
application based on the empirical mode decomposition. Comput. Geosci. 2017, 100, 57–66. [CrossRef]

31. Dietrich, B.; Goswami, D.; Chakraborty, S. Time series characterization of gaming workload for runtime power management.
IEEE Trans. Comput. 2013, 64, 260–273. [CrossRef]

32. Penland, C. A stochastic model of IndoPacific sea surface temperature anomalies. Phys. D Nonlinear Phenom. 1996, 98, 534–558.
[CrossRef]

33. Tseng, Y.; Hu, Z.Z.; Ding, R. An ENSO prediction approach based on ocean conditions and ocean-atmosphere coupling. Clim.
Dyn. 2017, 48, 2025–2044. [CrossRef]

34. Xue, Y.; Leetmaa, A.; Ji, M. ENSO prediction with Markov models: The impact of sea level. J. Clim. 2000, 13, 849–871. [CrossRef]
35. Kondrashov, D.; Kravtsov, S.; Robertson, A.W. A hierarchy of data-based ENSO models. J. Clim. 2005, 18, 4425–4444. [CrossRef]
36. Tangang, F.T.; Tang, B.; Monahan, A.H. Forecasting ENSO events: A neural network-extended EOF approach. J. Clim. 1998, 11,

29–41. [CrossRef]
37. Jiang, G.R.; Zhang, R.; Sha, Y.W. Research on ENSO prediction using EOF unfolding and artificial neural network methods. Mar.

Forecast. 2001, 18, 1–11.
38. Aguilar-Martinez, S.; Hsieh, W.W. Forecasts of tropical Pacific sea surface temperatures by neural networks and support vector

regression. Int. J. Oceanogr. 2009, 2009, 167239. [CrossRef]
39. Liu, K.F.; Zhang, J.; Chen, Y.D. ENSO prediction experiment based on wavelet decomposition and support vector machine. J. PLA

Univ. Sci. Technol. Nat. Sci. Ed. 2011, 12, 531–535.
40. Feng, Q.Y.; Vasile, R.; Segond, M. ClimateLearn: A machine-learning approach for climate prediction using network measures.

Geosci. Model Dev. Discuss. 2016, 10, 1–18.
41. Zheng, F.; Zhu, J. Improved ensemble-mean forecasting of ENSO events by a zero-mean stochastic error model of an intermediate

coupled model. Clim. Dyn. 2016, 47, 3901–3915. [CrossRef]
42. Nooteboom, P.D.; Feng, Q.Y.; López, C. Using network theory and machine learning to predict El Niño. Earth Syst. Dyn. 2018, 9,

969–983. [CrossRef]
43. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
44. Baawain, M.S.; Nour, M.H.; El-Din, M.G.G. Applying artificial neural network models for ENSO prediction using SOI and Nino3

as onset indicators. In Proceedings of the Canadian Society for Civil Engineering-31st Annual Conference, 2003 Building our
Civilization, Moncton, NB, Canada, 4–7 June 2003; pp. 858–867.

45. Shukla, R.P.; Tripathi, K.C.; Pandey, A.C. Prediction of Indian summer monsoon rainfall using Niño indices: A neural network
approach. Atmos. Res. 2011, 102, 99–109. [CrossRef]

46. Mekanik, F.; Imteaz, M.A. Forecasting Victorian spring rainfall using ENSO and IOD: A comparison of linear multiple regression
and nonlinear ANN. In Proceedings of the International Conference on Uncertainty Reasoning and Knowledge Engineering,
Jalarta, Indonesia, 14–15 August 2012; pp. 86–89.

47. Petersik, P.J.; Dijkstra, H.A. Probabilistic forecasting of El Niño using neural network models. Geophys. Res. Lett. 2020,
47, e2019GL086423. [CrossRef]

48. LeCun, Y.; Bottou, L.; Bengio, Y. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324.
[CrossRef]

49. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf.
Processing Syst. 2012, 1, 1097–1105. [CrossRef]

50. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
51. Ham, Y.G.; Kim, J.H.; Luo, J.J. Deep learning for multi-year ENSO forecasts. Nature 2019, 573, 568–572. [CrossRef]
52. Yan, J.; Mu, L.; Wang, L. Temporal convolutional networks for the advance prediction of ENSO. Sci. Rep. 2020, 10, 8055. [CrossRef]
53. Hu, J.; Weng, B.; Huang, T.; Gao, J.; Ye, F.; You, L. Deep residual convolutional neural network combining dropout and transfer

learning for ENSO forecasting. Geophys. Res. Lett. 2021, 48, e2021GL093531. [CrossRef]
54. Zhao, J.; Luo, H.; Sang, W.; Sun, K. Spatiotemporal semantic network for ENSO forecasting over long time horizon. Appl. Intell.

2022, 1–17. [CrossRef]
55. Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA

1982, 79, 2554–2558. [CrossRef] [PubMed]
56. Graves, A.; Jaitly, N. Towards end-to-end speech recognition with recurrent neural networks. In Proceedings of the International

Conference on Machine Learning, JMLR, Beijing, China, 21–26 June 2014; pp. 1764–1772.
57. Mikolov, T.; Karafiát, M.; Burget, L. Recurrent neural network based language model. Interspeech 2010, 2, 1045–1048.
58. Cho, K.; Van Merriënboer, B.; Gulcehre, C. Learning phrase representations using RNN encoder-decoder for statistical machine

translation. arXiv 2014, arXiv:1406.1078.
59. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
60. Zhang, Q.; Wang, H.; Dong, J. Prediction of sea surface temperature using long short-term memory. IEEE Geosci. Remote Sens. Lett.

2017, 14, 1745–1749. [CrossRef]

http://doi.org/10.1186/1475-2875-10-100
http://doi.org/10.1016/j.cageo.2016.12.005
http://doi.org/10.1109/TC.2013.198
http://doi.org/10.1016/0167-2789(96)00124-8
http://doi.org/10.1007/s00382-016-3188-2
http://doi.org/10.1175/1520-0442(2000)013&lt;0849:EPWMMT&gt;2.0.CO;2
http://doi.org/10.1175/JCLI3567.1
http://doi.org/10.1175/1520-0442(1998)011&lt;0029:FEEANN&gt;2.0.CO;2
http://doi.org/10.1155/2009/167239
http://doi.org/10.1007/s00382-016-3048-0
http://doi.org/10.5194/esd-9-969-2018
http://doi.org/10.1038/323533a0
http://doi.org/10.1016/j.atmosres.2011.06.013
http://doi.org/10.1029/2019GL086423
http://doi.org/10.1109/5.726791
http://doi.org/10.1145/3065386
http://doi.org/10.1038/s41586-019-1559-7
http://doi.org/10.1038/s41598-020-65070-5
http://doi.org/10.1029/2021GL093531
http://doi.org/10.1007/s10489-022-03861-1
http://doi.org/10.1073/pnas.79.8.2554
http://www.ncbi.nlm.nih.gov/pubmed/6953413
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1109/LGRS.2017.2733548


Mathematics 2022, 10, 3793 22 of 22

61. Broni-Bedaiko, C.; Katsriku, F.A.; Unemi, T. El Niño-Southern Oscillation forecasting using complex networks analysis of LSTM
neural networks. Artif. Life Robot. 2019, 24, 445–451. [CrossRef]

62. Pei, Z.; Yingjie, H.; Bingyi, H. Spring predictability barrier phenomenon in ENSO prediction model based on LSTM deep learning
algorithm. Beijing Da Xue Bao 2021, 57, 1071–1078.

63. Shi, X.; Chen, Z.; Wang, H. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural
Inf. Process. Syst. 2015, 28, 802–810.

64. He, D.; Lin, P.; Liu, H. Dlenso: A deep learning ENSO forecasting model. In Proceedings of the Pacific Rim International Conference
on Artificial Intelligence; Springer: Cham, Switzerland, 2019; pp. 12–23.

65. Mu, B.; Peng, C.; Yuan, S.; Chen, L. ENSO forecasting over multiple time horizons using ConvLSTM network and rolling
mechanism. In Proceedings of the International Joint Conference on Neural Networks, Budapest, Hungary, 14–19 July 2019;
pp. 1–8.

66. Geng, H.; Wang, T. Spatiotemporal model based on deep learning for ENSO forecasts. Atmosphere 2021, 12, 810. [CrossRef]
67. Zhou, L.; Zhang, R.H. A hybrid neural network model for ENSO prediction in combination with principal oscillation pattern

analyses. Adv. Atmos. Sci. 2022, 39, 889–902. [CrossRef]
68. Scarselli, F.; Gori, M.; Tsoi, A.C. The graph neural network model. IEEE Trans. Neural Netw. 2008, 20, 61–80. [CrossRef] [PubMed]
69. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.
70. Cachay, S.R.; Erickson, E.; Bucker, A.F.C. The World as a Graph: Improving El Ni\~no Forecasts with Graph Neural Networks.

arXiv 2021, arXiv:2104.05089.
71. Mu, B.; Qin, B.; Yuan, S. ENSO-ASC 1.0.0: ENSO deep learning forecast model with a multivariate air-sea coupler. Geosci. Model

Dev. 2021, 14, 6977–6999. [CrossRef]

http://doi.org/10.1007/s10015-019-00540-2
http://doi.org/10.3390/atmos12070810
http://doi.org/10.1007/s00376-021-1368-4
http://doi.org/10.1109/TNN.2008.2005605
http://www.ncbi.nlm.nih.gov/pubmed/19068426
http://doi.org/10.5194/gmd-14-6977-2021

	Introduction 
	Traditional Methods 
	Climate Dynamics Methods 
	Mathematical Statistical Methods 
	Traditional Linear Statistical Methods 
	Machine Learning Methods 


	Deep Learning Methods 
	Shallow Neural Networks 
	Convolutional Neural Networks 
	Recurrent Neural Network 
	Graph Neural Networks 

	Discussion 
	Conclusions 
	References

