
����������
�������

Citation: Bárcenas, R.; Gonzalez-

Lima, M.; Ortega, J.; Quiroz, A. On

Subsampling Procedures for Support

Vector Machines. Mathematics 2022,

10, 3776. https://doi.org/10.3390/

math10203776

Academic Editors: Jose Manuel

Azevedo, Ana Azevedo and James

Uhomoibhi

Received: 1 August 2022

Accepted: 7 October 2022

Published: 13 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

On Subsampling Procedures for Support Vector Machines

Roberto Bárcenas 1 , Maria Gonzalez-Lima 2, Joaquin Ortega 3,* and Adolfo Quiroz 4

1 Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
2 Departamento Matemáticas y Estadística, Universidad del Norte, Barranquilla 080001, Colombia
3 CEMSE, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
4 Departamento de Matemáticas, Universidad de los Andes, Bogota 111711, Colombia
* Correspondence: joaquin.ortegasanchez@kaust.edu.sa

Abstract: Herein, theoretical results are presented to provide insights into the effectiveness of sub-
sampling methods in reducing the amount of instances required in the training stage when applying
support vector machines (SVMs) for classification in big data scenarios. Our main theorem states that
under some conditions, there exists, with high probability, a feasible solution to the SVM problem
for a randomly chosen training subsample, with the corresponding classifier as close as desired (in
terms of classification error) to the classifier obtained from training with the complete dataset. The
main theorem also reflects the curse of dimensionalityin that the assumptions made for the results are
much more restrictive in large dimensions; thus, subsampling methods will perform better in lower
dimensions. Additionally, we propose an importance sampling and bagging subsampling method
that expands the nearest-neighbors ideas presented in previous work. Using different benchmark
examples, the method proposed herein presents a faster solution to the SVM problem (without
significant loss in accuracy) compared with the available state-of-the-art techniques.

Keywords: support vector machines; big data; bagging; importance sampling

MSC: 68T09; 62R07; 90-08

1. Introduction

Support vector machines (SVMs) is a widely used approach in classification that com-
bines ideas from linear classification methods, optimization, and reproducing kernel Hilbert
spaces ([1–3]), and it has proven to be highly competitive in many real-world applications.
However, a disadvantage of SVM is that it is difficult to implement when dealing with
large-scale training sets because of its computational and modeling complexities. In small
datasets, the computation time required for SVMs may not be significant, although the
computational complexity of SVMs is almost cubic. Therefore, in large datasets, the training
time increases excessively. Hence, in this scenario, it is necessary to use new algorithms to
face this challenge.

The formulation of SVMs is generally stated as a quadratic programming problem (QP)
that finds the optimal separating hyperplane of the data. Because this problem involves an
unknown function that maps the data to a higher dimensional space, it is usual to solve its
dual setting. The associated dual setting has a number of variables equal to the number of
training data, and the training kernel matrix grows quadratically with the size of the dataset
(being highly dependent on this), which causes SVM training on large datasets to be a slow
process. From the computational point of view, treating the convex quadratic problem
given by its dual representation can be time and cost-intensive when the dataset is large.
Thus, given a significant number of observations, solving the dual problem is expensive,
both in memory or computational capacity and training time. Often, the calculation cannot
be performed in a reasonable time. The training may be delayed even if the problem
matrices can be stored in memory. Standard solvers of the quadratic programming problem
SVM can have, in the worst case, a high training time complexity O(n3) and memory
complexity O(n2), where n is the number of observations in the training set.

Mathematics 2022, 10, 3776. https://doi.org/10.3390/math10203776 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10203776
https://doi.org/10.3390/math10203776
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9520-0045
https://doi.org/10.3390/math10203776
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10203776?type=check_update&version=3

Mathematics 2022, 10, 3776 2 of 27

An approach to address this problem is through data selection methods for SVM.
These are intended to reduce the size of the datasets by eliminating the points that do
not contribute to determining the optimal separation hyperplane, for which it is known
that it depends strongly on the observations on the boundary. In particular, subsampling
techniques reduce the size of the training sets by selecting support vector (SV) candidates
(i.e., trying to select those instances with a high probability of being considered as SVs).
These methodologies have shown promising results in recent studies.

The aim of this work stands in the context of subsampling methods for SVM. We
have two goals. On the one hand, we want to develop theoretical results that aid in
understanding the performance of these techniques. On the other hand, we want to propose
a subsampling methodology for SVM that competes favorably with other state-of-the-art
methods for SVM and classification. We end this section by detailing our contribution and
outlining the remainder of the paper.

1.1. Our Contribution

One of the contributions of the present work is to present theoretical results that help
understand why subsampling methodologies can produce acceptable classification errors
when training SVMs.

Another contribution of the present work is to propose a new subsampling algorithm
by improving the results of Camelo et al. (2015) [4], at least in a significant number of cases,
by enriching the subsample with more candidates to support vectors using bagging and
importance sampling. This is achieved by looking simultaneously at different samples and
searching for neighbors according to the candidates’ intensity.

By testing on benchmark examples and comparing with state-of-the-art methodologies
(such as the ones proposed in [4], LibSVM [5], SVMlight [6], and decision trees [7]), we show
that our proposed method achieves a fast solution to the training SVM problem without
a significant loss in the performance accuracy. It is important to highlight that one goal
of this paper is to compare algorithms using the same working framework in order to
conclude about efficiency and effectiveness. This is to say, we do not focus on improving
or analyzing the quality of the solution by proving different kernels or performing other
changes. Rather than that, we make our comparisons meaningful by using the same
environment settings. Further research will consider the improvement of the proposed
methodology when applied to different real-life class of problems.

In summary, the main novelty of this article lies in:

• A theoretical discussion of results on subsampling methods for SVMs.
• Guarantee the existence, with high probability and given certain conditions, of a

feasible solution to the SVM problem through a subsampling scheme, which is close
enough to the solution with the full training sample.

• The development of a new subsampling learning method to improve time efficiency
and performance of SVM training.

• A comparison with other state-of-the-art methods and methods closer to our approach,
based on appropriate statistical learning metrics.

1.2. Outline of the Paper

The rest of this paper is organized as follows. Section 2 introduces the SVM theory
and related work. Section 3 contains the proof of the theoretical results for the subsampling
methods. Section 4 introduces an importance sampling and bagging subsampling method
to extend the nearest-neighbors ideas presented in [4]. In Section 5, we report and discuss
the results of applying the proposed methodology on benchmark examples and we compare
with other methodologies.

2. Background and Related Work

In the context of pattern recognition, classification problems focus on learning the
relationship between a set of feature variables and a target “class variable” of interest.

Mathematics 2022, 10, 3776 3 of 27

Using a set of training data points with known associated class labels, a classifier is fitted
to be used on unlabeled test instances. In particular, in the setting of supervised learning,
examples are given that comprise pairs, (Xi, yi), i ≤ n, where Xi is the d−dimensional
feature or covariate vector and yi is the corresponding class that belongs to some finite set
C. Frequently, as in the present work, C is assumed to comprise only two classes, which are
labeled 1 and −1.

The diversity of problems that can be addressed using classification algorithms is
significant, as these algorithms cover several application domains ([8] or [9]). In recent
years, different non-linear procedures have been considered for classification problems.
These outperform their classical linear counterparts in many important contexts. The
main non-linear methods include classification and regression trees (CART) along with its
general version, random forests, neural networks, nearest-neighbor classifiers, probabilistic
methods and support vector machines (SVMs) ([9–12]).

The success of SVM with respect to classification errors in various contexts can be
partially explained by its flexibility. The method uses a kernel function as the inner product
of new feature variables that originate from a transformation of the original covariates.
Another reason for its success is the effort invested in developing efficient solution methods,
some of which we discuss below. A broad review of this theory can be found in [13,14].

With the notation given above for the training data, the soft margin L1 classifier SVM
problem is stated as follows:

minimize
w,b,ξ

1
2‖w‖2 + C ∑n

i=1 ξi

subject to yi(wtφ(Xi) + b) ≥ 1− ξi, ∀ i = 1, . . . , n,
ξi ≥ 0.

(1)

where φ(·) is the transformation of the feature vector into a higher-dimensional space
induced by a kernel function, C is a positive constant that expresses the cost of losing the
separation margin or misclassification, and ξi are the slack variables. The L2 version of the
soft margin classifier is obtained by replacing the objective function by

1
2
‖w‖2 + C

n

∑
i=1

ξ2
i

in (1). The dual problem corresponding to (1) can be written as

maximize
α

∑n
i=1 αi − 1

2 ∑n
i,j=1 yiyjαiαjK(Xi, Xj)

subject to ∑i yiαi = 0,
0 ≤ αi ≤ C for i = 1, . . . , n.

(2)

where K(·, ·) is the kernel function associated with the transformation φ, that is,
K(x, z) = 〈φ(x), φ(z)〉. In the dual problem for the soft margin L2 problem, the last
restriction in (2), αi ≤ C, does not appear. This fact simplifies the theoretical analysis
presented below in the L2 case. The classifier corresponding to the solution α∗i (i = 1, . . . , n)
of (2) is

class(x) = sgn

(
∑

i
yiα
∗
i K(Xi, x) + b∗

)
, (3)

with b∗ coming from the corresponding solution of (1). Thus, given a new observation x,
its corresponding class will be y = class(x).

The estimated prediction error for a given dataset is the incorrectly predicted percent-
age of points from a test set. Observe that the values of α∗i exceeding zero are the only ones
that matter for the classifier. The corresponding feature vectors Xi are the so-called support
vectors. The low-cost techniques of finding or approximating these vectors are key issues
addressed in the present article.

Mathematics 2022, 10, 3776 4 of 27

Because in (1), the transformation φ is unknown, a conventional approach to find the
support vectors is to solve the quadratic programming problem given by (2). However,
note that the number of variables in this problem equals the number n of training data.
Therefore, if the number of observations is large, solving (2) is expensive both in memory
and computing capacity. In fact, standard solvers of this SVM quadratic programming
problem can have a high training time complexity of order O(n3).

According to the literature (see [15,16] for a broad review), three approaches exist for
tackling the task of training SVM with large datasets:

i. Decomposition techniques, where sub-problems are raised iteratively to find the
solution of the desired problem.

ii. Preselection of candidates for support vectors, where from this first approximation, a
data reduction is considered to train the SVM algorithm.

iii. Sampling procedures, methodologies that reduce the size of the problem using some
subsampling selection criteria.

A significant part of the SVM literature is devoted to finding efficient ways to solve
problem (2) by decomposition. Some of the ideas entail solving appropriate
sub-problems [17]. This method relates to the chunking methodology, as explained in [18],
and to the SVMlight algorithm of [6]. The Sequential Minimal Optimization (SMO) is a
reasonably successful proposal that considers smaller sub-problems [19]. In a different
direction, [20] considered the application of Successive Overrelaxation (SOR), which is a
method developed initially to solve symmetrical linear complementarity and quadratic
programs in solving the SVM problem. The chunking techniques, introduced in [18], have
been considered in different contexts and appear in many real-world problems, such as
cancer diagnosis, credit card fraud detection, and terrorist detection. Regarding binary clas-
sification, [21] proposed a cost-sensitive hinge loss support vector machine (CSHL-SVM).
This method applies to the the on-line scenario when the data appear as sequential chunks.

All the above approaches seek to solve problem (2) by efficiently solving sub-problems
but considering the whole dataset. To efficiently preselect the support vectors of the training
sample, [22] applied the k-means clustering algorithm to the training set and evaluated the
resulting clusters for homogeneity. Abe [23] proposed computing a Mahalanobis distance
classifier first and using those data points misclassified by this preliminary procedure in the
reduced training set. In [24], the idea of identifying probable support vectors is developed
around neighbor properties.

Another strategy to reduce the training set size is the Reduced Support Vector Ma-
chines (RSVM) method by [25], where they select a subset by random selection to represent
the original training set. The random sampling algorithm (RSA) by [26] is a more elaborate
technique that assigns a probability to each instance to be chosen.

Recall that data selection methods for SVM intend to decrease the dataset size by
removing the instances that do not contribute to the definition of the optimal separating
hyperplane (surface). The approach of Cervantes et al. [27] can be seen as a mixture
between data selection and sampling because their proposed method reduces the training
set size based on a decision tree and uses a subsample. A similar approach was found
in [28] that entails approximating the decision boundary of SVMs using a decision tree to
speed up SVM but in its testing phase.

In a different fashion, but also using subsampling ideas, Camelo et al. [4] presented a
subsampling and nearest-neighbors method in which the support vector set of the solution
to the SVM problem for a small subsample is iteratively enriched with nearest neighbors
to build a relevant training set significantly smaller than the original training dataset.
Therefore, the training time is reduced in comparison to the time needed for solving the
problem using the whole dataset but without degrading too much the accuracy obtained
with the complete dataset.

Recently, hybrid systems were developed, such as the PNN-SVM combination, which
improve in classification accuracy compared to single-stage models. Their implementation
proved beneficial when predicting the biocompatibility properties of the material for

Mathematics 2022, 10, 3776 5 of 27

titanium implant fabrication [29]. An update of this approach is given by applying the
Probabilistic Neural Network (PNN) to the current input to obtain the probability vector
of its membership in each of the defined classes of the classification task and introduce
the second-degree Ito decomposition on the extended vector in modeling the relationships
between the input attributes; then, it is possible to finally perform the classification using a
pre-trained SVM with the linear kernel [30].

Related to our proposal, the method introduced in [31] corresponds to a core set con-
struction algorithm for accelerating SVM training based on efficient importance sampling.
We could also describe it as a hybrid in the sense that it proposes an approach based on
the linkage of k-means clustering together with the solution to the SVM problem. Thus, an
efficient reference set structure method is proposed to generate compact representations of
large datasets to speed up SVM training.

Other SVM variants speed up the SVM training time at the cost of losing accuracy.
Recall that the basis of decomposition methods lies in the fact that the training time can
be reduced if only the active constraints of the QP problem are taken into account. This
idea is used in SMO and according to Cervantes et al. [15], one of the best solvers based
on SMO is LibSVM [5], which, unlike other implementations, has a sophisticated working
set selection procedure. In the comparative study [32], it was observed that in small and
medium datasets, no solver significantly outperforms LibSVM. Furthermore, it is argued
that a combination of LibSVM and subsampling suffices to achieve a good accuracy. For
this reason, combined with subsampling it is the routine we selected here.

Finally, we should mention that in [33], a small subsampling strategy is introduced
to improve the accuracy and computational efficiency in support vector regression (SVR).
Theoretically, they show that formal statistical inference procedures suggest employing a
subset of small subsamples to speed up the computational speed of SVR. First, their result-
ing estimator is an incomplete U statistic, and they obtained asymptotically normal results.
Second, a subset of subsamples is used, and a distributed set can be easily determined to
reduce the computational complexity of SVR.

The subsampling SVMs approaches give an approximate SVM solution formed by
some random selection using different criteria. In the present work, besides proposing
an alternative subsampling method and in contrast to other previous articles, we develop
theoretical results that add understanding of why subsample methodologies can produce
good classification errors. Our findings prove that the solution to the soft margin L1 SVM
problem is stable under subsampling. In particular, our main theorem states that under
some conditions, there exists, with high probability, a feasible solution to the dual SVM
problem for the randomly chosen training subsample, with the corresponding classifier
as close as desired (in terms of classification error) to the classifier obtained from training
with the complete dataset. The conditions for this theorem’s conclusion become much
more restrictive in large dimensions, reflecting the well-known curse of dimensionality phe-
nomenon.

3. Theoretical Results

Using the notation established in Section 2 for the solution of the soft margin L1 SVM
problem, here we consider an independent and identically distributed (i.i.d.) sample of
pairs (Xi, yi) for i = 1, . . . n, where Xi follows a probability distribution µ on Rd, yi takes
values 1 and −1 and, given Xi = x, the distribution of yi is given by Pr(yi = 1 | x) = η(x)
for a measurable function η on the support of µ. We assume that µ admits a density f with
respect to the Lebesgue measure, λ, which is bounded away from zero and infinity on
its compact support, S . In addition, we assume that η (at least in the vicinity of support
vectors) is bounded away from 0 and 1.

A random subsample,M, of size n′ = dδne for some δ > 0 is taken, with d.e denoting
the ceiling function. Based on this subsample, the SVM problem is solved, and our purpose
is to quantify the similarity of the solution obtained withM to the one given by (3), in
which the whole dataset is employed. In what follows, the expression with high probability
means that the probability of the event considered goes to 1, as n→ ∞.

Mathematics 2022, 10, 3776 6 of 27

Let Vn be the set of support vectors for the SVM solution computed with the complete
sample of size n and let q be the number of support vectors (i.e., q = #Vn, where # denotes
the cardinal of a set). The first thing to verify is that with high probability, the subsample
M will contain points close enough, at a distance less than ρ of each point Xi in the
distinguished set Vn, for any ρ such that ρd is of order O(ln2n/n).

In addition to the assumptions on the sample distribution stated above, we will
assume the following shape conditions on S called weak grid compatibility, which is a
relaxed version of a condition considered in [34], in the context of the theory of clustering
algorithms.

Definition 1. Let S be the support of the density function f generating the data. We say that f
and S satisfy the weak grid compatibility condition if there exists a positive number γ such that for
all small enough l > 0, S can be covered, possibly after translation and rotation, by a regular array
W , of cubes of side l, such that

∀V ∈ W , λ(V ∩ S) ≥ γλ(V),

where λ denotes the Lebesgue measure in Rd and a regular array of cubes of side l in Rd means that
the vertices of the cubes form a regular grid in Rd, such that the length between the contiguous
vertices is constant and equal to l. In this definition, it is assumed thatW includes only the cubes
needed to cover S ; that is, if W ∩ S = ∅, then W /∈ W . According to [34], d-dimensional balls
and ellipsoids in Rd as well as regular polyhedra satisfy this condition.

As a condition on the kernel K(·, ·) employed in the SVM procedure, we assume that
K is Lipschitz continuous, with Lipschitz constant L.

Finally, we make assumptions on the solution of the soft margin problem (1) on
the whole dataset. Thus, we assume the following asymptotic continuity condition on
the uncertainty of the classification function for the solution of the SVM problem on the
complete dataset: Let α∗i and b∗ be the solution coefficients appearing in (3). We assume that

lim
ε→0

lim sup
n

µ

(
x ∈ S :

∣∣∣∣∣∑i
yiα
∗
i K(Xi, x) + b∗

∣∣∣∣∣ ≤ ε

)
= 0, a.s., (4)

where the expression a.s. refers to “almost surely” regarding the product space of infinite
samples. Condition (4) is bounding the level of uncertainty that the solution to the SVM
problem admits. Points x ∈ S for which∣∣∣∣∣∑i

yiα
∗
i K(Xi, x) + b∗

∣∣∣∣∣ ≤ ε

holds are points near the boundary of indecision of the SVM solution. The question is
whether, as ε becomes smaller, this region of ε-uncertainty has a probability that goes to
zero. The simulations shown in Appendix B suggest that condition (4) holds comfortably
in real examples.

The final assumptions are technical and more restrictive on the number of support
vectors that the solution associated with the complete dataset might have. We suppose that

the cardinality q of the set Vn of support vectors is oPr

((
n

ln2n

)1/d)
, namely, for each ε > 0,

Pr

(
q > ε

(
n

ln2n

)1/d
)
→ 0, as n→ ∞. (5)

The power 1/d in this bound makes the condition more restrictive in large dimen-
sions, reflecting the curse of dimensionality that frequently appears in pattern recognition
literature. In fact, numerical simulations (not included) suggest that (5) does not hold for
the real examples considered in our performance evaluation below. Our theoretical results

Mathematics 2022, 10, 3776 7 of 27

provide evidence that for problems with a number of support vectors slowly growing to
infinity, the solutions on subsamples can achieve performance very close to that achieved
for the complete dataset solution. A consequence of assumption (5) is that the number of
support vectors that the solution for the soft margin L1 problem can have in a small cube is
bounded. Assume that when the sample size is n, S is covered (by weak grid compatibility)
with a regular arrayWn such that each cube V ∈ Wn has sides of length

l = ln = κ(ln2n/n)1/d,

for some positive constant κ. We assume that there exists a constant C1 such that

Pr(max {#(Vn ∩V) : V ∈ W } > C1)→ 0, as n→ ∞, (6)

where, again, Vn is the set of support vectors for the solution of the SVM problem. Although
neither of the two last conditions implies the other, (5) is, by far, more restrictive than (6) on
the total number of support vectors that the problem might admit, as the second condition
does not reflect the curse of dimensionality because the bound that it implies on the total
number of support vectors is O(n/ ln2 n), which is a bound that does not change with
dimension.

As a first result, we prove that for a subsample of size dδne, with high probability,
there exist observations with labels of both classes in the subsample, which is close to the
support vectors of the complete sample solution. As the support vectors delimit the surface
that separates the two classes, it is natural to expect that in a neighborhood of each support
vector, points from both classes are to be found, even in a subsample.

Proposition 1. Under the setting described above, there exists a ρ = ρ(n), which is of the order
O((ln2n/n)1/d) such that for each Xi ∈ Vn there are Xi′ ∈ M with Yi′ = 1 and Xi′′ ∈ M with
Yi′′ = −1 such that, with high probability,

‖Xi − Xi′‖ ≤ ρ and ‖Xi − Xi′′‖ ≤ ρ.

Proof. See Appendix A.

The assumptions in Proposition 1 may seem too restrictive, asking that both f and η
be bounded away from extreme values on the whole domain S . Those requirements could
be weakened by requiring those conditions to hold only in regions of S where support
vectors might appear. Then, the argument in the proof would not consider all cubes inW
but only the collection E = {En,j ∈ W : Vn ∩ En,j 6= ∅}, that is, those cubes in the grid that
contain support vectors.

The following theorem is stated by considering the soft margin L1 SVM problem.

Theorem 1. Fix ε > 0. Let α∗i and b∗ be the multipliers appearing in (3) for the solution of the
SVM problem associated with the complete training data set. Then, there exists a constant M ≥ 1
such that the following hold:

(i) If we replace α∗i and b∗ by γ∗i = α∗i /M and c∗ = b∗/M in (3), with high probability, the new
set of coefficients continues to be feasible for problem (2) and the two corresponding classifiers
(with the original coefficients and the coefficients divided by M) coincide; that is, they produce
always the same classification on new data points.

(ii) For the soft margin L1 problem on the subsampleM, there exist multipliers β∗` , feasible for
the problem (2) onM, such that, with high probability,∣∣∣∑

i
yiγ
∗
i K(Xi, x)−∑

`

y`β∗`K(X`, x)
∣∣∣ < ε for all x ∈ S , (7)

where (X`, y`) are the data points inM.

Mathematics 2022, 10, 3776 8 of 27

(iii) Let class full(x) be the classifier defined by (3) and obtained from the solution of the L1 soft
margin SVM problem for the complete sample and classsub(x) be the classifier defined by

classsub(x) = sgn

(
∑
`

y`β∗`K(X`, x) + c∗
)

. (8)

Then, with high probability,

µ
(

x ∈ S : class full(x) 6= classsub(x)
)
< ε. (9)

Proof. See Appendix A.

This theorem relates the solution of our algorithm to the complete solution, standard-
izing the coefficients to satisfy the feasibility condition. In other words, the result says that,
with high probability, there exists, in the feasible set of the dual problem for the subsample,
a candidate solution whose classification function is as close as desired to the classification
function of the solution for the problem with the complete original sample. This does not
imply that the new feasible solution will be chosen by the SVM algorithm (as the objective
function of the SVM is not classification error), but the feasibility of this solution can help in
understanding why subsampling methods can produce very competitive results in terms
of classification error in many cases.

Then, the proximity of the decision functions associated with the full sample solution
and the solution based on our proposal can be established. Thus, for a set of candidate
support vectors from a subsample, the decision functions are sufficiently close. Finally, in
addition to ensuring the proximity of the decision functions, it is necessary that both give
the same classification. For this, the third statement of the theorem is established, and the
result is demonstrated with the hypothesis of ε-uncertainty (4).

In our examples, the cause of poor performance in some kernels can be attributed to the
fact that these examples belong to a high dimension, and its error rate is very low. Note that
the power 1/d in our bound given in expression (5) makes the condition more restrictive in
large dimensions, reflecting the curse of dimensionality that frequently appears in pattern
recognition problems.

4. Bagging and Importance Sampling Algorithm for Support Vectors

As another objective of the present work, we propose a new subsampling algorithm
by working with the results of [4] and using bagging and importance sampling. The
novel reasoning is to enrich the subsample with more candidates to support vectors by
looking simultaneously at different samples and searching for neighbors according to
the candidates’ intensity. The numerical results will show that in relevant examples, this
procedure solves problem (2) in a fraction of the time needed for obtaining the complete
dataset solution without significantly deteriorating the classification accuracy.

4.1. Description of the Algorithm

The previous method presented in [4], based on subsamples and nearest neighbors,
can be summarized as follows:

Procedure CGLQ (Camelo, Gonzalez-Lima, Quiroz)

(i) Select a random subsample comprising a small fraction of the set of examples.
(ii) Solve the SVM problem in that subsample (i.e., identify the support vectors for the

subsample). Denote this initial set of support vectors as V . Evaluate the classifier’s
error on a test sample set.

(iii) The set V is enriched with the k-nearest neighbors (of each element of V) in the
complete sample. V is also enriched by adding a new small random subsample of the
complete sample. With this new subsample, we return to step (ii). The iteration stops
when there is no significant improvement in the classification error.

Mathematics 2022, 10, 3776 9 of 27

As reported in [4], on markedly diverse benchmark examples, this procedure achieves
a classification error comparable to that corresponding to solving the SVM problem on
the (original) complete training sample with significantly reduced computation time. One
interesting feature of the method proposed in [4] is that the methodology is not restricted
to a particular way of solving the SVM problem on the training data.

Based on the original idea, one could consider the following modifications:

1. The initial subsample in step (i) of procedure CGLQ can be substituted with some
small subsamples, solving the SVM problem on each one. In this manner, we would
have a richer supply of candidates to approximate support vectors. The idea of
applying a statistical learning procedure to bootstrap samples taken from the original
training sample and then combining the output of those different fitted predictors is
called bagging ([7,35]).

2. The process of enriching by nearest neighbors can be improved if a certain “intensity
of support vectors by region” can be estimated at each point of interest, and a sampling
procedure is used that considers this intensity to sample more heavily in regions where
more support vectors should be expected. In Monte Carlo simulation, this is called
importance sampling [36].

It turns out that the goal of estimating a local intensity of support vectors can be
achieved using bagging. Our proposal in this direction will be to sample and add (to the
original set of support vectors) more sample points in those regions where more support
vectors are expected. These ideas are embodied in the following procedure. We slightly
part from the usual bootstrap practice by making our initial small subsamples disjoint (we
are not sampling with replacement as in the original definition of bootstrap). This produces
a larger initial set of near support vectors. As in the introduction, the training sample size
is n and is formed by pairs (Xi, yi) of feature vectors and class variables, with yi ∈ {−1, 1}.
In the following procedure, the letter L is used with a meaning different from that given in
Section 2.

Procedure of local sampling SVM

(i) For a positive integer L and 0 < δ < 1, from the original sample, X , select L disjoint
subsamples Ti, i = 1, . . . , L, each of size nS, such that nS = bδn/Lc, where b·c denotes
the floor function. We denote as T the set of observations of all the subsamples (i.e.,
T = ∪L

i=1Ti). T represents a fraction δ of the entire training sample.
(ii) On each subsample Ti, solve the SVM problem, finding the set Vi of support vectors

associated with that subsample. Let V denotes the union of these initial support vector
sets, that is, V = ∪L

i=1Vi, and let m = #V be the size (cardinality) of V .
(iii) Let k = bln mc. For each νj ∈ V , identify its kth-nearest neighbor in V . Denote

this kth-nearest neighbor by NNk(νj,V) and denote by ρj the distance between νj
and NNk(νj,V): ρj = dist(νj, NNk(νj,V)), where dist(·, ·) stands for the Euclidean
distance. Let ρ denotes the median of the radii ρj.

(iv) For a parameter β > 0, let r = βρ. Define

ηj =
ρ−1

j

∑m
i=1 ρ−1

i

.

Sample a fraction ηj of the points of X \ T in the ball with center νj and radius r. Write
Dj for this random sample.

(v) Solve the SVM problem for the new sample

V ∪
(
∪L

j=1Dj

)
.

Three observations are necessary regarding the procedure just described:

1. To explain the way the importance sample is approximately implemented in our
procedure, let us recall the idea of density estimation by “Parzen windows” (see [12]

Mathematics 2022, 10, 3776 10 of 27

for details, including a proof of consistency). Given an i.i.d. sample, Xi, . . . , Xn in Rd,
obtained from a probability distribution that admits a density f (·), for an arbitrary
x ∈ Rd (which could be one of the sample points), if rk(x) denotes the Euclidean
distance from x to its k-th nearest neighbor in the sample, then the density f (x) is
consistently estimated by a constant times the reciprocal of the volume of the k-th
nearest neighbor ball. This means that f (x) is proportional to (rk(x))−d. In our case,
we use the distance ρj between each νj and its k-th nearest neighbor in V to obtain
an estimate of the “support vector density” near νj. Then, we set a fixed radius
r and sample in a ball of radius r around νj with an intensity proportional to ρ−1

j .
Precise importance sampling would require sampling with an intensity proportional
to ρ−d

j , but preliminary experiments revealed that this “exact” importance sampling
would be too extreme in the sense of producing heavy sampling in some regions and
almost no sampling in others. For this reason, our sampling is proportional to ρ−1

j .
Choosing a neighborhood of size proportional to ln m follows a common practice in
the pattern recognition literature. This choice allows for the consistent estimation of
local properties, while larger choices of k could lead to inconsistent results (see the
discussion in [37]).

2. An important difference with the approach proposed in [4] is that the enrichment of
the set V occurs inside the k-th nearest neighbor balls, whereas in the present method,
we use a common fixed radius and change the sampling intensity at each νj.

3. The parameter β in the procedure just described provides flexibility, allowing the user
to vary the radius (and volume) of the balls in which the sampling is performed.

Next, we study the behavior of the local sampling procedure applied to some real-life
problems.

4.2. Data Sets

This section presents a performance evaluation of the methodology proposed on
benchmark datasets. For the experiments described in this section, we have used the
statistical software R and the e1071 package (for more details, visit https://cran.r-project.
org/web/packages/e1071/ accessed on 01 May 2022. Procedures are run on a computer
with Motherboard EVGA Classified SR-2 with two microprocessors @ 2.67 GHz and RAM
of 48 GB 1333 MHz).

For our experiments, we consider the following three kernels for SVMs:

• Linear: K(x, xj) = xT
j x.

• Polynomial with degree p, p ∈ N: K(x, xj)=(1 + γxT
j x)p, γ > 0.

• Radial basis: K(x, xj) = exp(−γ‖x− xj‖2), γ > 0.

Table 1 displays the description of the datasets tested. These examples cover different
ranges with respect to the sample size and data dimension.

Table 1. LibSVM datasets description.

Dataset TrainSize TestSize Features

2D CIRCLE 80,000 20,000 2
20D CUBE 240,000 60,000 20
COD-RNA 59,535 20,000 8

IJCNN1 49,990 15,000 22
W7A 24,779 10,000 300

COVTYPE 521,012 60,000 54
WEBSPAM 300,000 50,000 254

First, we consider a simulation scheme over the domain [0, 50]2 introduced in [38],
where it is possible to construct level curves of conditional probability for the class y = 1
given the covariates x in the following way:

https://cran.r-project.org/web/packages/e1071/
https://cran.r-project.org/web/packages/e1071/

Mathematics 2022, 10, 3776 11 of 27

η(x) = P(y = 1|x) =


1 if r(x) < 8,

28−r(x)
20 if 8 ≤ r(x) ≤ 28,
0 if r(x) > 28.

Here, r(x) is the distance from x to the point (25, 25) in the plane.
The left panel in Figure 1 shows the behavior of these probabilities using more intense

color in regions where the probability is higher. In our case, we simulate n = 100,000 i.i.d.
observations with x uniformly distributed on [0, 50]2, and the class labels are randomly
chosen according to η. Dividing into two sets with 80,000 and 20,000 points for training
and the test set, respectively, we fit the SVM classifier using the kernels mentioned above.

0 10 20 30 40 50

0
10

20
30

40
50

2D Circle

0 10 20 30 40 50

0
10

20
30

40
50

Figure 1. Probability η(x) (left) and n = 100,000 simulated observations in [0, 50]2 (right).

The second dataset corresponds to a simulation scheme for the problem of classifying
two classes in a d-dimensional unit cube; the conditional probability of class y = 1 given
the d-dimensional vector x is

η(x) = P(y = 1|x) = ∑d
i=1 xi

d
.

In Figure 2, the graphical representations in dimension 2 and dimension 3 are shown,
labeling the classes with different colors.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

X1

X
2

X
3

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

Figure 2. Simulation scheme for the problem of classifying two classes in a d-dimensional unit cube:
cases d = 2 (green and red) and d = 3 (yellow and light blue).

For different dimension values d, we simulate 300,000 observations, using
240,000 observations as the training sample and 60,000 observations for testing. To de-
termine parameter values, a cross-validation scheme is considered with an independent

Mathematics 2022, 10, 3776 12 of 27

sample equal to 1% of the total, i.e., with 3000 observations. For this example, we only
present the results for the case d = 20.

The other datasets were taken from the LibSVM library (see [5] and https://www.csie.
ntu.edu.tw/~cjlin/libsvm accessed on 1 May 2022).

4.3. Parameter Choices

For each problem and kernel, the choice of parameters is made before the local sam-
pling SVM procedure, as described in the previous section, and it is run on the validation
set (exclusive for this task) composed of 1% or 5% of the training data (5% in the smallest
datasets) based on the results obtained on a small subsample of the training set. This sub-
sample and the rest of the training set are disjointed from the test set. The parameters to be
tuned in advance are the kernel parameters and the cost parameter C for the optimization
problem as well as the parameter β of our algorithm. The kernel parameters and C are
chosen via 10-fold cross-validation of the optimization procedure on the small subsample.
Once they are chosen, β is selected by dividing the subsample into sets of 80% and 20%,
using the larger of these sets to train our procedure for different values of β, starting from
β = 0.1 and incrementing it by 0.1 whenever a significant reduction of the classification
error on the 20% part of the subsample is achieved.

With the parameters chosen, the SVM classifier was fitted on the full training sample
using the libsvm solver: the number and class identity of support vectors were obtained,
and the execution time for the full problem and the test error were obtained for the test
set. In the summary tables, each kernel is indicated in the first column. In the second and
third columns, we show the optimal parameters C and γ obtained via cross-validation
for each kernel function, the latter separated by row. The fourth column will show the
number of support vectors for each kernel, followed by quantities in parentheses, which
represent the division of support vectors by class. The accuracy rates obtained in the test
set are presented in the fifth column. Finally, in the sixth column, the execution times are
presented in seconds.

The local sampling approach was executed for the previously chosen value of β.
As part of our analysis, we present the average results for 10 runs of the SVM solution
considering our algorithm with the (fixed) optimal parameters C, γ, and β obtained in the
preliminary evaluation. We also report the initial amount of support vectors in step (ii) of
the procedure, the number of support vectors at the end of the procedure, the number of
these vectors that are SVs for the problem solved on the full training data set, the accuracy
rate on the test data, and the execution times. In addition, we compare the results obtained
using our proposed method and the procedure introduced in [4].

5. Numerical Results
5.1. Comparison with LibSVM and CGLQ

This subsection encompasses the results obtained for the problems tested using three
kernels. For each of them, a description of how the local sampling algorithm is applied is
included, and three tables are displayed. The first shows the results obtained when solving
the problem using the full training set and implementing the libsvm methodology. Then,
information on the classification error, the number of support vectors, and computational
time are included. Tables 2–8 present the results.

The other tables ((Tables 9–15), on each example, show the results obtained using
the local sampling approach and the CGLQ algorithm from [4]. Each table contains the
initial and final number of support vectors, and we also take the number and percentage
they represent of the SVM methodology under the libsvm implementation, that is, the
percentage of the support vectors found by the subsample procedures that are support
vectors for the full dataset. We define the Accuracy ratio as

Accratio =
AccLS

Acclibsvm
− 1,

https://www.csie.ntu.edu.tw/~cjlin/libsvm
https://www.csie.ntu.edu.tw/~cjlin/libsvm

Mathematics 2022, 10, 3776 13 of 27

representing a measure of the proximity between the classification errors corresponding
to the subsample procedures and the full dataset under libsvm. A positive value for this
quotient indicates an improvement in the error when using the subsampling approach. The
tables also include the execution time for the subsample procedures and the percentage
that the computational time represents of the running time for the full dataset given by the
libsvm routine.

Table 2. SVM results from libsvm 2D circle model data.

Optimal Parameters

Kernel Cost γ Support Vectors Accuracy Time (s)

Linear 0.001 – 71,087 (35,544||35,543) 0.554 172.38
Polynomial 10 5 40,398 (20,204||20,194) 0.775 784.64
Radial basis 1 1 38,786 (19,407||19,379) 0.774 518.17

Table 3. SVM results from libsvm 20D simulation.

Optimal Parameters

Kernel Cost γ Support Vectors Acc Rate Time (s)

Linear 0.1 – 224,969 (112,482||11,487) 0.551 8965
Polynomial 0.1 0.1 223,216 (111,608||111,608) 0.548 9695.92
Radial basis 1 0.01 224,299 (112,134||112,160) 0.551 16,820.63

Table 4. SVM results from libsvm COD-RNA training data.

Optimal Parameters
Kernel Cost γ Number of Support Vectors Acc Rate Time (s)

Linear 1 – 21,706 (10,856||10,850) 0.7938 120.18
Polynomial 0.1 1 12,821 (6424||6397) 0.7845 601.62
Radial basis 10 0.1 8768 (4380||4388) 0.7574 121.9

Table 5. SVM results from LibSVM IJCNN1 training data.

Optimal Parameters
Kernel Cost γ Number of Support Vectors Acc Rate Time (s)

Linear 10 – 8146 (4077||4089) 0.9219 50.34
Polynomial 5 0.1 8061 (4051||4010) 0.9309 38.53
Radial basis 10 0.1 5497 (2763||2734) 0.9722 69.95

Table 6. SVM results from LibSVM w7a data.

Optimal Parameters
Kernel Cost γ Number of Support Vectors Acc Rate Time (s)

Linear 1 – 696 (382||314) 0.9893 181.01
Polynomial 0.1 1 802 (528||279) 0.9823 58.61
Radial basis 10 0.01 5552 (4923||629) 0.9843 365.57

Mathematics 2022, 10, 3776 14 of 27

Table 7. SVM results from LibSVM COVTYPE training data.

Optimal Parameters
Kernel Cost γ Number of Support Vectors Acc Rate Time (s)

Linear 10 – 299,256 (150,111||149,145) 0.755 36,190.19
Polynomial 1 1 214,409 (107,190||107,219) 0.833 39,504.57
Radial basis 10 5 143,154 (71,420||71,734) 0.89 28,372.08

Table 8. SVM results from LibSVM WEBSPAM training data.

Optimal Parameters
Kernel Cost γ Number of Support Vectors Acc Rate Time (s)

Linear 10 – 56,213 (28,285||27,928) 0.921 21,705.89
Polynomial 10 2 16,596 (8407||8189) 0.973 16,205.77

Radial 10 2 16,389 (8644||7745) 0.981 10,881.45

Table 9. Two-dimensional (2D) circle error and computing times vs. CGLQ algorithm.

(a) Local sampling SVM

2D Circle Kernel

δ = 0.1 Linear Polynomial Radial Basis

β 0.1 0.1 0.1
SV initial 7161 4095 4305
SV final 41,805 20,424 19,831
SV real 38,613 20,417 19,327

% full SV 54.31% 50.54% 49.83%
Accuracy 0.553 0.777 0.7252
Sd. dev. (0) (0.0004) (0.003)
Acc ratio −0.01 0.002 −0.063
Time (s) 52.98 86.67 94.239

% full time 30.73% 11.04% 18.18%

(b) CGLQ Algorithm

2D Circle Kernel

δ = 0.1 Linear Polynomial Radial Basis

SV initial 7100 4038 3947
SV final 38,432 19,634 18,868
SV real 37,222 19,586 18,697

% full SV 52.36% 48.48% 48.207%
Acc rate 0.5538 0.732 0.776
Sd. dev. (0) (0.09) (0.0005)
Acc ratio −0.01 −0.056 0.001
Time (s) 51.01 122.69 104.36

% full time 29.59% 15.63% 20.14%

Mathematics 2022, 10, 3776 15 of 27

Table 10. 20D simulation error and computing times vs. CGLQ algorithm.

(a) Local sampling SVM

20D Unit Cube Kernel

δ ≈ 0.01 Linear Polynomial Radial Basis

β 0.1 0.1 0.1
SV initial 2504 2992 2837
SV final 16,973 21,629 19,154
SV real 16,795 21,065 18,736

% full SV 7.46% 9.43% 8.35%
Acc rate 0.5521 0.5498 0.5519
Sd. dev. (0.0006) (0.00045) (0.0006)
Acc ratio 0.001 0.003 0.001
Time (s) 155.907 225.13 253.703

% full time 1.73% 2.32% 1.5%

(b) CGLQ Algorithm

20D Unit Cube Kernel

δ ≈ 0.01 Linear Polynomial Radial Basis

SV initial 2253 2342 2345
SV final 22,244 22,986 23,180
SV real 22,135 22,422 22,737

% full SV 9.83% 10.04% 10.13%
Acc rate 0.55 0.5279 0.5449
Sd. dev. (0.002) (0.002) (0.0002)
Acc ratio −0.002 −0.04 −0.02
Time (s) 5250.2 1875.5 10827.34

% full time 58.56% 19.34% 64.36%

Table 11. COD-RNA error and computing times vs. CGLQ algorithm.

(a) Local sampling SVM

COD-RNA Kernel

δ ≈ 0.01 Linear Polynomial Radial Basis

β 0.2 0.5 0.1
SV initial 282 320 356
SV final 1089 1566 581
SV real 982 1370 119

% full SV 4.52% 10.69% 1.36%
Acc rate 0.7863 0.7857 0.7524
Sd. dev. (0.02) (0.0014) (0.012)
Acc ratio −0.0009 0.001 −0.006
Time (s) 0.587 4.24 0.696

% full time 0.48% 0.7% 0.57%

Mathematics 2022, 10, 3776 16 of 27

Table 11. Cont.

(b) CGLQ Algorithm

COD-RNA Kernel

δ ≈ 0.01 Linear Polynomial Radial Basis

SV initial 232 155 188
SV final 1143 503 529
SV real 1057 401 111

% full SV 4.87% 3.12% 1.27%
Acc rate 0.7877 0.7698 0.7638
Sd. dev. (0.0021) (0.003) (0.011)
Acc ratio −0.007 −0.01 0.008
Time (s) 3.35 4.89 3.16

% full time 2.79% 0.72% 2.59%

Table 12. IJCNN1 error and computing times vs. CGLQ algorithm.

(a) Local sampling SVM

IJCNN1 Kernel

δ ≈ 0.02 Linear Polynomial Radial Basis

β 0.1 0.2 0.5
SV initial 329 461 403
SV final 633 423 1078
SV real 111 313 617

% full SV 1.36% 3.88% 11.22%
Acc rate 0.9254 0.9397 0.9706
Sd. dev. (0.007) (0.006) (0.001)
Acc ratio 0.003 0.0094 −0.001
Time (s) 1.36 1.016 4.46

% time SVM 2.7% 2.63% 6.38%

(b) CGLQ Algorithm

IJCNN1 Kernel

δ ≈ 0.02 Linear Polynomial Radial Basis

SV initial 183 249 198
SV final 711 333 395
SV real 691 251 233

% full SV 8.48% 3.11% 3.75%
Acc rate 0.9293 0.9423 0.9679
Sd. dev. (0.003) (0.01) (0.004)

Error ratio 0.008 0.012 −0.004
Time (s) 3.2 1.63 3.75

% time SVM 6.45% 4.24% 5.36%

Mathematics 2022, 10, 3776 17 of 27

Table 13. W7A error and computing times vs. CGLQ algorithm.

(a) Local sampling SVM

w7a Kernel

δ = 0.1 Linear Polynomial Radial Basis

β 0.5 0.2 0.2
SV initial 490 1366 604
SV final 294 893 441
SV real 144 319 124

% full SV 20.76% 39.81% 2.24%
Acc rate 0.9829 0.9818 0.983
Sd. dev. (0.001) (0.001) (0.008)
Acc ratio −0.006 −0.0004 0.0009
Time (s) 7.75 14.51 8.99

% time SVM 4.28% 28.11% 2.46%

(b) CGLQ Algorithm

w7a Kernel

δ = 0.1, K = 5 Linear Polynomial Radial Basis

SV initial 150 545 217
SV final 250 727 402
SV real 130 172 169

% full SV 18.64% 21.45% 3.05%
Acc rate 0.9819 0.9821 0.985
Sd. dev. (0.002) (0.0014) (0.001)
Acc ratio −0.007 −0.0002 0.0007
Time (s) 8.4 13.34 10.78

% time SVM 4.64% 25.84% 2.95%

Table 14. COVTYPE error and computing times vs. CGLQ algorithm.

(a) Local sampling SVM

COVTYPE Kernel

δ ≈ 0.025 Linear Polynomial Radial Basis

β 0.1 0.2 0.1
SV initial 7774 6387 10,819
SV final 43,883 27,414 24,396
SV real 24,777 20,150 18,005

% full SV 8.17% 9.29% 12.48%
Acc rate 0.7614 0.8132 0.86
Sd. dev. (0.0008) (0.0004) (0.001)
Acc ratio −0.002 −0.024 −0.033
Time (s) 300.72 1228.55 789.406

% time SVM 0.82% 3.1% 2.74%

Mathematics 2022, 10, 3776 18 of 27

Table 14. Cont.

(b) CGLQ Algorithm

COVTYPE Kernel

δ ≈ 0.025, K = 5 Linear Polynomial Radial Basis

SV initial 7474 5671 5627
SV final 40,039 26,248 19,146
SV real 23,189 19,044 5324

% full SV 7.74% 8.88% 3.71%
Acc rate 0.7630 0.829 0.876
Sd. dev. (0.00002) (0.0009) (0.001)

Error ratio 0.0105 −0.004 −0.015
Time (s) 299.73 13,188.47 8887.25

% time SVM 0.82% 33.38% 15.79%

Table 15. WEBSPAM error and computing times vs. CGLQ algorithm.

(a) Local sampling SVM

WEBSPAM Kernel

δ = 0.01 Linear Polynomial Radial Basis

β 0.1 0.5 0.2
SV initial 1490 1145 1344
SV final 5527 2187 2351
SV real 4897 2183 2351

% full SV 8.59% 13.01% 12.96%
Acc rate 0.923 0.9623 0.9727
Sd. dev. (0.006) (0.0026) (0.0022)

Error ratio 0.002 −0.0109 −0.008
Time (s) 108.48 238.39 106.393

% time SVM 0.49% 1.44% 0.96%

(b) CGLQ Algorithm

WEBSPAM Kernel

δ = 0.01 Linear Polynomial Radial Basis

SV initial 780 470 596
SV final 3214 1091 1602
SV real 3206 1090 1598

% full SV 5.704% 6.49% 9.61%
Acc rate 0.9239 0.959 0.9654
Sd. dev. (0.0004) (0.0004) (0.0007)
acc ratio 0.0031 −0.013 −0.015
Time (s) 223.94 125.385 294.03

% time SVM 1.03% 0.77% 2.7%

5.2. Comparison with Other Methodologies

As an important part of our contribution, we present an interesting comparison
regarding other approaches existing in the literature, such as the aforementioned LibSVM
in [5], SVMlight [6], and a method based on decision trees from [27]. In the latter, the idea is
to train SVM using significantly smaller refined training sets and label vectors from training
as those closer or far from the decision hyperplane, after which a decision tree is used to
find vectors with similar characteristics to those marked as support vectors. To conduct the
contrasting, the metrics used before and two additional measures, which is appropriate to
evaluate the performance of SVM, are considered. These are as follows:

Mathematics 2022, 10, 3776 19 of 27

• Proportion of Support Vectors (PSV) is a measure used to define the decision boundary:

PSV = 100 · NSV
n

,

where NSV is the number of support vectors.
• Performance index for SVM, denoted as PISVM, has its antecedent in [39], where PSV

is combined with accuracy to guide the optimization of hyperparameters. In Rojas
Dominguez et al. [40], this measure of SVM performance is defined as a function of
accuracy and PSV. Provided that these are percentages, the performance index for
SVM classifiers (PISVM) is given by:

PISVM = exp

(
−k(PSV + (100− Acc)2)

200− PSV − Acc + ε

)

where k > 0 is a (small) constant factor that shapes the function and ε is a small
number to avoid division by zero.

The index PISVM is bounded in [0, 1] and can be used as an alternative to the adequacy
function based solely on accuracy appearing in most works found in the literature. Notice
that contrary to the idea in [39], this does not describe a linear relationship between accuracy
and PSV. Instead, it is employed to examine the performance of the algorithms, and in a
final experiment, it is tested to lead to the optimization of the best algorithm identified.

We now compare our proposed method and three state-of-the-art methods: LibSVM,
SVMlight, and decision tree-based SVM. We implemented this exercise in R, selecting for
each dataset the kernel function that had the best performance in the previous section in
terms of precision and execution time for the libsvm fit with the full training sample.

Table 16 is organized as follows. In the upper left corner, the results for the LibSVM
implementation appear, which is followed by the SVM light method in the upper right. In
the lower-left corner is our local sampling method, and finally, in the lower-right section
is the output of the SVM decision tree-based methodology. The columns contain the set
of observations, kernel function to be used, accuracy rate, execution time, proportion of
support vectors, and performance index for SVM.

It can be seen in Table 16 that in terms of precision, the LibSVM approach outperforms
the other methodologies in most cases, but for the simulated datasets (2D circle and 20D
cube), the best precision performance is for the local sampling method, and only in the
COD-RNA set the highest accuracy rate was obtained with the decision tree-based SVM.

Table 16. Comparison.

(a) libsvm performance

libsvm Dataset
Measures

Acc Time PSV PISV M

2D circle 77.5 784.64 50.49 0.4616
20D cube 55.1 8965 93.73 0.0162

COD RNA 79.38 120.18 38.37 0.5692
IJCNN1 97.22 69.95 11.57 0.979

W7A 98.93 181.01 2.95 0.9958
Covtype 89 28,372.08 27.75 0.8363

Webspam 98.1 10,081.45 5.51 0.9905

Mathematics 2022, 10, 3776 20 of 27

Table 16. Cont.

(b) SVMlight performance

SVMlight
Measures

Acc Time PSV PISV M

2D circle 69.28 2818.97 55.16 0.2666
20D cube 55.19 1386.92 93.74 0.016

COD RNA 74.03 51.67 1.65 0.5805
IJCNN1 97.18 267.54 11.4763 0.9789

W7A 98.92 336.48 13.132 0.9829
Covtype 0.8846 39,546.7 33.674 0.8071

Webspam 97.36 23,774.4 18.53 0.9701

(c) Local sampling performance

Local Sampling
Measures

Acc Time PSV PISV M

2D circle 77.7 86.67 25.53 0.5826
20D cube 55.21 155.9 7.07 0.2318

COD RNA 78.63 0.587 1.92 0.681
IJCNN1 97.06 4.46 2.26 0.9892

W7A 98.29 7.75 1.24 0.9959
Covtype 86.06 789.4 4.72 0.8332

Webspam 97.27 106.39 0.7915 0.9919

(d) Decision tree-based SVM performance

Dec. Tree SVM
Measures

Acc Time PSV PISV M

2D circle 52.97 688.72 1.9 0.2175
20D cube 54.87 31.41 6.67 0.2286

COD RNA 79.74 1.56 3.47 0.701
IJCNN1 95.84 2.85 1.41 0.9819

W7A 98.15 2.64 0.8839 0.9957
Covtype 85.1 585.69 3.71 0.83162

Webspam 96.63 123.61 1.14 0.9878

5.3. Discussion

To summarize our analysis against the CGLQ methodology, we observe that both
methods are very effective in terms of error rates in the simulated examples, but in many
cases, local sampling achieves dramatic savings in computation time compared with CGLQ.
On the real data examples, the results can be grouped as follows: In three of the datasets
(COD-RNA, W7A, and COVTYPE), the performance in terms of the classification error
is very similar, but local sampling offers savings in computational time, which is often
important compared with CGLQ. Finally, on the WEBSPAM data, the results are very
similar for both subsampling methods in terms of error rates, and which one is faster
depends on the kernel considered.

Overall, we can say that the novel local sampling procedure outperforms the CGLQ
methodology in most datasets. It appears that the local sampling implemented through
bagging and importance sampling and the extra flexibility introduced by the parameter β,
which controls the enriching subsampling regions’ size, pays off, resulting in a procedure
that enriches the original samples more effectively.

Regarding the execution times, in the comparison in Section 4.2, we note that the best
performance is provided by the decision tree approach as its formulation works efficiently:
selecting only a subsample, working from it with the decision tree, and solving a problem
of a much smaller size. This deteriorates its performance, and in that sense, we can say that

Mathematics 2022, 10, 3776 21 of 27

our methodology is competitive, because the runtimes are smaller than those of the usual
methodologies, and at least in three datasets (2D circle, COD RNA, and Webspam), the
shortest execution times were reached.

Given the results of the last two columns of Table 16, we can say that our advantage
is reflected in the two performance measures introduced: PSV and PISVM. From the
viewpoint of structural risk minimization, the term of the complexity of the model is given
by the Vapnik–Chervonenkis (VC) dimension. In the case of SVM, it is provided by the VC
dimension of the separating hyperplanes and is precisely related to the number of support
vectors and the number of observations to be separated. With this reasoning, these indices
naturally arise.

6. Conclusions

In the present work, theoretical results were presented that help understand the
performance of subsampling methods in determining an approximate solution for the
SVM problem for big data classification. We proved that under some conditions, there
exists, with high probability, a feasible solution of the dual SVM problem for a randomly
chosen training subsample, with the corresponding classifier as close as desired (in terms
of classification error) to the classifier obtained from training with the complete dataset.

In addition, we introduced a local sampling methodology for SVM classification;
this methodology is local because it uses information close to the observations of interest
(support vectors). The bagging and local subsampling SVM methodology presented herein
attains, in many problems, classification accuracy comparable to that corresponding to
the solution of the problem on the full training sample, using a fraction of the training
dataset and a smaller number of support vectors, thus producing significant savings on
computational time.

Among the aspects to remark on, we highlight the analysis of the PISVM measure as a
general way of quantifying the training performance of support vector machine algorithms.
It defines a tradeoff between accuracy and the number of support vectors used to achieve a
given performance. Notice that in our context, it makes sense since we are searching for an
optimal subsampling by trying to find the most support vectors. However, with a small
proportion of the original support vectors (PSV) or observations close to these, it is possible
to find a solution close enough to the SVM performance with the full dataset. In the practical
implementation, we have that our PISVM is the best for almost all datasets: 2D-Circle (0.58),
20D-Cube (0.2318), IJCNN1 (0.9882), W7A (0.9959) and WEBSPAM (0.9919).

In general, the proposed method compares favorably to the subsampling and nearest
neighbors enriching methodology proposed in [4]. The advantages of the proposed method-
ology depend, to some extend, on the complexity of the problem and the kernel used in
the algorithm; however, they are more noticeable when the dimension of the dataset is not
very large. In the final comparison, the execution times are lower with respect to the total
training time for routines such as LibSVM, where in our case, the highest percentage of time
used of the total libsvm was 10.9% for the 2D-Circle set, whereas the rest are significantly
lower, and the lowest was 0.48% in CODRNA. Here, we note that the best competitor in
execution times is the algorithm of Cervantes et al. [27].

As limitations, we may mention the following: some experimental results have lower
accuracy compared to other methodologies. This is due to the randomness of the subsam-
pling method, although in most cases, the differences in performance are not significant. In
those problems with higher dimensions, a so-called curse of dimensionality effect appears,
deteriorating the accuracy. As the dimension increases, the effectiveness of the subsampling
decreases, as shown in Equation (5).

At last, although there is flexibility in the choice of the beta parameter defining the
subsampling rate, for some problems, it was not possible to find the best choice. Even
extending the execution time, the algorithm did not gain in accuracy. Further research will
consider this issue.

Finally, future work should address the following issues:

Mathematics 2022, 10, 3776 22 of 27

• Determine a theoretical result for quantifying the subsampling rate in terms of effi-
ciency measures and the closeness to the final classification accuracy as well as the
number of observations expected to be SV in an optimal search.

• An open issue is to explore the general key aspects of subsampling approaches and their
potential contribution to training SVM methods involving hybrid-type algorithms.

• Consider unbalanced classification problems and their effect on local subsampling.
Devote further effort to areas where we can locate observations from both classes.
Otherwise, SVM will not be informative.

• Extend the discussion to multi-class problems and determine how subsampling
schemes can work in such cases.

Author Contributions: Conceptualization, R.B., M.G.-L., J.O. and A.Q.; methodology, R.B., M.G.-L.,
J.O. and A.Q.; validation, R.B., M.G.-L., J.O. and A.Q.; theoretical analysis, A.Q.; investigation, R.B.,
M.G.-L., J.O. and A.Q.; software, data curation and visualization, R.B.; writing—review and editing,
R.B., M.G.-L., J.O. and A.Q.; supervision, J.O. and A.Q.; project administration, M.G.-L., J.O. and
A.Q.; funding acquisition, J.O. All authors have read and agreed to the published version of the
manuscript.

Funding: This research has been supported by King Abdullah University of Science and Technology,
KAUST.

Data Availability Statement: Supplementary data to this article can be found online at https://
archive.ics.uci.edu/ml/index.php accessed on 1 May 2022 and https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/ accessed on 1 May 2022.

Acknowledgments: This work was partly performed while RB visited the Departamento de Matemáti-
cas, Universidad de los Andes, Colombia (RB as a visiting graduate student supported by the Mixed
Scholarship CONACYT, Mexico). Their hospitality and support are gratefully acknowledged. The
work of AJQ was supported, in part, by the STAI program of Universidad de Los Andes. We would
like to thank the Science Faculty at Universidad de los Andes. The support of Kind Abdullah
University of Science and Technology is also gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Results

Proof of Proposition 1. Based on the assumptions, there exist positive constants a1 and
a2, such that 0 < a1 ≤ f (x) ≤ a2, ∀x ∈ S and b1 and b2, such that 0 < b1 ≤ η(x) ≤
b2 < 1. According to the weak grid compatibility assumption, there exists a cover of S ,

W , composed of cubes En,j of side O
((

ln2n
n

) 1
d
)

. The volume of each cube is of the order

O
(

ln2n
n

)
.

According to weak grid compatibility, there exists a positive γ such that, for each j,

µ(En,j ∩ S) ≥ γµ(En,j) ≥ γa1
ln2n

n
. (A1)

Let
Bn,j = En,j × {1} and N+

n,j = #{(X`, y`) ∈ Bn,j ∩M}

N+
n,j denotes the number of observations of the subsampleM, in En,j, the class of which is

1. Additionally, define
pn,j = Pr((X, y) ∈ Bn,j),

where (X, y) is a new pair produced by the same random mechanism generating the
sample. The distribution of N+

n,j is binomial with parameters n′ = dδne and pn,j, i.e.,

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Mathematics 2022, 10, 3776 23 of 27

N+
n,j ∼ Bin(n′, pn,j) and based on our assumptions, γa1b1ln2n/n ≤ pn,j ≤ γa2b2ln2n/n.

Then, the probability of finding no subsample observations in En,j, for a fixed j, is

Pr
(
N+

n,j = 0
)
≤ Bin(n′, pn,j)(0)

≤ exp

{
− δγa1b1ln2n

}
= n−δγa1b1lnn.

Note that by (A1), we have

#W ≤ n
γa1ln2n

. (A2)

Define the events An = ∪j{N+
n,j = 0} where n is the sample size. An occurs if there

exists at least one cube in the coveringW in which there are no points of the subsample with
class 1. Using a Borel–Cantelli argument, we prove below that the sequence (An, n ≥ 1)
ocurrs infinitely often with probability 0. This means that for a large enough n, with
probability one, all cubes in the covering will contain at least one point in the subsample
with class 1.

Using (A2), it follows that

Pr(An) = Pr
(
∪j {N+

n,j = 0}
)
≤ n

γa1ln2n
Pr
(
N+

n,j = 0
)

≤ n
γa1ln2n

· n−δγa1b1lnn

= 1
γa1ln2n

n1−δγa1b1lnn. (A3)

As the bound on the right-hand side of (A3), summed over n, adds to a finite value,
we know by Borel–Cantelli that

Pr(lim sup
n

An) = Pr
(

lim sup
n
∪j{N+

n,j = 0}
)
= 0. (A4)

The version of (A4) for subsample points with yi = −1 is obtained similarly. As every
support vector in Vn must fall in some En,j, for some j, the result follows.

Proof of Theorem 1. Using the notation in the previous proposition, let B = (lim supn An)c.
Then, B has a probability of one. We assume that our sample, (X1, y1), (X2, y2), . . . , falls
in that set. Consider the cube array,W , of the previous proposition and the subcollection
E = {En,j ∈ W : Vn ∩ En,j 6= ∅} of cubes where the solution of the SVM problem for the
complete sample of size n has support vectors. Let j be such that En,j ∈ E . Define

A+
n,j = {i ≤ n : α∗i > 0, Xi ∈ En,j and yi = +1},

A−n,j = {i ≤ n : α∗i > 0, Xi ∈ En,j and yi = −1},

and let
s+n,j = ∑

i∈A+
n,j

α∗i and s−n,j = ∑
i∈A−n,j

α∗i

in the understanding that a sum over the empty set is 0. Note that the quantity s+n,j is
the sum of the multipliers associated with the support vectors with class +1 in the cube
En,j. We want to assign the sum of multipliers in the cube as the multiplier for a vector
of the subsample in En,j. However, then, the new set of coefficients could fail to satisfy
the upper bound restriction αi ≤ C in (2). By its definition and the fact that the α∗i comes
from a feasible solution on a high-probability set, the constant C1 of condition (6) satisfies

Mathematics 2022, 10, 3776 24 of 27

s+n,j ≤ C1C and s−n,j ≤ C1C for every j. Let M = max(C1, 1). All the s+n,j and s−n,j divided by
M are bounded above by C. It is simple to verify that by defining γ∗i = α∗i /M, for each
support vector in Vn and c∗ = b∗/M, we obtain a new set of multipliers that satisfies the
feasibility conditions (2) and that produces the same classification for each x ∈ S as the
original classifier. Thus, part (i) is proved.

As we are working in B and the sample is large enough, for each j such that En,j ∈ E ,
there exists at least one X` ∈ M∩ En,j with y` = +1. Choose one of those X`, and assign
to it the multiplier

β∗` = ∑
i∈A+

n,j

γ∗i . (A5)

Similarly, define β∗` for a point X` ∈ M∩ En,j with y` = −1 in terms of the γ∗i for
support vectors in En,j with yi = −1. For the X` not chosen, set β` = 0. Observing that the
y` associated with β∗` has the same sign of the yi associated with the corresponding γ∗i in
(A5), it follows that

∑
`

β∗`y` = ∑
j

∑
i∈A+

n,j

γ∗i yi.

This, together with the fact that by our choice of M, β∗` ≤ C, implies that if we let
c∗ = b∗/M, the set of coefficients β∗` and c∗, associated with the chosen points X` is feasible
as a solution for problem (2) on the subsampleM.

Now, for each x ∈ S , and the chosen X` ∈ M∩ En,j with y` = +1, we have, using (A5),
that K is Lipschitz and that the diameter of En,j is O((ln2n/n)1/d) by the construction of
the previous Proposition, thus∣∣∣ ∑

i∈A+
n,j

yiγ
∗
i K(Xi, x)− y`β∗`K(X`, x)

∣∣∣ = ∣∣∣ ∑
i∈A+

n,j

γ∗i (K(Xi, x)− K(X`, x))
∣∣∣

≤ #A+
n,j C L O((ln2n/n)1/d) (A6)

= #A+
n,j O((ln2n/n)1/d).

Adding the above sets A+
n,j and A−n,j, we obtain∣∣∣ ∑

Xi∈Vn

yiγ
∗
i K(Xi, x)−∑

`

y`β∗`K(X`, x)
∣∣∣ ≤ #VnO((ln2n/n)1/d),

which goes to zero, in probability, by our assumption on #Vn. This ends the proof of (ii).
By part (i), for the event in (9) to occur, the classification produced by classsub(x) and

the classifier class2(x) = sgn
(
∑i yiγ

∗
i K(Xi, x) + c∗

)
must differ. Suppose that∣∣∣∣∣∑

`

y`β∗`K(X`, x) + c∗
∣∣∣∣∣ > ε.

Then, for the classifiers to differ in their decisions, we must have∣∣∣∑
i

yiγ
∗
i K(Xi, x)−∑

`

y`β∗`K(X`, x)
∣∣∣ > ε,

an event of probability that goes to 0, by (7). Suppose now that the classifiers differ when∣∣∣∣∣∑
`

y`β∗`K(X`, x) + c∗
∣∣∣∣∣ ≤ ε.

Mathematics 2022, 10, 3776 25 of 27

Then, using part (ii), we can assume, with high probability, that
∣∣∑i yiγ

∗
i K(Xi, x) + c∗

∣∣ ≤
2ε. Multiplying by M, and using the observation on the value of M made at the end of the
proof of (i), it follows that ∣∣∣∣∣∑i

yiα
∗
i K(Xi, x) + b∗

∣∣∣∣∣ ≤ 2C1ε, (A7)

for the value of C1 in (6). The probability µ(·) of the set of x ∈ S satisfying (A7) goes to 0,
as n grows, based on the assumption on ε-uncertainty, (4), finishing the proof.

Appendix B. Numerical Evaluation of the Probability of ε-Indecision

Numerical evaluation of one of the key assumptions for our main theorem (Section 2)
was performed, and the results show that is valid in most real-life examples. The condition (4)
says that when ε goes to 0 and n is large, the probability of the region of ε-indecision of the
classifier produced by the solution of the SVM problem goes to zero as well.

On a particular dataset, the probability of the event in (4) can be approximated as
the fraction of x values in the sample for which the condition

∣∣∑i yiα
∗
i K(Xi, x) + b∗

∣∣ ≤ ε
holds, for different values of ε and sample sizes. Such a numerical evaluation is described
next. The problems considered are 20D-circle, 20D-cube, COD-RNA, IJCNN1, W7A, and
WEBSPAM.

Table A1a–f present the averages of the estimated empirical indecision probabilities as
the fraction

#{j ≤ n :
∣∣∣∑i yiα

∗
i K(X∗i , Xj) + b∗

∣∣∣ < ε
}

n
, (A8)

computed over the training set as follows. Each Xj of the training subsample is included
in the calculation, X∗i are the support vectors for that training subsample and n is the
subsample size. From the data available for training in the dataset, random subsamples of
size n for different choices of n are taken, the corresponding SVM problems are solved, and
the fraction (A8) is estimated. For each training sample size considered, the experiment is
repeated 100 times for independent subsamples, and the average of the empirical indecision
probabilities are reported in the tables.

Table A1. Empirically estimated indecision probability.

(a) 2D circle data

Polynomial Kernel

ε n = 5000 10,000 20,000 40,000 60,000

0.1 0.0453 0.04601 0.045 0.0456 0.0459
0.01 0.00454 0.00489 0.00469 0.0047 0.0048

0.001 0.00048 0.00053 0.00052 0.00053 0.00049

(b) 20D simulated data

Radial Basis Kernel

ε n = 3000 15,000 30,000 90,000 150,000

0.1 0.089 0.085 0.086 0.087 0.09
0.01 0.009 0.0086 0.0087 0.00853 0.009

0.001 0.00076 0.0009 0.00087 0.00085 0.00088

Mathematics 2022, 10, 3776 26 of 27

Table A1. Cont.

(c) COD-RNA data

Linear Kernel

ε n = 5000 10,000 20,000 40,000 50,000

0.1 0.07758 0.07726 0.07773 0.07759 0.07751
0.01 0.00722 0.00722 0.00726 0.00733 0.00729

0.001 0.00082 0.00077 0.00078 0.00079 0.00078

(d) IJCNN1 data

Radial Basis Kernel

ε n = 5000 10,000 20,000 30,000 49,990

0.1 0.005 0.009 0.009 0.0093 0.0093
0.01 0.0007 0.0009 0.00093 0.00089 0.00096

0.001 0.00004 0.00009 0.00014 0.00011 0.00012

(e) W7A data

Polynomial Kernel

ε n = 1000 5000 10,000 15,000 20,000

0.1 0.0004 0.0004 0.00038 0.00033 0.00039
0.01 0 0 0 0 0

0.001 0 0 0 0 0

(f) WEBSPAM data

Linear Kernel

ε n = 10,000 30,000 60,000 120,000 240,000

0.1 0.99963 0.9996 0.99962 0.9996 0.9996
0.01 0.2391 0.2396 0.2389 0.23989 0.23983

0.001 0.01736 0.01716 0.017145 0.017 0.01724

From the numbers in these tables, it appears that in all six examples considered, for
each value of ε, the average estimated indecision probability is converging to a limiting
value as n grows, and the indecision probability decreases with ε in a nearly linear fashion.
We conclude that assumption (4) is valid in diverse real examples.

References
1. Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A Training Algorithm for Optimal Margin Classifiers. In Proceedings of the COLT’92

Proceedings of the Fifth annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; ACM: New
York, NY, USA, 1992; pp. 144–152.

2. Cortes, C.; Vapnik, V.N. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
3. Cristianini, N.; Shawe-Taylor, J. Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge University Press:

Cambridge, UK, 2000.
4. Camelo, S.A.; González-Lima, M.D.; Quiroz, A.J. Nearest Neighbors Method for Support Vector Machines. Ann. Oper. Res. 2015,

235, 85–101. [CrossRef]
5. Chih-Chung, C.; Chih-Jen, L. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27.

[CrossRef]
6. Joachims, T. Making Large-Scale Support Vector Machine Learning Practical. In Advances in Kernel Methods-Support Vector Learning;

Scholkopf, B., Burges, C.J.C., Smola, A.J., Eds.; The MIT Press: Cambridge, MA, USA, 1999; pp. 169–184.
7. Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
8. Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Wadsworth: Belmont, CA, USA, 1984.
9. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008.
10. Bishop, C. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006.
11. Devroye, L.; Györfi, L.; Lugosi, G. A Probabilistic Theory of Pattern Recognition; Springer: New York, NY, USA, 1996.
12. Duda, R.; Hart, P.; Stork, D. Pattern Classification; John Wiley & Sons: Hoboken, NJ, USA, 2000.

http://doi.org/10.1007/BF00994018
http://dx.doi.org/10.1007/s10479-015-1956-8
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1007/BF00058655

Mathematics 2022, 10, 3776 27 of 27

13. Abe, S. Support Vector Machines for Pattern Classification; Springer: London, UK, 2005.
14. Burges, C.S.L. A tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Discov. 1998, 2, 121–167.

[CrossRef]
15. Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Asdrubal Lopez, A. A comprehensive survey on support vector machine

classification: Applications, challenges and trends. Neurocomputing 2020, 408, 189–215. [CrossRef]
16. Nalepa, J.; Kawulok, M. Selecting training sets for support vector machines: A review. Artif. Intell. Rev. 2019, 52, 857–900.

[CrossRef]
17. Osuna, E.; Freund, R.; Girosi, F. An Improved Training Algorithm for Support Vector Machines. In Proceedings of the Neural

Networks for Signal Processing VII. Proceedings of the 1997 IEEE Workshop, Amelia Island, FL, USA, 24–26 September 1997;
pp. 276–285.

18. Vapnik, V. Statistical Learning Theory; Wiley: New York, NY, USA, 1998.
19. Platt, J. Sequential Minimal Optimization: Fast Algorithm for training Support Vector Machines. In Advances in Kernel Methods-

Support Vector Learning; Scholkopf, B., Burges, C.J.C., Smola, A.J., Eds.; MIT Press: Cambridge, MA, USA, 1999; pp. 185–208.
20. Mangasarian, O.; Musicant, D. Succesive Overrelaxation for Support Vector Machines. IEEE Trans. Neural Netw. 1999, 10,

1032–1037. [CrossRef]
21. Gu, B.; Quan, X.; Gu, Y.; Sheng, V.S.; Zheng, G. Chunk Incremental Learning for Cost-Sensitive Hinge Loss Support Vector

Machine. Pattern Recognit. 2018, 83, 196–208. [CrossRef]
22. Barros de Almeida, M.; de Padua Braga, A.; Braga, J.P. SVM–KM: Speeding SVMs Learning with a Priori Cluster Selection and

K–Means. In Proceedings of the IEEE Proceedings. Sixth Brazilian Symposium on Neural Networks, Rio de Janeiro, Brazil, 22–25
November 2000; pp. 162–167.

23. Abe, S.; Inoue, T. Fast Training of Support Vector Machines by Extracting Boundary Data. In Proceedings ICAAN 2001, Lecture
Notes in Computer Science 2130; Springer: Berlin/Heidelberg, Germany, 2001; pp. 308–313.

24. Shin, H.; Cho, S. Neighborhood Property Based Pattern Selection for Support Vector Machines. Neural Comput. 2007, 19, 816–855.
[CrossRef]

25. Lee, Y.J.; Huang, S.Y. Reduced Support Vector Machines: A Statistical Theory. IEEE Trans. Neural Netw. 2007, 18, 1–13. [CrossRef]
[PubMed]

26. Balcázar, J.L.; Dai, Y.; Tanaka, J.; Watanabe, O. Provably Fast Training Algorithms for Support Vector Machines. Theory Comput.
Syst. 2008, 42, 568–595. [CrossRef]

27. Cervantes, J.; García, F.; López-Chau, A.; Rodríguez, L.; Ruíz, J.S. Data selection based on decision tree for SVM classification on
large datsets. Appl. Soft Comput. 2015, 37, 787–798. [CrossRef]

28. Kumar, M.A.; Gopal, M. A hybrid SVM based decision tree. Pattern Recognit. 2010, 43, 3977–3987. [CrossRef]
29. Izonin, I.; Tkachenko, R.; Gregus, M.; Ryvak, L.; Kulyk, V.; Chopyak, V. Hybrid Classifier via PNN-based Dimensionality Reduction

Approach for Biomedical Engineering Task. Procedia Comput. Sci. 2021, 191, 230–237. [CrossRef]
30. Izonin, I.; Tkachenko, R.; Duriagina, Z.; Shakhovska, N.; Kovtun, V.; Lotoshynska, N. Smart Web Service of Ti-Based Alloy’s

Quality Evaluation for Medical Implants Manufacturing. Appl. Sci. 2022, 12, 5238. [CrossRef]
31. Tukan, M.; Baykal, C.; Feldman, D.; Rus, D. On coresets for support vector machines. Theor. Comput. Sci. 2021, 890, 171–191.

[CrossRef]
32. Horn, D.; Demircioglu, A.; Bischl, B.; Glasmachers, T.; Weihs, C. A comparative study on large scale kernelized support vector

machines. Adv. Data Anal. Classif. 2021, 12, 867–883. [CrossRef]
33. Li, Y.; Che, J.; Yang, Y. Subsampled support vector regression ensemble for short term electric load forecasting. Energy 2018, 164,

160–170. [CrossRef]
34. Brito, M.; Chavez, E.; Quiroz, A.J.; Yukich, J.E. Connectivity of the Mutual K-nearest Neighbor Graph in Clustering and Outlier

Detection. Stat. Prob. Lett. 1997, 35, 33–42. [CrossRef]
35. Breiman, L. Random Forests. J. Mach. Learn. Arch. 2001, 45, 5–32. [CrossRef]
36. Dunn, W.L.; Shultis, J.K. Exploring Monte Carlo Methods; Elsevier: Amsterdam, The Netherlands, 2012.
37. Díaz, M.; Quiroz, A.J.; Velasco, M. Local Angles and Dimension Estimation from Data on Manifolds. J. Multivar. Anal. 2019, 173,

229–247. [CrossRef]
38. Mease, D.; Wyner, A.J.; Buja, A. Boosted Classification Trees and Class Probability/Quantile Estimation. J. Mach. Learn. Res. 2007,

8, 409–439.
39. Zhang, Y.; Zhang, P. Machine training and parameter settings with social emotional optimization algorithm for support vector

machine. Pattern Recognit. Lett. 2015, 54, 36–42. [CrossRef]
40. Rojas-Domínguez, A.; Padierna, L.C.; Carpio, M.; Puga, H.; Fraire, H. Optimal Hyper-Parameter Tuning of SVM Classifiers with

Application to Medical Diagnosis. IEEE Access 2017, 6, 7164–7176. [CrossRef]

http://dx.doi.org/10.1023/A:1009715923555
http://dx.doi.org/10.1016/j.neucom.2019.10.118
http://dx.doi.org/10.1007/s10462-017-9611-1
http://dx.doi.org/10.1109/72.788643
http://dx.doi.org/10.1016/j.patcog.2018.05.023
http://dx.doi.org/10.1162/neco.2007.19.3.816
http://dx.doi.org/10.1109/TNN.2006.883722
http://www.ncbi.nlm.nih.gov/pubmed/17278457
http://dx.doi.org/10.1007/s00224-007-9094-6
http://dx.doi.org/10.1016/j.asoc.2015.08.048
http://dx.doi.org/10.1016/j.patcog.2010.06.010
http://dx.doi.org/10.1016/j.procs.2021.07.029
http://dx.doi.org/10.3390/app12105238
http://dx.doi.org/10.1016/j.tcs.2021.09.008
http://dx.doi.org/10.1007/s11634-016-0265-7
http://dx.doi.org/10.1016/j.energy.2018.08.169
http://dx.doi.org/10.1016/S0167-7152(96)00213-1
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.jmva.2019.02.014
http://dx.doi.org/10.1016/j.patrec.2014.11.011
http://dx.doi.org/10.1109/ACCESS.2017.2779794

	Introduction
	Our Contribution
	Outline of the Paper

	Background and Related Work
	Theoretical Results
	Bagging and Importance Sampling Algorithm for Support Vectors
	Description of the Algorithm
	Data Sets
	Parameter Choices

	Numerical Results
	Comparison with LibSVM and CGLQ
	Comparison with Other Methodologies
	Discussion

	Conclusions
	Appendix A. Proof of Results
	Appendix B. Numerical Evaluation of the Probability of -Indecision
	References

