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Abstract: In this article, we deal with some new existence results for positive periodic solutions for a
class of neutral functional differential equations by employing Krasnoselskii’s fixed-point theorem
and the properties of a neutral operator. Our results generalize corresponding works from the past.
An example is given to show the feasibility and application of the obtained results.
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1. Introduction

In [1], the authors studied the existence of positive periodic solutions to the following
first-order neutral differential equation:

d
dt
[x(t)− cx(t− τ(t))] = −a(t)x(t) + f (t, x(t− τ(t))), (1)

where a ∈ C(R, (0, ∞)), τ ∈ C(R,R), f ∈ C(R×R,R) and |c| < 1 is a constant. We will
now list the main results for Equation (1):

Theorem 1. Assume that c ∈ [0, 1) and that there exist nonnegative constants m and M such that

(1− c)m ≤ F(t, x) ≤ (1− c)M for ∀t ∈ [0, ω], x ∈ [m, M],

where F(t, x) = f (t,x)
a(t) − cx. Then, Equation (1) has at least one positive ω-periodic solution

x(t) ∈ (m, M].

Theorem 2. Assume that c ∈ (−1, 0) and that there exist nonnegative constants m and M
such that

m− cM ≤ F(t, x) ≤ M− cm for ∀t ∈ [0, ω], x ∈ [m, M],

where F(t, x) = f (t,x)
a(t) − cx. Then, Equation (1) has at least one positive ω-periodic solution

x(t) ∈ (m, M].

After that, Candan [2] considered the following first-order neutral differential equation:

d
dt
[x(t)− P(t)x(t− τ)] = −Q(t)x(t) + f (t, x(t− τ)), (2)

where Q ∈ C(R, (0, ∞)), P ∈ C1(R,R), f ∈ C(R× R,R) and τ > 0 is a constant. The
main contribution of [2] is that Equation (2) has at least one positive ω-periodic solution
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when |c| 6= 1, which generalizes the results of [1]. We will now list the main results for
Equation (2):

Theorem 3. Assume that 1 < p0 ≤ P(t) ≤ p1 < ∞ and that there exist positive constants m and
M such that

(p1 − 1)m ≤
[

P(t)x− f (t, x)
Q(t)

]
≤ (p0 − 1)M for ∀t ∈ [0, ω], x ∈ [m, M].

Then, Equation (2) has at least one positive ω-periodic solution x(t) ∈ (m, M].

Theorem 4. Assume that −∞ < p0 ≤ P(t) ≤ p1 < −1 and that there exist positive constants m
and M such that

M− p0m ≤
[
− P(t)x +

f (t, x)
Q(t)

]
≤ m− p1M for ∀t ∈ [0, ω], x ∈ [m, M].

Then, Equation (2) has at least one positive ω-periodic solution x(t) ∈ (m, M].

The first-order neutral differential equation is widely used in many natural and social
phenomena, such as Hematopoiesis models [3–5], Nicholson’s blowflies models [6–10]
and blood cell production models [11–13]. In recent years, there have been many results
for first-order neutral differential equations and first-order differential equations. Lobo
and Valaulikar [14] obtained a Lie-type invariance condition for first-order neutral differ-
ential equations using Taylor’s theorem for a function of several variables. Berezansky
and Braverman [15] investigated solution estimates and stability tests for linear neutral
differential equations. In [16], the authors considered a control problem governed by an
iterative differential inclusion. Ngoc and Long [17] studied a first-order differential system
with initial and nonlocal boundary conditions. In 2009, we obtained the properties of
neutral operators in [18], which can be found in Lemma 1 below. In the present paper,
using the above properties and Krasnoselskii’s fixed point theorem, we give new sufficient
conditions for the existence of positive periodic solutions to the following first-order neutral
differential equation:

d
dt
[x(t)− c(t)x(t− γ)] = −a(t)x(t) + f (t, x(t− τ(t))), (3)

where a ∈ C(R, (0, ∞)), τ ∈ C(R,R), f ∈ C(R×R,R), c ∈ C(R,R) with |c| 6= 1, γ > 0 as
a constant, a(t), τ(t) and c(t) are ω-periodic functions and f is ω-periodic with respect to
the first variable.

The main contributions of our study lie on two sides:

(1) We introduce a new method for studying Equations (1)–(3) which is different from
the methods in existing papers (see [1,2,5,8]).

(2) Our conditions for the existence of positive periodic solutions obtained by us are
simpler and easier to verify than those in [1,2]. Therefore, our results are more
widely applicable.

The following sections are organized as follows. Section 2 gives some of the main
lemmas. In Section 3, some sufficient conditions for the existence of positive periodic
solutions to Equation (3) are obtained. In Section 4, an example is given to show the
feasibility of our results. Finally, Section 5 concludes the paper.

2. Preliminaries

In [19], Hale introduced stable a D-operator for studying neutral differential equations.
However, when the operator D is not stable, there exist few results for the existence of
neutral differential equations. In [20], Zhang considered a neutral differential equation
and relieved the stability restriction. When the D-operator was stable or unstable, we [18]
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generalized the conclusion of [20] and gave new results for the D-operator. Let Cω be a
ω-periodic continuous function space with the norm ||φ|| = max

t∈[0,ω]
|φ(t)| for all φ ∈ Cω.

Let A : Cω → Cω be defined by

(Ax)(t) = x(t)− c(t)x(t− γ).

Lemma 1 ([18]). If |c(t)| 6= 1, then operator A has a continuous inverse A−1 on Cω, satisfying
the following:

(1)

[A−1 f ](t) =


f (t) +

∞
∑

j=1

j
∏
i=1

c(t− (i− 1)γ) f (t− jγ), c∞ < 1, ∀ f ∈ Cω,

− f (t+γ)
c(t+γ)

−
∞
∑

j=1

j+1
∏
i=1

1
c(t+iγ) f (t + jγ + γ), c0 > 1, ∀ f ∈ Cω,

(2)

||A−1 f || ≤
{

1
1−c∞
|| f ||, c∞ < 1, ∀ f ∈ Cω,

1
c0−1 || f ||, c0 > 1, ∀ f ∈ Cω,

where c∞ = maxt∈[0,ω]T
|c(t)| and c0 = mint∈[0,ω]T

|c(t)|.

Remark 1. Lemma 1 generalizes the results of [20] as follows:

(1) If c(t) is a constant c with c 6= ±1, then A has a continuous inverse A−1 on Cω, satisfying

[A−1 f ](t) =


∑

j≥0
cj f (t− jγ), if |c| < 1, ∀ f ∈ Cω,

− ∑
j≥1

c−j f (t + jγ), if |c| > 1, ∀ f ∈ Cω;

(2) ||A−1 f || ≤ || f ||
|1−|c|| , ∀ f ∈ Cω.

Lemma 2 (Krasnoselskii’s fixed point theorem [21]). Let B be a Banach space and Ω be a
bounded, closed and convex subset in B. Let S1 and S2 be maps of Ω into B such that S1x+ S1y ∈ Ω
for every pair x, y ∈ Ω. If S1 is a contractive operator, and S2 is completely continuous operator,
then the equation S1x + S2x = x has a solution in Ω.

3. Main Results

In this section, we need to assume the following:
(H1) f (t, x) satisfies the Lipschitz condition about x (i.e., for all x, y ∈ R, there exists a

constant L > 0 such that | f (t, x)− f (t, y)| ≤ L|x− y|).
(H2) f (t, x) satisfies the Lipschitz condition about x (i.e., for all x, y ∈ R, there exists a
constant L > 0 such that | f (t, x)− f (t, y)| ≤ L|x− y| with L

c0−1 < 1).

Theorem 5. Suppose that c∞ < 1
3 , assumption (H1) holds, and there exist nonnegative constants

m and M such that

a(t)
(

m +
c∞ M

1− c∞

)
≤ f (t, A−1x) ≤ a(t)

(
M− c∞ M

1− c∞

)
for t ∈ [0, ω], x ∈ [m, M]. (4)

Then, Equation (3) has at least one positive ω-periodic solution.
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Proof. If (Ax)(t) = x(t)− c(t)x(t− γ) = u(t), then x(t) = (A−1u)(t). Equation (3) can
be rewritten as

u′(t) = −a(t)u(t)− H(u(t)) + f (t, (A−1u)(t− τ(t))), (5)

where H(u(t)) = a(t)c(t)(A−1u)(t− γ). Equation (5) has the following equivalent equation:

u(t) =
∫ t+ω

t
G(t, s)[ f (s, (A−1u)(s− τ(s)))− H(u(s))]ds, (6)

where G(t, s) =
exp(

∫ s
t a(r)dr)

exp(
∫ ω

0 a(r)dr)−1
. It is well known that to find an ω-periodic solution to

Equation (3) is equivalent to finding an ω-periodic solution to Equation (6). Let

Ω = {u ∈ Cω : m ≤ u(t) ≤ M, t ∈ [0, ω], M > m > 0}.

Obviously, Ω is a bounded, closed and convex subset of Cω. We define the operators
T, S : Ω→ Cω as follows:

(Tu)(t) =
∫ t+ω

t
G(t, s) f (s, (A−1u)(s− τ(s)))ds, (7)

(Su)(t) =
∫ t+ω

t
−G(t, s)H(u(s))ds. (8)

For any u ∈ Ω and t ∈ R, it follows by Equations (7) and (8) that

(Tu)(t + ω) =
∫ t+2ω

t+ω
G(t + ω, s) f (s, (A−1u)(s− τ(s)))ds

=
∫ t+ω

t
G(t + ω, r + ω) f (r, (A−1u)(r− τ(r)))dr

=
∫ t+ω

t
G(t, r) f (r, (A−1u)(r− τ(r)))dr

= (Tu)(t)

and

(Su)(t + ω) =
∫ t+2ω

t+ω
−G(t + ω, s)H(u(s))ds

=
∫ t+ω

t
−G(t + ω, r + ω)H(u(r))dr

=
∫ t+ω

t
−G(t, r)H(u(r))dr

= (Su)(t).

Thus, T(Ω) ⊂ Cω and S(Ω) ⊂ Cω. For each x, y ∈ Ω, by Equation (4) and Lemma 1,
we have

(Tx)(t) + (Sy)(t) =
∫ t+ω

t
G(t, s)[ f (s, (A−1x)(s− τ(s)))− a(s)c(s)(A−1y)(s− γ)]ds

≤
∫ t+ω

t
G(t, s)a(s)

(
M− c∞ M

1− c∞
+

c∞ M
1− c∞

)
ds

= M.
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On the other hand, we have

(Tx)(t) + (Sy)(t) =
∫ t+ω

t
G(t, s)[ f (s, (A−1x)(s− τ(s)))− a(s)c(s)(A−1y)(s− γ)]ds

≥
∫ t+ω

t
G(t, s)a(s)

(
m +

c∞ M
1− c∞

− c∞ M
1− c∞

)
= m.

Hence, for all x, y ∈ Ω and t ∈ R, we have (Tx)(t) + (Sy)(t) ∈ Ω. For each x, y ∈ Ω,
by Lemma 1, we have

|S(x)− S(y)| =
∣∣∣∣ ∫ t+ω

t
G(t, s)[a(s)c(s)(A−1x)(s− γ)− a(s)c(s)(A−1y)(s− γ)]ds

∣∣∣∣
≤
∫ t+ω

t
G(t, s)a(s)

c∞

1− c∞
|x(s− γ)− y(s− γ)|ds.

By taking the norm of both sides, we see that

||S(x)− S(y)|| ≤ c∞

1− c∞
||x− y||

and S is a contraction mapping. We show that T is completely continuous on Ω. First, we
shall show that T is continuous. Let xk ∈ Ω be a convergent sequence with xk(t)→ x(t) as
k→ ∞. For t ∈ [0, ω], by assumption (H1), we have

|(Txk)(t)− (Tx)(t)| =
∣∣∣∣ ∫ t+ω

t
G(t, s)[ f (s, (A−1xk)(s− τ(s)))− f (s, (A−1x)(s− τ(s)))]ds

∣∣∣∣
≤

Lω exp(
∫ ω

0 a(r)dr)

exp(
∫ ω

0 a(r)dr)− 1
|(A−1xk)(s− τ(s))− (A−1x)(s− τ(s))|

≤
Lω exp(

∫ ω
0 a(r)dr)

exp(
∫ ω

0 a(r)dr)− 1
1

1− c∞
|xk(t)− x(t)|,

which results in
lim
t→∞
||(Txk)(t)− (Tx)(t)|| = 0.

Thus, T is continuous. Second, we prove that T(Ω) is relatively compact. For each
x ∈ Ω, by Equations (4) and (7), we have

|(Tx)(t)| =
∣∣∣∣ ∫ t+ω

t
G(t, s) f (s, (A−1x)(s− τ(s)))ds

∣∣∣∣
≤
∫ t+ω

t
G(t, s)a(s)

(
(M− c∞ M

1− c∞

)
=

(1− 2c∞)M
1− c∞

In addition, it follows that

||Tx|| ≤ (1− 2c∞)M
1− c∞

.
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On the other hand, for each x ∈ Ω, by Equation (3.4), we have

|(Tx)′(t)| ≤ | f (t, (A−1x)(t− τ(t)))|

≤ ||a||
(
(M− c∞ M

1− c∞

)
≤ ||a|| (1− 2c∞)M

1− c∞
.

Hence, T(Ω) is equi-continuous. By Lemma 2, there is x ∈ Ω such that Tx + Sx = x.
Thus, x(t) a positive ω-periodic solution to Equation (3).

Remark 2. To ensure the establishment of Equation (4), the inequality M− 2c∞ M
1−c∞

> m must hold.
Hence, the condition c∞ < 1

3 is necessary for the above inequality.

Theorem 6. Suppose that c0 > 1, assumption (H2) holds, and there exist nonnegative constants
m and M such that

a(t)
(

m− c0m
c∞ − 1

)
≤ f (t, A−1x) ≤ a(t)

(
M− c∞ M

c0 − 1

)
for t ∈ [0, ω], x ∈ [m, M]. (9)

Then, Equation (3) has at least one positive ω-periodic solution.

Proof. Let T, S, G(t, s) and Ω be the same as in the proof of Theorem 5. Obviously,
T(Ω) ⊂ Cω and S(Ω) ⊂ Cω. For each x, y ∈ Ω, by Equation (9) and Lemma 1, we have

(Tx)(t) + (Sy)(t) =
∫ t+ω

t
G(t, s)[ f (s, (A−1x)(s− τ(s)))− a(s)c(s)(A−1y)(s− γ)]ds

≤
∫ t+ω

t
G(t, s)a(s)

(
M− c∞ M

c0 − 1
+

c∞ M
c0 − 1

)
ds

= M.

On the other hand, we have

(Tx)(t) + (Sy)(t) =
∫ t+ω

t
G(t, s)[ f (s, (A−1x)(s− τ(s)))− a(s)c(s)(A−1y)(s− γ)]ds

≥
∫ t+ω

t
G(t, s)a(s)

(
m− c0m

c∞ − 1
+

c0m
c∞ − 1

)
= m.

For each x, y ∈ Ω, we have

|T(x)− T(y)| =
∣∣∣∣ ∫ t+ω

t
G(t, s)[ f (s, (A−1x)(s− τ(s)))− f (s, (A−1y)(s− τ(s)))]ds

∣∣∣∣
≤
∫ t+ω

t
G(t, s)a(s)

L
c0 − 1

|x(s− γ)− y(s− γ)|ds.

By taking the norm of both sides, we see that

||T(x)− T(y)|| ≤ L
c0 − 1

||x− y||.
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Hence, by (H2), T is a contraction mapping. We show that S is completely continuous
on Ω. First, we shall show that S is continuous. Let xk ∈ Ω be a convergent sequence with
xk(t)→ x(t) as k→ ∞. For t ∈ [0, ω], we have

|(Sxk)(t)− (Sx)(t)| =
∣∣∣∣ ∫ t+ω

t
G(t, s)[a(s)c(s)(A−1x)(s− γ)− a(s)c(s)(A−1y)(s− γ)]ds

∣∣∣∣
≤
∫ t+ω

t
G(t, s)a(s)

c∞

c0 − 1
|xk(s)− x(s)|ds,

which results in
lim
t→∞
||(Sxk)(t)− (Sx)(t)|| = 0.

Thus, S is continuous. Second, we prove that S(Ω) is relatively compact. For each
x ∈ Ω, by Lemma 1, we have

|(Sx)(t)| =
∣∣∣∣ ∫ t+ω

t
G(t, s)a(s)c(s)(A−1x)(s− γ)ds

∣∣∣∣
≤
∫ t+ω

t
G(t, s)a(s)

c∞ M
c0 − 1

=
c∞ M
c0 − 1

Additionally, it follows that

||Sx|| ≤ c∞ M
c0 − 1

.

On the other hand, for each x ∈ Ω, by Lemma 1, we have

|(Sx)′(t)| ≤ |a(t)c(t)(A−1x)(t− γ)|

≤ ||a|| c∞ M
c0 − 1

.

Hence, S(Ω) is equi-continuous. By Lemma 2, there is x ∈ Ω such that Tx + Sx = x.
Thus, x(t) is a positive ω-periodic solution to Equation (3).

Remark 3. In the proofs of Theorems 1–4, in order to obtain the existence of positive periodic
solutions, it is necessary to discuss the parameter c(t) between partitions. However, we can also
obtain the existence of positive periodic solutions by using the properties of neutral operators without
the above partitions about c(t).

Remark 4. In [19], Hale pointed out that the operator A is stable when |c| < 1 and the operator A
is not stable when |c| > 1. When A is stable or unstable, Lemma 1 gives sufficient conditions for
the existence of the inverse operator A−1 and some inequality properties. In this paper, when the
operator A is stable or unstable, we obtain the existence results of positive periodic solutions.

4. Example

Consider the following first-order neutral differential equation:

d
dt
[x(t)− 1

5
x(t− π)] = −(1 + 1

5
sin t)x(t) + exp(cos t) + sin x(t− π), (10)

where c(t) = 1
5 , γ = π, a(t) = 1 + 1

5 sin t and f (t, x) = exp(cos t) + sin x(t− π). It is easy
to verify that the conditions of Theorem 5 are satisfied with M = 4 and m = 0.1. Thus,
Equation (10) has at least one positive ω-periodic solution. The corresponding numerical
simulation is presented in Figure 1.



Mathematics 2022, 10, 3770 8 of 9

15 20 25 30 35 40 45 50 55 60
0.5

1

1.5

2

2.5

3

3.5

time t

x
(t

)

Figure 1. Positive periodic solution x(t) to Equation (10).

5. Conclusions and Discussions

In this paper, some results for the existence of positive periodic solutions to a first-
order neutral equation were obtained by the use of Krasnoselskii’s fixed-point theorem and
mathematical analysis technology. Since there exists a neutral-type term in the considered
system, and the existing methods rely too heavily on mathematical skills, we developed a
new technique based on the properties of the neutral operator which is markedly different
from the existing methods. It is noteworthy that the properties of neutral operators are
important for estimating the bounds of solutions. Finally, an example is given to illustrate
the effectiveness and feasibility of the proposed criterion.

The methods in this article can also be used to deal with other types of neutral systems
and differential equations, such as neural-type equations with stochastic disturbance and
parameter uncertainties, neural-type dynamic systems with mixed delays and so on.

Author Contributions: Writing—original draft, B.D.; Writing—review & editing, L.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Luo, Y.; Wang, W.; Shen, J. Existence of positive periodic solutions for two kinds of neutral functional differential equations.

Appl. Math. Lett. 2008, 21, 581–587. [CrossRef]
2. Candan, T. Existence of positive periodic solutions of first order neutral differential equations with variable coefficients.

Appl. Math. Lett. 2016, 52, 142–148. [CrossRef]

http://doi.org/10.1016/j.aml.2007.07.009
http://dx.doi.org/10.1016/j.aml.2015.08.014


Mathematics 2022, 10, 3770 9 of 9

3. Luo, J.; Yu, J. Global asymptotic stability of nonautonomous mathematical ecological equations with distributed deviating
arguments. Acta Math. Sin. 1998, 41, 1273–1282.

4. Weng, P.; Liang, M. The existence and behavior of periodic solution of Hematopoiesis model. Math. Appl. 1995, 4, 434–439.
5. Wan, A.; Jiang, D. Existence of positive periodic solutions for functional differential equations. Kyushu J. Math. 2002, 1, 193–202.

[CrossRef]
6. Huang, C.; Yang, X.; Cao, J. Stability analysis of Nicholson’s blowfies equation with two different delays. Math. Comput. Simul.

2020, 171, 201–206. [CrossRef]
7. Long, Z. Exponential convergence of a non-autonomous Nicholson’s blowfies model with an oscillating death rate. Electron. J.

Qual. Theory Differ. Equ. 2016, 2016, 1–7. [CrossRef]
8. Huang, Z. New results on global asymptotic stability for a class of delayed Nicholson’s blowfies model. Math. Meth. Appl. Sci.

2014, 37, 2697–2703. [CrossRef]
9. Shu, H.; Wang, L.; Wu, J. Global dynamics of Nicholson’s blowflies equation revisited: Onset and termination of nonlinear

oscillations. J. Differ. Equ. 2013, 255, 2565– 2586 [CrossRef]
10. Wang, W. Positive periodic solutions of delayed Nicholson’s blowflies models with a nonlinear density-dependent mortality

term. Appl. Math. Model. 2012, 36, 4708–4713. [CrossRef]
11. Gopalsamy, K. Stability and Oscillation in Delay Differential Equations of Population Dynamics; Kluwer Academic Press: Boston, MA,

USA, 1992.
12. Jiang, D.; Wei, J. Existence of positive periodic solutions for Volterra integro-differential equations. Acta Math. Sci. 2002, 21,

553–560. [CrossRef]
13. Li, Y. Existence and global attractivity of a positive periodic solution of a class of delay differential equation. Sci. China 1998, 41,

273–284. [CrossRef]
14. Lobo, J.; Valaulikar, Y. Group methods for first order neutral differential equations. Indian J. Math. 2021, 63, 263–282. [CrossRef]
15. Berezansky, L.; Braverman, E. Solution estimates and stability tests for linear neutral differential equations. Appl. Math. Lett.

2020, 108, 1–8.
16. Ghalia, S.; Affane, D. Control problem governed by an iterative differential inclusion. Rend. Del Circ. Mat. Palermo Ser. 2022, 2,

1–22. [CrossRef]
17. Ngoc, L.; Long, N. On a first-order differential system with initial and nonlocal boundary conditions. Demonstr. Math. 2022, 55,

277–296. [CrossRef]
18. Du, B.; Guo, L.; Ge, W.; Lu, S. Periodic solutions for generalized Liénard neutral equation with variable parameter. Nonlinear Anal.

2009, 70, 2387–2394. [CrossRef]
19. Hale, J. Theory of Functional Differential Equations; Springer: New york, NY, USA, 1977. [CrossRef]
20. Zhang, M. Periodic solutions of linear and quasilinear neutral functional differential equations. J. Math. Anal. Appl. 1995, 189,

378–392.
21. Krasnoselskii, M.A. Positive Solutions of Operator Equations; Noordhoff: Gorninggen, The Netherlands, 1964. [CrossRef]

http://dx.doi.org/10.2206/kyushujm.56.193
http://dx.doi.org/10.1016/j.matcom.2019.09.023
http://dx.doi.org/10.14232/ejqtde.2016.1.41
http://dx.doi.org/10.1002/mma.3010
http://dx.doi.org/10.1016/j.jde.2013.06.020
http://dx.doi.org/10.1016/j.apm.2011.12.001
http://dx.doi.org/10.1016/S0252-9602(17)30445-9
http://dx.doi.org/10.1007/BF02879046
http://dx.doi.org/10.1007/BF02879046
http://dx.doi.org/10.1016/j.aml.2020.106515
http://dx.doi.org/10.1007/s12215-022-00819-7
http://dx.doi.org/10.1515/dema-2022-0012
http://dx.doi.org/10.1016/j.na.2008.03.021
http://dx.doi.org/10.1006/jmaa.1995.1025

	Introduction
	Preliminaries
	Main Results
	 Example 
	Conclusions and Discussions 
	References

