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Abstract: A chain of coupled systems of Van der Pol equations is considered. We study the local
dynamics of this chain in the vicinity of the zero equilibrium state. We make a transition to the
system with a continuous spatial variable assuming that the number of elements in the chain is large
enough. The critical cases corresponding to the Turing bifurcations are identified. It is shown that
they have infinite dimension. Special nonlinear parabolic equations are proposed on the basis of
the asymptotic algorithm. Their nonlocal dynamics describes the local behavior of solutions to the
original system. In a number of cases, normalized parabolic equations with two spatial variables arise
while considering the most important diffusion type couplings. It has been established, for example,
that for the considered systems with a large number of elements, the dynamics change significantly
with a slight change in the number of such elements.
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1. Introduction

The interest in the study of various systems has been increasing over the past few
years. The study of systems with a large number of elements is of particular interest. In
applications such problems appear in the study of radiophysical, neural and neural-like,
optoelectronic and other type of systems. Although chains consisting of a small number of
elements can be studied using well-known analytical and numerical methods, the study of
chains with a large number of elements is a significantly difficult task. Therefore, there is a
need to develop special analytical methods. This work is devoted to the development of
analytical and asymptotical methods for studying chains consisting of a large number of
elements.

The ring chain of N nonlinear systems of equations

u̇j = Auj + F(uj) + D

(
N

∑
i=1, i 6=j

αi−jui − uj

)
(1)

is considered, where uj =
(
uj1, uj2

)
, uj±N ≡ uj,

N
∑

i=1, i 6=j
αi−j = 1 (j = 1, . . . , N), A and

D are 2× 2, matrices. The eigenvalues of the matrix A have negative real parts and the
nonlinear vector-function F(u) is smooth enough and it has infinitesimal order more than
one at zero. We note that the dynamics of chains of systems of equations has been studied
by many authors (see, for example, [1–15]).

We assume that the chain elements uj are uniformly distributed on some circle and
uj(t) = u

(
t, xj

)
, where xj = 2π jN−1 is the angular coordinate. The basic assumption is

that N is large enough, so the parameter ε = 2πN−1 is small:

0 < ε� 1. (2)
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This condition allows us to move from the discrete system (1) to the equation with a
continuous spatial variable with respect to u(t, x), x ∈ (−∞, ∞),

∂u
∂t

= Au + F(u) + D

 ∞∫
−∞

F(s, ε)u(t, x + s)ds− u

 (3)

with the periodic boundary conditions

u(t, x + 2π) ≡ u(t, x). (4)

Here,
∞∫
−∞

F(s, ε)ds = 1. The last term on the right hand side of (3) characterizes the

couplings between the elements. We assume this coupling to be diffusion. Let D =
diag

(
d1, d2

)
, d1,2 > 0 for definiteness and F(s, ε) = F+(s) + F−(s) where

F±(s) =
1

2εσ
√

π
exp

[
− (εσ)−2(s± ε)2].

We note that as long as σ→ +0 the last term in (3) transforms to the form

1
2

D
(
u(t, x + ε)− 2u(t, x) + u(t, x− ε)

)
(5)

which is commonly called the difference diffusion.
Let us pose the problem of studying the local dynamics of the system (3), (4), i. e.

studying the behavior of all the solutions to this system as t→ ∞ with sufficiently small in
the norm C[0,2π](R2) initial conditions.

One of the main goals of this paper is to study the dependence of the dynamic
properties of solutions on the parameter σ for σ → +0. For this purpose, we consider
below the case when

σ = εσ1, (6)

and formulate the conclusions about the structure if solutions for small ε.
The coefficients in (3) depend on the parameter ε:

A = A0 + ε2 A1, D = D0 + ε2D1, dj = dj0 + ε2dj1, dj0 > 0 (j = 1, 2),

and all the eigenvalues of A0 have negative real parts.
The location of the roots of the characteristic equation of the boundary value prob-

lem (3), (4) linearized at zero

λ2 − λ
[
SpA + g(z)SpD

]
+ det

(
A + g(z)D

)
= 0, (7)

where SpA = Spaij = a11 + a22, g(z) = cos z · exp
(
− σ2z2)− 1, z = εk, k = 0,±1,±2, . . .,

plays and important role. We note that 0 ≥ g(z) ≥ gm, gm = min
z

g(z) = g
(
zm
)
.

The stability of the zero solution is mainly determined by the eigenvalues of the matrix

A(g(z)) = A0 + g(z)D0
(
z ∈ (−∞, ∞)

)
. (8)

In the case when all the eigenvalues of (8) have negative real parts for all z, the assigned
problem is trivial: all the solutions from some ε-independent neighborhood of zero tend to
zero as t→ ∞. If, for some z, there is an eigenvalue of (8) with a positive real part, then the
assigned problem turns to be nonlocal.

We are going to consider the critical case when (8) has no eigenvalues with positive
real part but it has zero eigenvalue for some z = z0. The possibility of a zero eigenvalue
existence for the family (8) for z = z0 was first noted by Turing [16] (see also [17–20]).
Therefore, the bifurcation in the case under consideration is sometimes called the Turing
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bifurcation. A distinctive feature of the critical case considered here is the fact that, for
ε→ 0, infinitely many roots of the characteristic Equation (7) tend to zero. Thus, we can
say that the Turing bifurcation has infinite dimension.

Below, for simplicity, the matrix A0 and the vector-function F(u) are chosen in the
following form

A0 =

(
α 1

−1− α2 − cα −α− c

)
, F(u) =

(
0

−(αu1 + u2)u2
1

)
. (9)

Thus, the abscence of the couplings (as D = 0 in (3)) leads us to the classical Van der
Pol equation

ü + cu̇ + u = −u̇u2 (10)

for each value of the parameter α.
Regarding the main results in each of the cases considered below, special nonlinear

parabolic boundary value problems will be constructed, which play the role of equations of
the first approximation for constructing the asymptotics of solutions. These boundary value
problems do not contain the ε parameter. Their nonlocal dynamics deterdefines the local
behavior of solutions to the original system. Concerning the methodology, the research is
based on the results [21–24], obtained in the analysis of infinite-dimensional critical cases.

In Section 2, critical cases are studied for fixed valuse of σ, while in Section 3 it is
assumed that the equality (6) holds. We close with some concluding remarks.

It is woth noting that the presence of the parameter α in (9) plays a decisive role in the
Turing bifurcation. This bifurcation cannot exist for α = 0.

It is worth noting that the choice of A0 and F(u) in (9) is not crucial. Moreover, the
results obtained can be extended to the other critical cases in the study of other couplings
defined by the function F(s, ε).

2. Bifurcations with Fixed Value of the Parameter σ

Assume that matrix A
(

g0
)
, where g0 = g

(
z0
)
, has zero eigenvalue for some z = z0 > 0,

and all the eigenvalues of A(g(z)) have negative real parts for z 6= ±z0. Two cases may
differ significantly. In the first of them z0 = zm and then g0 = gm. We will additionally
assume that the nonsingularity condition

∆′0(z0) 6= 0 (11)

holds. Here, ∆0(z) = det(A(z)). In the second case, g0 ∈
(

gm, 0
)
. Then, it is necessary that

∆0(z0) = ∆′0(z0) = 0, ∆′′0 (z0) > 0. (12)

Let us study both of these cases separately. We use the following notation A(z0)a = 0,
A∗ b = 0, a =

(
1,−

(
α + g0d10

))
, b = b0

(
c + α− g0d20, 1

)
, b0 =

(
c− g0

(
d10 + d20

))−1. We
note that (a, b) = 1.

2.1. First Case

We first introduce some notation. Let B = A1 + g0D1 + g10D0, g10 = g′′
(
z0
)
∆′0
(
z0
)
. By

Θ = Θ(ε, z) ∈ [0, 1) we denote the value complementing the value zε−1 to an integer. For
any arbitrarily fixed value Θ0 we will denote by εn = εn

(
Θ0
)

a sequence εn → 0 (n→ ∞)
on which Θ

(
εn
)
= Θ0.

We now consider the boundary value problem

∂ξ

∂τ
=−

(
D0a, b

)
g10

(
∂2ξ

∂x2 − 2iΘ
∂ξ

∂x
−Θ2ξ

)
+

+
((

A1 + g0D1
)
a, b
)
+ 3g0d10b0ξ|ξ|2, ξ(τ, x + 2π) ≡ ξ(τ, x). (13)

We state the main result.
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Theorem 1. We fix Θ0 ∈ [0, 1) arbitrarily. Let g0 = gm and let the condition (11) hold. Let ξ(τ, x)
be a bounded solution of the boundary value problem (13) as τ → ∞. Then the vector-function

u
(
t, x, εn

)
= εna

(
ξ(τ, x) exp

(
i
(
z0ε−1

n + Θ0
)
x
)
+ ξ(τ, x) exp

(
− i
(
z0ε−1

n + Θ0
)

x
))

,

where τ = ε2
nt satisfies the boundary value problem (3), (4) on the sequence εn = εn

(
Θ0
)

up to
O
(
ε3

n
)
.

Proof. First, we note that the characteristic Equation (7) has the roots λk(ε) (k = 0,±1,±2, . . .)
which tend to zero as ε→ 0. The equalities

λk(ε) = ε2[(D0a, b
)

g10(Θ + k)2 +
((

A1 + g0D1
)
a, b
)]

+ O
(
ε4)

do not hold for them. Therefore, the functions

uk(t, x, ε) = a
(
ξk(τ) exp

(
i
(
z0ε−1 + Θ + k

)
x
)
+ ξk(τ) exp

(
− i
(
z0ε−1 + Θ + k

)
x
))

are the solutions of the linearized at zero boundary value problem (3), (4) for τ = ε2t. This
indicates to seek solutions to the nonlinear boundary value problem (3), (4) of the form

u(t, x, ε) =εa
(
ξ(τ, x) exp

(
i
(
z0ε−1 + Θ

)
x
)
+

+ ξ(τ, x) exp
(
− i
(
z0ε−1 + Θ

)
x
))

+ ε3U(τ, x, y) + . . . (14)

Here, τ = ε2t, y =
(
z0ε−1 + Θ

)
x, and the vector-function U(τ, x, y) depends on x and y

periodically. We substitute (14) into (3) and equate the coefficients at several powers of ε. At
the first step, collecting the coefficients of the first power of ε, we obtain an identity. Equat-
ing then the coefficients of ε3, we obtain the equation for U(τ, x, y). From its solvability
condition in the indicated class of functions we obtain the boundary value problem (13) for
finding the unknown amplitude ξ(τ, x). Moreover, we obtain an expression for U(τ, x, y).
The proof is complete.

Note that
(

D0a, b
)

g10 < 0 follows from (11), therefore the boundary value problem (13)
is parabolic.

2.2. Second Case

First, let g+j and g−j (j = 1, 2, . . .) be the sequential positive local maxima and minima
of the function g(z), respectively (see, Figure 1).

Figure 1. Plot g(z).

Let, for example, g0 ∈
(

g+1 , 0
)
. Then, the value z0 for which g(z0) = g0 is uniqely deter-

mined. If g0 ∈
(

g−1 , g−2
)
, then there are two such values z10 and z20 that



Mathematics 2022, 10, 3769 5 of 10

g(z10) = g(z20) = g0, etc. Thus, there is an arbitrary number of values z for which g(z) = g0.
But, if g0 = −1, then there are infinitely many such values zn0 (n = 0,±1,±2, . . .),
and zn = π

2 (2n + 1). In what follows, let a1 be a vector determined from the equation
(A0 + g0D0)a1 = D0a. We note that such a vector certainly exists, and (D0a1, b) ≥ 0. We
assume that the nonsingularity condition (D0a1, b) > 0 holds.

Let g0 ∈
(

g+1 , 0
)
. Then, the root of the equation g(z) = g0 exists and it is unique. Let

us now consider the boundary value problem

∂ξ

∂τ
=
(

g′
(
z0
))2(D0a1, b

)[ ∂2ξ

∂x2 + 2iΘ
∂ξ

∂x
−Θ2ξ

]
+

+
((

A1 + g0D1
)
a, b
)
ξ + 3g0d10b0ξ|ξ|2,

ξ(τ, x + 2π) ≡ ξ(τ, x).

(15)

In this case, Theorem 1 also holds in the case when (13) is replaced by (15).
Let g0 ∈

(
g−1 , g−2

)
. In this case g

(
z1
)
= g

(
z2
)
= g0 (see Figure 1). Let the condition

3z1 6= z2 (16)

hold. The system of two boundary value problems

∂ξ j

∂τ
=
(

g′
(
zj
))2(D0a1, b

)[∂2ξ j

∂x2 + 2iΘj
∂ξ j

∂x
−Θ2

j ξ j

]
+

+
((

A1 + g0D1
)
a, b
)
ξ j + 3g0d10b0ξ j

[
|ξ j|2 + 2|ξ j+1|2

]
,

j = 1, 2 and ξ j+1 = ξ1, if j = 2, ξ j(τ, x + 2π) ≡ ξ j(τ, x)

plays the role of the boundary value problems (13) and (15). Then, the function

u(t, x, ε) =εa
[ 2

∑
j=1

(
ξ j(τ, x) exp

(
i
(
zjε
−1 + Θj

)
x
)
+

+ ξ j(τ, x) exp
(
− i
(
zjε
−1 + Θj

)
x
))]

+ ε3U
(
τ, x, y1, y2

)
satisfies the boundary value problem (3), (4), where τ = ε2t, yj =

(
zjε
−1 + Θj

)
x (j = 1, 2)

to within o
(
ε3).

From this, by analogy, we can obtain systems of the boundary value problems for any
g0 < 0 and g0 6= −1.

The case of g0 = −1. Let zn0 = π
2 (2n + 1). We assume, for simplicity, that the value of

N is a multiple of four: N = 4n. Then, the values zn = zn0ε−1 are integers.
The leading terms of the asymptotic representation are expressed by the formula

u(t, x, ε) = εaξ(τ, x, y) + ε3U(τ, x, y)
(

τ = ε2t, y =

(
π

2
ε−1
)

x
)

. (17)

Here, the dependence on x is 2π-periodic, while the dependence on y is 2-antiperiodic. For
ξ(τ, x, y) we arrive at the system of the boundary value problems

∂ξ j

∂τ
= exp

(
− 2
(

σ
π

2
(2j + 1)

)2)(
D0a1, b

)∂2ξ j

∂x2 +

+
((

A1 + g0D1
)
a, b
)
ξ j + 3g0d10b0Fj

(
ξ3), (18)

ξ(τ, x + 2π, y) ≡ ξ(τ, x, y), ξ(τ, x, y + 2) ≡ −ξ(τ, x, y). (19)
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Let Fj(ξ
3) be the harmonic exp

(
i(π

2 (2j + 1)y)
)

coefficient of the Fourier series of the
function ξ3. Formally, the boundary value problem (18) can be written in the compact form
in terms of the infinite differentiation operators:

∂ξ

∂τ
= K

(
∂2

∂y2

)
(D0a1, b)

∂2ξ

∂x2 +
(
(A1 − D1)a, b

)
− 3d10b0ξ3,

ξ(τ, x + 2π, y) ≡ ξ(τ, x, y), ξ(τ, x, y + 2) ≡ −ξ(τ, x, y)
(20)

where K(p2) = exp
(
− 2σ2 p2). If we manage to find the solution of this boundary value

problem then, using (17), we can restore the asymptotic solution to the original boundary
value problem (3), (4).

3. Bifurcations for Small σ

In the cases where the coefficients of the couplings become close to the classical
diffusion couplings under certain changes in the parameters of the problem, an additional
complication of the dynamic properties of the chain occurs. This is due to the fact that,
firstly, the bifurcations occur at higher and higher modes, and, secondly, the number of
such modes around which the structures are formed grows indefinitely. In these cases, we
pass to the dynamics described using the Ginzburg — Landau equation with two spatial
variables instead of one spatial variable. The dynamics is obviously more complicated in
such cases.

We assume below that the relation

σ = σ1ε (21)

holds for some fixed σ1 > 0. In this case, for each z, we have the asymptotic equality

g(z) = cos z
(
1− σ2

1 ε2z2 + O(ε4)
)
− 1. (22)

The number of solutions zk of the equation g(z) = g0 is unlimited as ε→ 0. We now focus
on the study of the cases g0 = −1; g0 = −2; g0 6= −1,−2, seperately.

3.1. First Case

Let g0 = −1. Then, zk =
π
2 (2k + 1) (k = 0,±1,±2, . . .) up to O

(
ε2). First, we assume

that N = 4P (P is an integer). Then, the expression zkε−1 is also an integer.
We consider the boundary value problem

∂ξ

∂τ
=
(

D0a1, b
) ∂2ξ

∂x2 +
((

A1 − D1
)
a, b
)
ξ − 3d10b0ξ3,

ξ(τ, x + 2π, y) ≡ ξ(τ, x, y) ≡ −ξ(τ, x, y + 2).
(23)

Theorem 2. Let the condition (21) hold, g0 = −1 and N is a multiple of four. Let ξ(τ, x, y) be the
bounded solution of the boundary value problem (23) for τ → ∞, x ∈ [0, 2π], y ∈ [0, 4]. Then, the
vector-function

u(t, x, ε) = εaξ(τ, x, y) + ε3U(τ, x, y), (τ = ε2t, y = ε−1x) (24)

satisfies the boundary value problem (3), (4) up to o(ε3).

Let us then consider the case when the value of N is odd. Let

Θ0 =

{ 3
4 , if N = 4P + 1,
1
4 , if N = 4P + 3.

(25)
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We consider below the boundary value problem

∂ξ

∂τ
=
(

D0a1, b
)[ ∂2

∂x2 + 2iΘ
∂

∂x
−Θ2

]
ξ +

+
((

A1 − D1
)
a, b
)
ξ − d10b0

(
3ξ|ξ|2 + ξ

3
exp(−4iΘ0x)

)
, (26)

ξ(τ, x + 2π, y) ≡ ξ(τ, x, y) ≡ −ξ(τ, x, y + 2). (27)

Theorem 3. Let the conditions (21) hold, g0 = −1 and N is not a multiple of two. Let ξ(τ, x, y) be
the bounded solution of the boundary value problem (26), (27) for τ → ∞, x ∈ [0, 2π], y ∈ [0, 4]
where Θ0 is defined in (25). Then, the vector-function

u(t, x, ε) =εa
[

ξ(τ, x, y) exp
(

i
(

π

2
ε−1 + Θ0

)
x
)
+

+ ξ(τ, x, y) exp
(
− i
(

π

2
ε−1 + Θ0

)
x
)]

+ ε3U(τ, x, y) (28)

satisfies the boundary value problem (3), (4) for τ = ε2t, y = ε−1x up to o(ε3).

It remains to consider the case when

N = 4P + 2

and hence Θ0 = 1/2. We consider the boundary value problem

∂ξ

∂τ
=
(

D0a1, b
)[ ∂2

∂x2 + 2iΘ0
∂

∂x
−Θ2

0

]
ξ +

((
A1 − D1

)
a, b
)
ξ −

− d10b0ξ3 exp(ix) + 3ξ|ξ|2 + 3ξ|ξ|2 exp(−ix) + ξ
3

exp(−2ix), (29)

ξ(τ, x + 2π, y) ≡ ξ(τ, x, y) ≡ −ξ(τ, x, y + 2). (30)

Theorem 4. Let the conditions (21) hold, g0 = −1 and N = 4P + 2. Let ξ(τ, x, y) be a bounded
solution of the boundary value problem (29), (30) for τ → ∞, x ∈ [0, 2π], y ∈ [0, 4] where
Θ0 = 1/2. Then, the vector-function (28) satisfies the boundary value problem (3), (4) as
Θ0 = 1/2, τ = ε2t, y = ε−1x up to o(ε3t).

In order to justify Theorems 2 and 3 under the formulated conditions, it is sufficient to
substitute the expressions (23), (28) into (3) and analyze the relations obtained by writing
out the coefficients at the first and third powers of ε.

Note that the dynamics of the solutions (3), (4) can substantially depent on the parame-
ter Θ0 . When Θ0 = 0, i. e. provided that N is a multiple of four, even the nonlinearity in (23)
is different compared to (26) when N is not a multiple of four. Thus, we conclude that a
change of only one of the large value N can lead to the significant changes in the (3), (4)
dynamics.

3.2. Second Case

Let
g0 = −2 (31)

and the nonsingularity condition (D0a, b) 6= 0 holds. Then, the amplitude ξ(τ, x, y) in the
asymptotic representation satisfies the boundary value problem
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∂ξ

∂τ
=(D0, a, b)

[
1
2

(
∂2ξ

∂x2 + 2iΘ0
∂ξ

∂x
−Θ2

0ξ

)
+ σ2

1
∂2ξ

∂y2

]
+

+
(
(A1 + g0D1)a, b

)
ξ − 2d10b0Φ(ξ, x, Θ0),

ξ(τ, x + 2π, y) ≡ ξ(τ, x, y) ≡ −ξ(τ, x, y + 1),

Θ0 =

{
0, if N is even,
1
2 , if N is odd,

τ = ε2t, y = ε−1x.

Φ(ξ, x, Θ0) =

{ (
ξ + ξ

)
, for Θ0 = 0;

ξ3 exp(ix) + 3ξ|ξ|2 + ξ
3

exp(−2ix) + 3ξ|ξ|2 exp(−ix), for Θ0 = 1/2.

The function u(τ, x, ε) is related with the function ξ(τ, x) via the equality

u(τ, x, ε) = εa
(
ξ(τ, x, y) exp

(
iΘ0x

)
+ ξ(τ, x, y) exp

(
− iΘ0x

))
+ ε3U(τ, x, y).

3.3. Third Case

Let
g0 6= −1, g0 6= −2, g0 = g(h) and 3h 6= 2πk, (k = 0,±1,±2, . . .) (32)

We present the final boundary value problem for determining the amplitude ξ(τ, x, y)
in the form of the asymptotic formula

u(t, x, ε) =εa
(
ξ(τ, x, y) exp

(
i
(
hε−1 + Θ

))
+ ξ(τ, x, y) exp

(
− i
(
hε−1 + Θ

)))
+

+ ε3U(τ, x, y), τ = ε2t, y = ε−
1
2 x, (33)

∂ξ

∂τ
=
(

D0a1, b
)[

sin2 h ·
(

∂2ξ

∂x2 + 2iΘ
∂ξ

∂x
−Θ2ξ

)
+ cos2 h · σ4

1
∂4ξ

∂y4 +

+ sin 2h · σ2
1

(
−i∂3ξ

∂x∂y2 + Θ
∂2ξ

∂y2

)]
+
((

A1 + (cos h− 1)D1
)
a, b
)
ξ + 3d10g0b0ξ|ξ|2,

ξ(τ, x + 2π, y) ≡ ξ(τ, x, y) ≡ ξ(τ, x, y + 1).

(34)

The analogs of Theorems 2–4 are valid, of course, for the second and third cases. We do not
present them here.

4. Conclusions

The chain of the ring coupled Van der Pol systems is considered. It is assumed that
the couplings are homogeneous and that the number of elements in the chain is large
enough. The transition to a system with a continuous variable is considered. The main
attention is drawn to the study of the system with couplings close to diffusion. The
critical cases of the Turing type are distinguished in the problem of the stability of the
zero equilibrium state. It is shown that all these cases have infinite dimension. The
local dynamics of the original systems is investigated. It is found that the considered
Turing bifurcations occur on asymptotically high modes or on a whole group of modes
with asymptotically large numbers. The special nonlinear equations of parabolic type
(equations of the Ginzburg—Landau type) are constructed, which play the role of the
first approximation equations for solutions of the original system. It is known (see, for
example, [25]) that the dynamics of the Ginzburg—Landau boundary value problems can
be quite complex, therefore the same conclusion can be made for the solutions of the
considered chain of the Van der Pol systems.

It is worth mentioning one more significant conclusion. The parameter Θ appears in
the constructed parabolic equations. When this parameter is changed, the dynamics can
change too [26]. The parameter Θ ranges infinitely many times from 0 to 1 as ε→ 0. Thus,
we conclude that the change in the number of elements in the chain (and it is large enough
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of order ε−1) even by one leads to the parameter Θ and hence the dynamics of the original
system change significantly.

Note that it is of interest to study chains of nonlinear systems, consisting of a large
number of elements, with other type of connections; in particular, with one- and two-way
connections, as well as fully connected systems. In addition, it is important to study systems
with delayed connections.
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