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Abstract: The group teaching optimization algorithm (GTOA) is a meta heuristic optimization
algorithm simulating the group teaching mechanism. The inspiration of GTOA comes from the
group teaching mechanism. Each student will learn the knowledge obtained in the teacher phase,
but each student’s autonomy is weak. This paper considers that each student has different learning
motivations. Elite students have strong self-learning ability, while ordinary students have general self-
learning motivation. To solve this problem, this paper proposes a learning motivation strategy and
adds random opposition-based learning and restart strategy to enhance the global performance of the
optimization algorithm (MGTOA). In order to verify the optimization effect of MGTOA, 23 standard
benchmark functions and 30 test functions of IEEE Evolutionary Computation 2014 (CEC2014) are
adopted to verify the performance of the proposed MGTOA. In addition, MGTOA is also applied to
six engineering problems for practical testing and achieved good results.

Keywords: group teaching optimization algorithm; learning motivation strategy; random opposition-
based learning; restart strategy; engineering problems

MSC: 49K35

1. Introduction

Meta-heuristic algorithms (MAs) are commonly used to solve global optimization
problems. They mainly solve the optimal solution by simulating nature and human
intelligence. To a certain extent, they can search globally and find the approximate solution
of the optimal solution. The core of MAs is exploration and exploitation. Among them,
exploration is to explore the entire search space as much as possible because the optimal
solution may exist anywhere in the entire search space. Furthermore, exploitation is to
use effective information as much as possible. In most cases, there are specific correlations
between the optimal solutions. Use these correlations to adjust gradually, and slowly
search from the initial solution to the optimal solution. In general, MAs hope to balance
exploration and exploitation as much as possible.

In recent years, many scholars have studied MAs because of their advantages, such
as simple operation, intuitive operation, and fast running speed. So far, hundreds of
meta-heuristic algorithms have been proposed. According to different design inspirations,
MAs can be divided into four categories: swarm-based, evolutionary, physical, and human-
based algorithms. The algorithms represented by swarm-based algorithms include Particle
Swarm Optimization (PSO) [1], Ant Lion Optimizer (ALO) [2], Bat Algorithm (BA) [3], Slap
Swarm Algorithm (SSA) [4], Ant Colony Optimization (ACO) [5], Artificial Bee Colony
(ABC) [6], Gray Wolf Optimization (GWO) [7], Krill Herd (KH) [8], Whale Optimization

Mathematics 2022, 10, 3765. https://doi.org/10.3390/math10203765 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10203765
https://doi.org/10.3390/math10203765
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4339-8464
https://orcid.org/0000-0002-3081-5185
https://orcid.org/0000-0002-2203-4549
https://doi.org/10.3390/math10203765
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10203765?type=check_update&version=2


Mathematics 2022, 10, 3765 2 of 36

Algorithm (WOA) [9], and Remora Optimization Algorithm (ROA) [10]. Evolutionary
algorithms are represented by Genetic Algorithm (GA) [11], Evolution Strategy (ES) [12],
Genetic Programming (GP) [13], Biogeography-Based Optimizer (BBO) [14], Evolutionary
Programming (EP) [15], Differential Evolution (DE) [16], and Virulence Optimization
Algorithm (VOA) [17]. Physical-based algorithms are represented by Simulated Annealing
(SA) [18], Gravitational Search Algorithm (GSA) [19], Black Hole Algorithm (BH) [20],
Multi-Verse Optimization (MVO) [21], Ray Optimization (RO) [22], and Thermal Exchange
Optimization (TEO) [23]. Human-based algorithms are represented by Harmony Search
(HS) [24], Teaching Learning-Based Optimization (TLBO) [25], Social Group Optimization
(SGO) [26], and Exchanged Market Algorithm (EMA) [27]. These algorithms have a good
optimization effect on MAs.

Group Teaching Optimization Algorithm (GTOA) is an MA that was proposed in
2020 [28] and inspired by the group teaching mechanism. GTOA divides students into elite
students and ordinary students for group teaching. For different students, teachers have
different teaching methods. However, each student is close to the teacher in essence, so
the algorithm has better exploitation ability. Each student will consolidate the contents
of the teacher’s teaching during the break. However, this way does not fully reflect the
idea of group teaching. Therefore, Zhang et al. proposed a group teaching optimization
algorithm with information sharing (ISGTOA) to distinguish the learning styles of different
groups. ISGTOA has established two teaching methods for elite and ordinary students. The
two groups of students can fully communicate through these two methods. This method
increases the communication between groups, improves the dependence of students, and
makes the algorithm converge faster [29]. However, ISGTOA still does not distinguish
between different students’ learning status and learning methods in their spare time.
Each student has the same learning method at the student phase. However, the learning
motivation of elite students is different from that of ordinary students. Elite students
have strong learning motivation. These students have strong self-learning ability and are
good at self-summarizing and learning. Ordinary students lack the motivation to learn
and often need the help of other students or teachers. Elite students acquire knowledge
through self-study through learning motivation, while ordinary students learn through
discussion among classmates. Therefore, this paper proposes a modified group teaching
optimization algorithm (MGTOA). By adding learning motivation, elite students will
learn independently according to their own learning motivation, and ordinary students
will communicate with each other to improve their comprehensive abilities. At the same
time, random reverse learning and restart strategy are added to enhance the optimization
performance of the proposed algorithm.

The main contribution of this paper can be summarized as follows:

• A modified GTOA is proposed based on three strategies: learning motivation (LM),
random opposition-based learning (ROBL), and restart strategy (RS).

• The optimization of MGTOA in different dimensions (dim = 30/500) among 23 stan-
dard benchmark functions is evaluated, and the distribution of MGTOA in some
benchmark functions is shown.

• Test the optimization performance of MGTOA in CEC2014.
• MGTOA is compared with seven different optimization algorithms.
• Six process problems verify the engineering practicability of MGTOA.

The organizational structure of this paper is as follows: Section 2 gives a brief descrip-
tion of GTOA, while Section 3 describes the use of operators: learning motivation (LM),
random opposition-based learning (ROBL), restart strategy (RS), and gives the framework
of the proposed algorithm. Sections 4 and 5 show the algorithm’s experimental results
in solving benchmark and constraint engineering problems, while Section 6 summarizes
the paper.
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2. Group Teaching Optimization Algorithm (GTOA)

The idea of GTOA is to improve the knowledge level of the whole class by simulating
the group learning mechanism. Considering that every student has different knowledge, it
is very complicated in practice. In order to integrate the idea of group teaching into the
optimization algorithm, this paper assumes that the population, decision variables, and
fitness values are similar to the students, the subjects provided to the students, and the
student’s knowledge. The algorithm is divided into the following four phases.

2.1. Ability Grouping Phase

In order to better show the advantages of group teaching, all students will be divided
into two groups according to their knowledge level, and the teacher will carry out different
teaching for these two groups of students. In grouping, the relatively strong group is
called elite students, and the other group is called ordinary students. Teachers will be
more capable of making different teaching plans when teaching. After grouping, the gap
between elite and ordinary students will become larger with the teachers’ teaching. For
better teaching, the grouping of GTOA is a dynamic process, and grouping is performed
again after one cycle of learning.

2.2. Teacher Phase

The teacher phase refers to students acquiring knowledge through their teachers. In
GTOA, teachers make two different teaching plans for two groups of students.

Teacher phase I: Elite students have a strong ability to accept knowledge, so teachers
pay more attention to improving students’ overall average knowledge level. In addition,
the differences in students’ acceptance of knowledge are also considered. Therefore, elite
students will learn according to the teachers’ teaching and students’ overall knowledge
level. This can effectively improve the overall knowledge level.

xteacher,i = xi + a × (xT − F × (b × M + c × xi)) (1)

M =
1
N

N

∑
i=1

xi (2)

b + c = 1 (3)

where N is the number of students, and xi is the ith student. xT is a teacher. M is the
average knowledge of students. xteacher,i is the solution obtained through the teacher phase.
a, b, and c are random numbers in [0, 1]. The value of F is a coefficient of 1 or 2, as done in
Rao et al. [25].

Teacher phase II: Considering that ordinary students have a general ability to accept
knowledge. Teachers will pay more attention to ordinary students and tend to improve
students’ knowledge levels from an individual perspective. Therefore, ordinary students
will be more inclined to obtain teachers’ knowledge.

xteacher,i = xi + 2 × d × (xT − xi) (4)

where d is a random number between [0, 1].
In addition, students cannot guarantee that they will acquire knowledge in the teacher

phase, so the minimum value is assigned to represent the knowledge level of students after
the teacher phase.

xteacher,i =

{
xteacher,i, f (xteacher,i) < f (xi)
xi, f (xteacher,i) ≥ f (xi)

(5)
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2.3. Student Phase

Students can acquire knowledge through self-study or interaction with other students
in their spare time. In order to improve their knowledge level. In the spare time, students
will summarize the knowledge they have learned in the teacher phase for self-study.

xstudent,i =


xteacher,i + e × (xteacher,i − xteacher,j) +
g × (xteacher,i − xi), f (xteacher,i) < f (xteacher,j)
xteacher,i − e × (xteacher,i − xteacher,j) +
g × (xteacher,i − xi), f (xteacher,i) ≥ f (xteacher,j)

(6)

where e and g are two random numbers in the range [0, 1], xstudent,i is the knowledge of
student i by learning from the student phase and xteacher,j is the knowledge of student j by
learning from the teacher phase. The random number of students j ∈ {1, 2, . . . , i − 1, i, . . . ,
N}. In Equation (6), the second and third items on the right mean learning from the other
student and self-learning, respectively.

In addition, students cannot acquire knowledge through the student phase, so the min-
imum value is assigned to represent the knowledge level of students after the teacher phase.

xi =

{
xteacher,i, f (xteacher,i) < f (xstudent,i)
xstudent,i, f (xteacher,i) ≥ f (xstudent,i)

(7)

2.4. Teacher Allocation Phase

Selecting excellent teachers can improve students’ learning ability. Establishing a good
teacher matching mechanism is important to improve students’ knowledge level. In the
GWO algorithm, the average value is obtained by selecting the best three wolves and using
them to guide all wolves to prey. Inspired by the hunting behavior of the GWO algorithm,
the allocation of teachers is expressed by the following formula:

xT =

{
xfirst , f (xfirst) ≤ f ( xfirst + xsecond + xthird

3 )
xfirst + xsecond + xthird

3 , f (xfirst) > f ( xfirst + xsecond + xthird
3 )

(8)

where, xfirst, xsecond, and xthird are the students with the first, second, and third fitness
values, respectively. In order to accelerate the convergence of the algorithm, elite students
and ordinary students generally use the same teacher.

2.5. The Proposed Approach

Step 1: Initialization.
(1.1) Initialization parameters.
These parameters include maximum evaluation times Tmax, current evaluation times

t (t = 0), population size N, upper and lower bounds ub and lb of decision variables,
dimension dim, and fitness function f (·).

(1.2) Initialize population.
Initialize solution x according to the test function. Each group of variables represents

one student. It can be described as:

x = [x1, x2, · · · , xN ]
Tmax =


x1,1 x1,2 · · · x1,dim
x2,1 x2,2 · · · x2,dim

...
...

...
xN,1 xN,2 · · · xN,dim

 (9)

xi = lb + (ub − lb) × k (10)

where k is a random number in the range [0, 1].
Step 2: Calculate fitness value.
The fitness value of the individual is calculated, and the optimal solution G is selected.
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Step 3: Termination conditions
If the current iteration number t is greater than the maximum iteration number Tmax,

the algorithm is terminated, and the optimal solution G is output.
Step 4: Teacher allocation phase
The first three best individuals are selected. Then, the teacher xT can be calculated by

Equation (8).
Step 5: Ability grouping phase.
The students are divided into two groups based on the fitness value of the current

students. The best half of the students are divided into elite group xgood and the remaining
half into the ordinary group xbad. The two groups share a teacher.

Step 6: Teacher phase and student phase
(6.1). For the group xgood, the teacher phase is implemented based on Equations (1)–(3)

and (5). Then, the student phase is conducted according to Equations (6) and (7). Finally,
the new students xgood is obtained.

(6.2) For the group xbad, the teacher phase is implemented based on Equations (4) and (5).
Then, the student phase is conducted according to Equations (6) and (7). Finally, the new
students xbad is obtained.

Step 7: Population evaluation.
Calculate the fitness value of students, select the optimal solution G, and update the

current iteration number t.
t = t + 1 (11)

Then, Step 3 is executed.

3. Proposed Algorithm
3.1. Learning Motivation

Each student can acquire knowledge through self-study or communication with class-
mates in the student phase of the original algorithm. However, it does not fit elite students
and ordinary students. Elite students have stronger learning abilities and motivation than
ordinary students and are more inclined to self-study. However, ordinary students are
weak in learning ability and tend to study among their classmates.

Therefore, elite students obtain learning motivation D according to Equation (12) and
find a new solution through Equation (13). Ordinary students can find a new solution
according to Equation (14).

D = (1 − i)/N × sin(2 × π × r) (12)

xstudent,i = xteacher,i + D × xteacher,i (13)

where r is a random number of [0, 1].

xstudent,i =

{
xteacher,i + e × (xteacher,i − xteacher,j) + g × (xteacher,i − M), f (xteacher,i) < f (xteacher,j)
xteacher,i − e × (xteacher,i − xteacher,j) + g × (xteacher,i − M), f (xteacher,i) ≥ f (xteacher,j)

(14)

3.2. Random Opposition-Based Learning

Opposition-based learning (OBL) is a new computational intelligence scheme [30].
In the past few years, OBL has been successfully applied to various population-based
evolutionary algorithms [31–35]. Random opposition-based learning increases the random
value of [0, 1] on the basis of opposition-based learning, so as to obtain the random
solution within the range of inverse solution. It not only expands the search range but also
strengthens the diversity of the population so that the algorithm has a stronger exploration
ability and convergence ability. The specific formula is as follows:

xnewi = (ub + lb) − (xT − t)/Tmax × rand × xi (15)

where xnewi represents the solution obtained after random opposition-based learning.
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It is determined whether the solution obtained by the random opposition-based
learning is better than the original solution:

xi =

{
xi , f (xi) ≤ f (xnewi)
xnewi , f (xi) > f (xnewi)

(16)

3.3. Restart Strategy (RS)

Restart strategy [36] can reassign the value of the solution which has been trapped in
the local optimal state for a long time and make the poor solution jump out of the local
optimal state. Adding the restart strategy can strengthen the exploration ability of the
algorithm and make the algorithm converge better.

First, set the restart threshold Limit according to Equation (17). Then, set the vector
trial for each solution, and record whether a better solution is obtained after each iteration.
The initial value is 0. If a better solution is obtained, the corresponding trial is 0. Otherwise,
the corresponding trial is increased by 1. If the vector trial is greater than the Limit, the
restart strategy is executed. The Limit’s function image is shown in Figure 1.

Limit = ln(t) (17)

The restart strategy generates two new solution T1 and T2, respectively, by Equations
(18) and (19) and performs boundary processing by Equation (20), and then selects a better
solution to replace the original solution. After that, the corresponding trial is reassigned to
0. The formula of the restart strategy is as follows:

T1 = lb + rand() × (ub − lb) (18)

T2 = rand() × (ub + lb) − xi (19)

T2 = lb + rand() × (ub − lb)i f T2 ≥ ub||T2 ≤ lb (20)

Figure 1. Limit schematic diagram.

3.4. MGTOA Complexity Analysis

The time complexity depends on the number of students (N), the dimension of the
given problem (dim), the number of iterations of the algorithm (T), and the evaluation cost
(C). Therefore, the time complexity of MGTOA can be presented as:

O(MGTOA) = O(define parameters) + O(population initialization)
+O(dunction evaluation cost) + O(location update)

(21)

where the time complexities of the components of Equation (22) can be defined as follows:

1. Initialization of problem definition demands O(1) time.
2. Initialization of population creation demands O(N × dim) time.
3. Updating the population position includes the teacher and student phases and the

required time O(2 × T × N × dim).
4. Time required for random opposition-based learning O(T × N × dim).
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5. Time required for restart strategy O(2 × T × N × dim/Limit).
6. The cost time of the calculation function includes the calculation time cost of the

algorithm itself, the calculation time cost of the random opposition-based learning
strategy, and the calculation time cost of the restart strategy. The calculation time
cost of the algorithm itself is O(T × N × C). The calculation time cost of the random
opposition-based learning strategy is O(T × N × C). The calculation time cost of the
restart strategy takes into account the change of the Limit value, so the time cost is
O(T × N × C/Limit). The total time cost is O(2 × T × N × C + T × N × C/Limit).

Therefore, the time complexity of MGTOA is expressed as:

O(MGTOA) = O(1 + N × dim + T × N × C × (2 +
1

Limit
) + T × N × dim × (3 +

2
Limit

)) (22)

Because 1� T × N × C, 1� T × N × dim, N × dim� T × N × C, and N × dim� T
× N × dim, Equation (22) can be simplified to Equation (23).

O(MGTOA) ∼= O(T × N × C × (2 +
1

Limit
) + T × N × dim × (3 +

2
Limit

)) (23)

It can be seen from the above analysis that the time complexity of MGTOA is improved
compared with GTOA, but after these strategies are added, the optimization effect of
MGTOA is significantly improved. The following experiments also prove the feasibility of
MGTOA.

3.5. MGTOA Implementation

Combining GTOA with the three strategies mentioned above, an improved group
teaching optimization algorithm (MGTOA) is presented. Through the above three improve-
ment strategies, the exploration ability of MGTOA is strengthened, making the calculation
more global. Pseudocode is shown in Algorithm 1.

The MGTOA flow chart is shown in Figure 2.

Figure 2. Flowchart for proposed MGTOA.
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Algorithm 1 Pseudo-code of MGTOA

1. Initialization parameters t, Tmax, ub, lb, N, dim.
2. Initialize population x according to Equations (9) and (10).
3. The fitness values of all individuals are calculated, and the optimal solution G is selected.
4. While t < Tmax
5. Define the teacher according to Equation (8).
6. Students are divided into elite students (Xgood) and ordinary students (Xbad). The number of
elite students is Ngood.
7. for i = 1:N
8. if i < Ngood
9. The teacher phase is achieved according to Equations (1)–(3), and (5).
10. else
11. The teacher phase is realized according to Equations (4) and (5).
12. end
13. Carry out boundary processing for the updated students.
14. Calculate the average knowledge level of elite students (M)
15. if i < Ngood
16. for j = 1:dim
17. The elite students get the learning motivation D according to Equation (12) and
carry out the student phase through Equations (13) and (7).
18. end
19. else
20. Ordinary students carry out the student phase according to Equations (14) and (7).
21. end
22. end
23. Carry out boundary processing for the updated students.
24. An inverse solution is generated using a random opposition-based learning strategy by
Equation (15), and the student position is updated according to Equation (16).
25. Calculate the new fitness value of the students and judge whether it is better. If it is better,
replace the fitness value and the corresponding trial = 0. Otherwise, trial will add 1
26. Define Limit according to Equation (17).
27. for i = 1:N
28. while trial(i) < Limit
29. T1 and T2 are generated by Equations (18) and (19), and T2 is subjected to boundary
processing using Equation (20). Assign a smaller position to xi.
30. trial(i) = 0
31. end
32. end
33. t = t + 1
34. end

4. Experimental Results and Discussion

All the experiments in this paper are completed on a computer with the 11th Gen In-
tel(R) Core(TM) i7-11700 processor with the primary frequency of 2.50GHz, 16GB memory,
and the operating system of 64-bit windows 11 using matlab2021a.

In this section, MGTOA is brought into two different types of benchmark functions to
evaluate the performance of the modified algorithm. First, the performance of MGTOA in
solving simple optimization problems is evaluated by experiments on 23 standard bench-
mark functions. After that, it is verified by CEC 2014 test function, which contains 30 test
functions. Finally, in order to verify that the proposed MGTOA has better performance, the
MGTOA is compared with GTOA [28], Genetic Algorithms (GA) [11], Sine Cosine Algo-
rithm (SCA) [37], Bald Eagle Search (BES) [38], Remora Optimization Algorithm (ROA) [10],
Arithmetic Optimization Algorithm (AOA) [39], Whale Optimization Algorithm (WOA) [9],
Teaching Learning-Based Optimization Algorithm (TLBO) [25], and Balanced Teaching
Learning-Based Optimization Algorithm (BTLBO) [40]. The parameter settings of these
algorithms are shown in Table 1.
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Table 1. Parameter settings for the comparative algorithms.

Algorithm Parameters Value

BTLBO [40]
TF 1 or 2
θ 0 or 1

TLBO [25] TF 1 or 2

WOA [9]

Coefficient vectors
→
A 1

Coefficient vectors
→
C [−1, 1]

Helical parameter b 0.75
Helical parameter l [−1, 1]

AOA [39]

MOP_Max 1
MOP_Min 0.2

A 5
Mu 0.499

ROA [10] C 0.1

BES [38]
α [1.5, 2.0]
r [0, 1]

SCA [37] α 2

GA [11]

Type Real coded
Selection Roulette wheel (Proportionate)
Crossover Whole arithmetic

(Probability = 0.7)
Mutation Gaussian

(Probability = 0.01)
GTOA [28] - -
MGTOA Limit lg(t)

4.1. Experiments on Standard Benchmark Functions

In this section, the performance of MGTOA is tested using 23 mathematical benchmark
functions and compared with other nine algorithms. This benchmark contains seven
unimodal, six multimodal, and ten fixed-dimension multimodal functions. As shown in
Table 2, where F is the mathematical function, dim is the dimension, Range is the interval
of the search space, and Fmin is the optimal value the corresponding function can achieve.
Among the 23 standard benchmark functions, set the population number N = 30, the
maximum number of iterations T = 500, and the dimension dim = 30/500. All the algorithms
run independently 30 times to obtain the optimal fitness value, the average fitness value,
and the standard deviation.

Figure 3 shows a partial graph of 23 benchmark functions, the historical distribution of
MGTOA in the benchmark function, the historical trajectory of the first individual, and the
convergence curve of MGTOA. It can be clearly seen from the figure that MGTOA obtained
the results and position distribution after each optimization.

Tables 3–5 are the statistical charts of 23 benchmark functions of MGTOA and nine
other comparison algorithms, and the best values obtained are shown in bold black. It can
be seen that MGTOA has been significantly improved compared with other algorithms
and has achieved good results in 23 benchmark functions. In F1–F4, the statistical value
of MGTOA has been significantly improved compared with GTOA, and the fitness value
has reached the theoretical optimum. BES has achieved good results in F1, and AOA has
achieved good results in F2. Other comparison algorithms are insufficient in F1–F4. In
30 dimensions, MGTOA did not obtain the minimum fitness value in F6 and F12, which
indicates that MGTOA is insufficient. However, in the 500 dimensions, MGTOA has
achieved the minimum fitness value. This shows that the optimization performance of
MGTOA is more stable and has good effects in different dimensions. TLBO and BTLBO
cannot guarantee good effects in high dimensions. Among other functions, MGTOA has
achieved good results. BES and ROA have achieved good results in F9–F11, but other
functions are not as effective as MGTOA. In Table 5, because the function is relatively simple,
many algorithms can obtain better fitness values. MGTOA obtains the best fitness value in
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most functions and has good stability. ROA, WOA, BTLBO, and TLBO also achieved good
results. The performance of other algorithms is relatively weak, and they only have good
results in some functions. The above analysis verifies that MGTOA has a good effect on
23 benchmark functions.

Table 2. Details of 23 benchmark functions.

Type F dim Range Fmin

Unimodal
benchmark
functions

F1(x) = ∑n
i=1 x2

i 30/100/500 [−100, 100] 0

F2(x) = ∑n
i=1 |xi | + ∏n

i = 1 |xi | 30/100/500 [−10, 10] 0

F3(x) = ∑n
i=1 (∑

i
j−1 xj)

2 30/100/500 [−100, 100] 0

F4(x) = max{|xi |, 1 ≤ i ≤ n} 30/100/500 [−100, 100] 0

F5(x) = ∑n − 1
i=1 [100(xi + 1 − x2

i )
2
+ (xi − 1)2] 30/100/500 [−30, 30] 0

F6(x) = ∑n
i=1 (xi + 5)2 30/100/500 [−100, 100] 0

F7(x) = ∑n
i=1 i × x4

i + random[0, 1) 30/100/500 [−1.28, 1.28] 0

Multimodal
benchmark
functions

F8(x) = ∑n
i=1 −xi sin(

√
|xi |) 30/100/500 [−500, 500] −418.9829

× dim
F9(x) = ∑n

i=1 [x
2
i − 10 cos(2πxi) + 10] 30/100/500 [−5.12, 5.12] 0

F10(x) = −20 exp(−0.2
√

1
n ∑n

i=1 x2
i − exp( 1

n ∑n
i=1 cos(2πxi)) + 20 + e) 30/100/500 [−32, 32] 0

F11(x) = 1
400 ∑n

i=1 x2
i − Πn

i = 1 cos( xi√
i
) + 1 30/100/500 [−600, 600] 0

F12(x) = π
n

{
10 sin(πy1) + ∑n − 1

i=1 (yi − 1)2[1 + 10 sin2(πyi + 1)] + (yn − 1)2
}

+∑n
i=1 u(xi , 10, 100, 4), where yi = 1 + xi + 1

4 ,

u(xi , a, k, m) =


k(xi − a)m xi > a

0 − a < xi < a

k(−xi − a)m xi < −a

30/100/500 [−50, 50] 0

F13(x) = 0.1(sin2(3πx1) + ∑n
i=1 (xi − 1)2[1 + sin2(3πxi + 1)]

+(xn − 1)2[1 + sin2(2πxn)]) + ∑n
i=1 u(xi , 5, 100, 4)

30/100/500 [−50, 50] 0

Fixed-
dimension

multimodal
benchmark
functions

F14(x) = ( 1
500 + ∑25

j=1
1

j + ∑2
i=1 (xi − aij)

6 )
−1 2 [−65, 65] 1

F15(x) = ∑11
i=1

[
ai −

x1(b2
i + bi x2)

b2
i + bi x3 + x4

]2
4 [−5, 5] 0.00030

F16(x) = 4x2
1 − 2.1x4

1 + 1
3 x6

1 + x1x2 − 4x2
2 + x4

2 2 [−5, 5] −1.0316

F17(x) = (x2 − 5.1
4π2 x2

1 + 5
π x1 − 6)

2
+ 10(1 − 1

8π ) cos x1 + 10 2 [−5, 5] 0.398

F18(x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 32

2)]

× [30 + (2x1 − 3x2)
2 × (18 − 32x2 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)]

5 [−2, 2] 3

F19(x) = −∑4
i=1 ci exp(−∑3

j=1 aij(xj − pij)
2) 3 [−1, 2] −3.86

F20(x) = −∑4
i=1 ci exp(−∑6

j=1 aij(xj − pij)
2) 6 [0, 1] −3.32

F21(x) = −∑5
i=1 [(X − ai)(X − ai)

T + ci ]
− 1 4 [0, 10] −10.1532

F22(x) = −∑7
i=1 [(X − ai)(X − ai)

T + ci ]
− 1 4 [0, 10] −10.4028

F23(x) = −∑10
i=1 [(X − ai)(X − ai)

T + ci ]
− 1 4 [0, 10] −10.5363

In order to more intuitively see the optimization ability of each algorithm, the con-
vergence curves of each algorithm in 23 mathematical benchmark functions are shown
in Figures 4–6, which can more intuitively understand the convergence effect of each
algorithm. From F1–F4, it can be seen that the MGTOA optimization effect is obviously
superior to other algorithms. MGTOA has good convergence ability in the early stage of
the algorithm and can quickly find the optimal value. In Figure 4, MGTOA is inferior to
TLBO and BTLBO in F6 and F12. However, in Figure 5, the value obtained by MGTOA is
significantly smaller, and other algorithms cannot converge. It shows that MGTOA has
better performance when dealing with high-dimensional problems. In other functions,
MGTOA can converge quickly and get a good value. It is further proved that MGTOA has
better optimization ability in 23 benchmark functions.
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Figure 3. Results of MGTOA in 23 benchmark functions.
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Table 3. Results of benchmark functions (F1–F13) under 30 dimensions.

F Metric MGTOA GTOA [28] GA [11] SCA [37] BES [38] ROA [10] AOA [39] WOA [9] BTLBO [40] TLBO [25]

F1
min 0 1.13 × 10−14 9.69 × 10−3 8.36 × 10−2 0 0 3.05 × 10−193 6.03 × 10−86 1.47 × 10−97 5.3 × 10−81

mean 0 5.92 × 10−6 2.37 × 10−2 16.5 0 2.99 × 10−319 2.56 × 10−30 2.21 × 10−68 9.71 × 10−96 6.99 × 10−79

std 0 2.42 × 10−5 6.57 × 10−3 36.5 0 0 1.40 × 10−29 1.21 × 10−67 2.03 × 10−95 1.76 × 10−78

F2
min 0 3.43 × 10−7 3.64 × 10−1 1.47 × 10−6 2.38 × 10−229 1.70 × 10−182 0 1.7 × 10−59 3.54 × 10−49 1.24 × 10−40

mean 0 5.83 × 10−4 4.91 × 10−1 1.43 × 10−2 2.43 × 10−161 2.91 × 10−162 0 1.92 × 10−49 2.63 × 10−48 5.07 × 10−40

std 0 1.67 × 10−3 7.28 × 10−2 2.31 × 10−2 1.33 × 10−160 1.56 × 10−161 0 8.92 × 10−49 2.63 × 10−48 5.35 × 10−40

F3
min 0 3.58 × 10−11 9.24 × 103 1.82 × 103 0 1.59 × 10−321 1.96 × 10−132 2.11 × 104 2.29 × 10−37 1.15 × 10−19

mean 0 5.10 × 10−4 2.16 × 104 8.87 × 103 1.76 × 10−27 1.02 × 10−284 2.9 × 10−3 4.08 × 104 5.54 × 10−33 1.3 × 10−16

std 0 2.63 × 10−3 8.05 × 103 5.64 × 103 9.64 × 10−27 0 5.97 × 10−3 1.37 × 104 1.51 × 10−32 5.06 × 10−16

F4
min 0 3.04 × 10−7 2.15 × 10−1 9.56 9.19 × 10−237 7.35 × 10−180 7.99 × 10−51 8.24 3.52 × 10−40 2.09 × 10−33

mean 0 4.8 × 10−4 2.82 × 10−1 36.4 9.34 × 10−171 4.87 × 10−152 2.25 × 10−2 54.0 2.27 × 10−39 1.43 × 10−32

std 0 8.52 × 10−4 3.86 × 10−2 13.1 0 2.63 × 10−151 2.12 × 10−2 24.3 3 × 10−39 1.30 × 10−32

F5
min 5.39 × 10−6 28.9 25.5 44.6 9.27 × 10−4 26.6 27.8 2.73 × 10−1 2.29 × 10−1 23.4

mean 8.90 × 10−1 28.9 70.7 8.17 × 104 21.8 27.1 28.5 28.0 23.9 24.7
std 4.7 2.79 × 10−2 30.7 1.83 × 105 12 3.63 × 10−1 3.08 × 10−1 4.64 × 10−1 6.67 × 10−1 6.32 × 10−1

F6
min 1.4 × 10−5 4.42 7.83 5.52 3.21 × 10−4 1.69 × 10−2 2.69 1.14 × 10−1 4.84 × 10−9 2.66 × 10−8

mean 1.11 × 10−3 5.67 8.07 25.8 1.35 1.04 × 10−1 3.24 4.47 × 10−1 1.06 × 10−6 1.17 × 10−6

std 1.18 × 10−3 7.71 × 10−1 1.38 × 10−1 49 2.8 1.21 × 10−1 2.74 × 10−1 3.27 × 10−1 2.64 × 10−6 3.77 × 10−6

F7
min 4.97 × 10−8 1.06 × 10−4 8.88 × 10−2 1.7 × 10−2 2.03 × 10−3 4.43 × 10−6 2.47 × 10−7 9.51 × 10−5 3.60 × 10−4 5.57 × 10−4

mean 3.79 × 10−5 4.49 × 10−4 1.98 × 10−1 1.1 × 10−1 6.19 × 10−3 1.85 × 10−4 8 × 10−5 3.32 × 10−3 8.10 × 10−4 1.13 × 10−3

std 3.29 × 10−5 2.6 × 10−4 7.02 × 10−2 1.08 × 10−1 3.54 × 10−3 1.71 × 10−4 8.71 × 10−5 3.65 × 10−3 4.16 × 10−4 5.20 × 10−4

F8
min −1.26 × 104 −6.16 × 103 −5.94 × 103 −4.73 × 103 −9.97 × 103 −1.26 × 104 −6.19 × 103 −1.26 × 104 −9.87 × 103 −9.45 × 103

mean −1.26 × 104 −5.09 × 103 −4.73 × 103 −3.78 × 103 −5.80 × 103 −1.24 × 104 −5.41 × 103 −1.03 × 104 −7.60 × 103 −7.67 × 103

std 6.00 × 10−2 6.87 × 102 6.85 × 102 3.61 × 102 3.23 × 103 3.26 × 102 4.37 × 102 1.68 × 103 1.01 × 103 1.21 × 103

F9
min 0 5.7 × 10−11 1.37 1.25 × 10−1 0 0 0 0 8.04 9.95

mean 0 2.44 × 10−5 2.74 34.7 0 0 0 7.58 × 10−15 19.0 14.4
std 0 8.93 × 10−5 8.29 × 10−1 30.5 0 0 0 2.47 × 10−14 8.82 6.97

F10
min 8.88 × 10−16 2.55 × 10−8 9.25 × 10−2 4.78 × 10−2 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 4.44 × 10−15 4.44 × 10−15

mean 8.88 × 10−16 3.36 × 10−4 1.33 × 10−1 15.4 1.13 × 10−15 8.88 × 10−16 8.88 × 10−16 4.8 × 10−15 5.03 × 10−15 6.34 × 10−15

std 0 7.52 × 10−4 3.09 × 10−2 7.96 9.01 × 10−16 0 0 2.35 × 10−15 1.35 × 10−15 1.8 × 10−15

F11
min 0 1.06 × 10−12 6.76 × 10−4 1.83 × 10−2 0 0 2.66 × 10−2 0 0 0

mean 0 1.11 × 10−5 8.6 × 10−2 9.91 × 10−1 0 0 1.88 × 10−1 1.18 × 10−2 0 2.76 × 10−6

std 0 4.1 × 10−5 2.7 × 10−1 3.07 × 10−1 0 0 1.59 × 10−1 6.45 × 10−2 0 1.51 × 10−5



Mathematics 2022, 10, 3765 13 of 36

Table 3. Cont.

F Metric MGTOA GTOA [28] GA [11] SCA [37] BES [38] ROA [10] AOA [39] WOA [9] BTLBO [40] TLBO [25]

F12
min 3.52 × 10−7 3.44 × 10−1 1.55 8.5 × 10−1 1.48 × 10−6 2.78 × 10−3 3.98 × 10−1 7.12 × 10−3 2.49 × 10−10 5.78 × 10−11

mean 2.15 × 10−5 6.21 × 10−1 1.72 5.51 × 104 1.33 × 10−1 1.07 × 10−2 5.24 × 10−1 4.39 × 10−2 1.02 × 10−8 1.26 × 10−8

std 2.01 × 10−5 1.88 × 10−1 5.17 × 10−2 1.74 × 105 3.28 × 10−1 6.41 × 10−3 4.53 × 10−2 1 × 10−1 2.68 × 10−8 3.63 × 10−8

F13
min 1.17 × 10−6 2.45 1.37 × 10−3 4.82 4.66 × 10−5 7.92 × 10−2 2.65 1.72 × 10−1 2.13 × 10−7 1.59 × 10−7

mean 2.65 × 10−4 2.87 4.46 × 10−3 1.89 × 105 1.22 2.4 × 10−1 2.82 5.69 × 10−1 9.96 × 10−2 8.4 × 10−2

std 3.56 × 10−4 2.26 × 10−1 3.29 × 10−3 5.58 × 105 1.47 1.38 × 10−1 9.65 × 102 2.44 × 10−1 8.27 × 10−2 1.23 × 10−1

Table 4. Results of benchmark functions (F1–F13) under 500 dimensions.

F Metric MGTOA GTOA [28] GA [11] SCA [37] BES [38] ROA [10] AOA [39] WOA [9] BTLBO [40] TLBO [25]

F1
min 0 3.10 × 10−13 67.2 9.04 × 104 0 0 5.60 × 10−1 2.86 × 10−81 3.95 × 10−85 1.12 × 10−68

mean 0 1.37 × 10−4 70.6 2.03 × 105 0 2.17 × 10−318 6.43 × 10−1 1.49 × 10−67 9.97 × 10−84 1.34 × 10−67

std 0 6.23 × 10−4 2.63 8.08 × 104 0 0 4.45 × 10−2 8.06 × 10−67 1.03 × 10−83 1.78 × 10−67

F2
min 0 2.76 × 10−7 1.35 × 102 31.8 6.28 × 10−225 9.78 × 10−177 3.81 × 10−12 9.26 × 10−55 4.58 × 10−43 7.22 × 10−35

mean 0 5.98 × 10−3 1.40 × 102 1.07 × 102 2.93 × 10−153 3.10 × 10−151 1.82 × 10−3 1.3 × 10−47 2.06 × 10−42 2.16 × 10−34

std 0 1.28 × 10−2 3.03 57.5 1.6 × 10−152 1.70 × 10−150 1.7 × 10−3 6.57 × 10−47 1.53 × 10−42 1.35 × 10−34

F3
min 0 9.38 × 10−9 4.86 × 105 5.09 × 106 0 7.16 × 10−299 13.7 1.88 × 107 2.77 × 10−13 4.58 × 10−3

mean 0 1.23 × 10−1 7.17 × 105 6.75 × 106 8.68 × 105 5.08 × 10−261 3.42 × 103 3.32 × 107 5.59 × 10−6 3.8 × 10−1

std 0 5.99 × 10−1 1.39 × 105 1.42 × 106 4.43 × 106 0 1.85 × 104 1.23 × 107 2.41 × 10−5 1.27

F4
min 0 5.2 × 10−8 9.52 × 10−1 98.6 8.66 × 10−217 2.23 × 10−173 1.63 × 10−1 55.1 2.13 × 10−35 5.69 × 10−28

mean 0 2.8 × 10−4 9.71 × 10−1 99.0 1.3 × 10−128 7.74 × 10−152 1.81 × 10−1 81.3 1.22 × 10−34 1.42 × 10−27

std 0 4.51 × 10−4 1.04 × 10−2 3.42 × 10−1 7.13 × 10−128 4.13 × 10−151 1.65 × 10−2 22.1 8.42 × 10−35 9.58 × 10−28

F5
min 4.12 × 10−8 4.99 × 102 4.90 × 103 1.12 × 109 1.13 × 102 4.94 × 102 4.99 × 102 4.96 × 102 4.96 × 102 4.96 × 102

mean 1.16 × 102 4.99 × 102 5.14 × 103 1.95 × 109 4.32 × 102 4.95 × 102 4.99 × 102 4.96 × 102 4.97 × 102 4.97 × 102

std 2.14 × 102 3.20 × 10−2 1.76 × 102 5.05 × 108 1.67 × 102 2.94 × 10−1 1.03 × 10−1 4.20 × 10−1 6.30 × 10−1 4 × 10−1

F6
min 9.08 × 10−5 1.22 × 102 3.35 × 102 7.45 × 104 1.14 × 10−2 7.29 1.14 × 102 20.3 70 71.6

mean 16.8 1.23 × 102 3.45 × 102 2.42 × 105 30.6 15.3 1.16 × 102 32.6 75.4 75.5
std 35.3 7.36 × 10−1 5.84 9.01 × 104 53 6.51 1.38 9.53 2.39 2.11

F7
min 2.6 × 10−8 7.82 × 10−5 4.30 × 103 9.38 × 103 8.2 × 10−4 5.87 × 10−6 1.21 × 10−5 8.52 × 10−5 7.16 × 10−4 8.04 × 10−4

mean 3.43 × 10−5 6.1 × 10−4 4.56 × 103 1.44 × 104 5.75 × 10−3 2.08 × 10−4 1.06 × 10−4 4.37 × 10−3 1.3 × 10−3 1.66 × 10−3

std 3.22 × 10−5 6.31 × 10−4 2.74 × 102 3.4 × 103 4.01 × 10−3 1.66 × 10−4 9.94 × 10−5 5.6 × 10−3 4.27 × 10−4 5.37 × 10−4
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Table 4. Cont.

F Metric MGTOA GTOA [28] GA [11] SCA [37] BES [38] ROA [10] AOA [39] WOA [9] BTLBO [40] TLBO [25]

F8
min −2.09 × 105 −2.85 × 104 −3.63 × 104 −1.73 × 104 −2.08 × 105 −2.09 × 105 −2.58 × 104 −2.09 × 105 −7.28 × 104 −6.17 × 104

mean −2.09 × 105 −2.15 × 104 −3.29 × 104 −1.53 × 104 −1.61 × 105 −2.05 × 105 −2.3 × 104 −1.7 × 105 −3.39 × 104 −4.39 × 104

std 1.18 3.12 × 103 1.91 × 103 1.23 × 103 2.49 × 104 1.02 × 104 1.58 × 103 3.1 × 104 1.10 × 104 1.21 × 104

F9
min 0 0 2.26 × 103 4.19 × 102 0 0 0 0 0 0

mean 0 9.27 × 10−5 2.41 × 103 1.14 × 103 0 0 8.08 × 10−6 9.09 × 10−14 0 0
std 0 3.52 × 10−4 72.5 5.78 × 102 0 0 7.61 × 10−6 3.66 × 10−13 0 0

F10
min 8.88 × 10−16 2.26 × 10−8 2.85 10.7 8.88 × 10−16 8.88 × 10−16 7.09 × 10−3 8.88 × 10−16 7.99 × 10−15 7.99 × 10−15

mean 8.88 × 10−16 2.84 × 10−4 2.91 18.4 8.88 × 10−16 8.88 × 10−16 8.02 × 10−3 4.91 × 10−15 7.99 × 10−15 2.22
std 0 5.35 × 10−4 2.92 × 10−2 4.11 0 0 4.3 × 10−4 2.23 × 10−15 0 4.17

F11
min 0 2.10 × 10−12 2.28 × 10−1 1.13 × 103 0 0 6.52 × 103 0 0 0

mean 0 4.72 × 10−5 3.05 × 10−1 2.08 × 103 0 0 9.99 × 103 3.7 × 10−18 0 3.7 × 10−18

std 0 2.56 × 10−4 2.66 × 10−1 7.11 × 102 0 0 3.09 × 103 2.03 × 10−17 0 2.03 × 10−17

F12
min 1.69 × 10−8 1.09 2.73 4.03 × 109 1.24 × 10−5 9.45 × 10−3 1.07 3.97 × 10−2 3.84 × 10−1 3.67 × 10−1

mean 1.08 × 10−5 1.14 2.80 6.28 × 109 2.42 × 10−1 4.54 × 10−2 1.08 1.01 × 10−1 4.3 × 10−1 4.27 × 10−1

std 2.10 × 10−5 3.37 × 10−2 4.75 × 10−2 1.36 × 109 4.89 × 10−1 2.79 × 10−2 1.2 × 10−2 5.11 × 10−2 2.75 × 10−2 2.96 × 10−2

F13
min 5.42 × 10−11 50 10.2 6.62 × 109 3.46 × 10−3 3.08 50.1 10.7 49.8 49.8

mean 1.87 × 10−3 50 10.8 1.06 × 1010 12.2 8.69 50.2 19.3 49.8 49.8
std 5.68 × 10−3 4.52 × 10−3 4.73 × 10−1 2.11 × 109 21.1 3.88 4.54 × 10−2 6.02 1.01 × 10−2 8.82 × 10−3
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Table 5. Results of benchmark functions (F14–F23).

F Metric MGTOA GTOA [28] GA [11] SCA [37] BES [38] ROA [10] AOA [39] WOA [9] BTLBO [40] TLBO [25]

F14
min 9.98 × 10−1 9.98 × 10−1 2.98 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1

mean 9.98 × 10−1 1.16 9.43 1.83 3.06 5.75 10.2 3.68 9.98 × 10−1 9.98 × 10−1

std 3.38 × 10−11 5.27 × 10−1 3.58 1.89 1.39 5.05 4.05 3.47 0 0

F15
min 3.07 × 10−4 3.07 × 10−4 4.35 × 10−4 3.94 × 10−4 3.14 × 10−4 3.08 × 10−4 3.54 × 10−4 3.19 × 10−4 3.07 × 10−4 3.07 × 10−4

mean 3.08 × 10−4 1.89 × 10−3 1.29 × 10−2 9.83 × 10−4 7.02 × 10−3 4.32 × 10−4 1.22 × 10−2 7.49 × 10−4 3.25 × 10−4 3.50 × 10−4

std 2.54 × 10−7 5.34 × 10−3 2.75 × 10−2 3.98 × 10−4 8.72 × 10−3 2.27 × 10−4 2.66 × 10−2 5.11 × 10−4 7.35 × 10−5 1.19 × 10−4

F16
min −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03

mean −1.03 −1.03 −1.00 −1.03 −9.54 × 10−1 −1.03 −1.03 −1.03 −1.03 −1.03
std 5.25 × 10−16 6 × 10−16 2.07 × 10−2 8.02 × 10−5 2.25 × 10−1 1.25 × 10−7 1.21 × 10−7 2.04 × 10−9 6.78 × 10−16 6.65 × 10−16

F17
min 3.98 × 10−1 3.98 × 10−1 4.50 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1

mean 3.98 × 10−1 3.98 × 10−1 1.50 3.99 × 10−1 5.81 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1

std 6.21 × 10−7 0 1.48 1.6 × 10−3 6.48 × 10−1 6.34 × 10−6 7.93 × 10−8 1.48 × 10−5 0 0

F18
min 3 3 3.2 3 3 3 3 3 3 3

mean 3 3 29.5 3 4.39 3 9.3 3 3 3
std 2.06 × 10−5 8.4 × 10−15 22.2 1.33 × 10−4 1.51 1.61 × 10−4 11.6 1.71 × 10−4 1.31 × 10−15 9.79 × 10−16

F19
min −3.86 −3.86 −3.86 −3.86 −3.85 −3.86 −3.86 −3.86 −3.86 −3.86

mean −3.86 −3.86 −3.71 −3.85 −3.65 −3.86 −3.85 −3.86 −3.86 −3.86
std 9.49 × 10−6 2.63 × 10−15 5.48 × 10−1 1.09 × 10−2 1.89 × 10−1 2.8 × 10−3 5.9 × 10−3 7.31 × 10−3 2.71 × 10−15 2.71 × 10−15

F20
min −3.32 −3.32 −3.32 −3.11 −3.19 −3.32 −3.17 −3.32 −3.32 −3.32

mean −3.29 −3.26 −3.28 −2.70 −2.91 −3.22 −3.04 −3.22 −3.3 −3.31
std 5.27 × 10−2 7.66 × 10−2 5.55 × 10−2 5.27 × 10−1 2.4 × 10−1 1.24 × 10−1 8.89 × 10−2 1.71 × 10−1 3.67 × 10−2 3.71 × 10−2

F21
min −10.2 −10.2 −5.05 −7.36 −10.2 −10.2 −6.85 −10.2 −10.2 −10.2

mean −10.2 −8 −1.47 −2.27 −6.55 −10.1 −3.93 −7.94 −10.1 −9.56
std 2.90 × 10−4 2.75 1.49 2.06 2.76 1.6 × 10−2 1.72 2.79 7.74 × 10−2 1.81

F22
min −10.4 −10.4 −5.07 −5.62 −10.4 −10.4 −6.05 −10.4 −10.4 −10.4

mean −10.4 −8.04 −1.67 −3.29 −5.43 −10.4 −3.38 −7.76 −10.4 −10
std 1.29 × 10−4 2.97 1.25 1.85 2.61 2.41 × 10−2 1.49 2.91 7.38 × 10−16 1.35

F23
min −10.5 −10.5 −5.13 −5.93 −10.5 −10.5 −6.69 −10.5 −10.5 −10.5

mean −10.5 −7.98 −1.76 −3.73 −5.55 −10.5 −3.52 −6.27 −10.3 −10.1
std 1.28 × 10−4 3.24 1.40 1.54 2.73 2.1 × 10−2 1.26 3.26 1.21 1.74
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Figure 4. Convergence curves for the optimization algorithms for standard benchmark functions
(F1–F13) with dim = 30.
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Figure 5. Convergence curves for the optimization algorithms for standard benchmark functions
(F1–F13) with dim = 500.
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Figure 6. Convergence curves for the optimization algorithms for standard benchmark functions
(F14–F23).

In addition, the Wilcoxon rank sum test is a nonparametric statistical test method that
can find more complex data distribution. The general data analysis is only aimed at the
average value and standard deviation of the current data and is not compared with the
data of multiple algorithms runs. Therefore, the Wilcoxon rank sum test is required for
further verification. Table 6 shows the experimental results of MGTOA and nine other
different algorithms running 30 times in 23 mathematical benchmark functions. Among
them, the significance level is 5%. The value of less than 5% indicates a significant difference
between the two algorithms. Otherwise, it indicates that the two algorithms are close. It
can be seen from the table that the p of most functions is less than 0.05, but some functions
are greater than 0.05. MGTOA has four functions p = 1 compared with BES. MGTOA
has three functions p = 1 compared with ROA. Compared with AOA, MGTOA has three
functions p = 1 when dim = 30. This is because both these algorithms and MGTOA can find
the theoretical optimal fitness value in these functions. Compared with MGTOA, WOA,
BTLBO and TLBO have many p less than 0.05 in F9–F11. It shows that the optimization
effect of these algorithms in this function is similar. However, in most cases, the p obtained
by MGTOA and other algorithms is less than 0.05. In general, MGTOA has achieved good
results in the Wilcoxon rank sum test.
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Table 6. Experimental results of Wilcoxon rank sum test on 23 standard benchmark functions.

F dim
MGTOA

vs.
GTOA [28]

MGTOA
vs.

GA [11]

MGTOA
vs.

SCA [37]

MGTOA
vs.

BES [38]

MGTOA
vs.

ROA [10]

MGTOA
vs.

AOA [39]

MGTOA
vs.

WOA [9]

MGTOA
vs.

BTLBO [40]

MGTOA
vs.

TLBO [25]

F1
30 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1 1.25 × 10−1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

500 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1 3.13 × 10−2 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F2
30 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

500 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F3
30 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 2.5 × 10−1 3.79 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

500 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 3.1 × 10−2 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F4
30 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

500 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F5
30 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 2.13 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

500 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.38 × 10−3 6.16 × 10−4 1.73 × 10−6 6.16 × 10−4 1.73 × 10−6 1.73 × 10−6

F6
30 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 2.6 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

500 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 2.89 × 10−1 4.72 × 10−2 1.73 × 10−6 8.97 × 10−2 1.73 × 10−6 1.73 × 10−6

F7
30 3.18 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 6.64 × 10−4 2.7 × 10−2 2.13 × 10−6 1.73 × 10−6 1.73 × 10−6

500 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.36 × 10−5 2.22 × 10−4 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F8
30 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 3.59 × 10−4 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

500 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 3.18 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F9
30 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1 1 1 5 × 10−1 1.73 × 10−6 3.79 × 10−6

500 2.56 × 10−6 1.73 × 10−6 1.73 × 10−6 1 1 1.32 × 10−4 1 1 1

F10
30 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1 1 1 2.29 × 10−5 2.57 × 10−7 7.86 × 10−7

500 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1 1 1.73 × 10−6 2.04 × 10−5 4.32 × 10−8 1.11 × 10−6

F11
30 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1 1 1.73 × 10−6 6.25 × 10−2 1 1

500 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1 1 1.73 × 10−6 1 1 1

F12
30 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.92 × 10−6

500 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.48 × 10−3 2.77 × 10−3 1.73 × 10−6 2.77 × 10−3 1.73 × 10−6 1.73 × 10−6

F13
30 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 2.6 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.11 × 10−3 2.41 × 10−4

500 1.73 × 10−6 2.8 × 10−3 1.73 × 10−6 2.26 × 10−3 2.77 × 10−3 1.73 × 10−6 1.71 × 10−3 1.73 × 10−6 1.73 × 10−6

F14 2 4.07 × 10−2 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 4.07 × 10−5 1.73 × 10−6 2.13 × 10−6 1.73 × 10−6 1.73 × 10−6

F15 4 2.41 × 10−4 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 5.75 × 10−6 1.73 × 10−6 1.73 × 10−6 7.71 × 10−4 1.41 × 10−1

F16 2 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1 1
F17 2 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 5.79 × 10−5 4.53 × 10−4 6.64 × 10−4 1.73 × 10−6 1.73 × 10−6

F18 2 1.73 × 10−6 1.73 × 10−6 5.79 × 10−5 1.73 × 10−6 1.04 × 10−3 9.75 × 10−1 3.61 × 10−3 1.73 × 10−6 1.73 × 10−6

F19 3 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 2.84 × 10−5 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F20 6 3.38 × 10−3 3.68 × 10−2 1.73 × 10−6 1.73 × 10−6 1.48 × 10−2 2.13 × 10−6 3.85 × 10−3 3.59 × 10−4 1.48 × 10−2

F21 4 1.48 × 10−2 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 2.77 × 10−3

F22 4 6.16 × 10−4 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.48 × 10−2

F23 4 9.27 × 10−3 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.92 × 10−6 1.73 × 10−6 3.59 × 10−4
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4.2. Experiments on CEC2014 Test Suite

In this section, we use CEC2014 test function to verify the performance of MGTOA.
Set the population number N = 30, the maximum number of iterations T = 500, and the
dimension dim = 10. The specific contents of CEC 2014 functions are shown in Table 7.

Table 7. Details of 30 CEC2014 benchmark functions.

Name NO. Functions Fmin

Unimodal
Functions

CEC 1 Rotated High Conditioned Elliptic Function 100
CEC 2 Rotated Bent Cigar Function 200
CEC 3 Rotated Discus Function 300

Simple
Multimodal
Functions

CEC 4 Shifted and Rotated Rosenbrock’s Function 400
CEC 5 Shifted and Rotated Ackley’s Function 500
CEC 6 Shifted and Rotated Weierstrass Function 600
CEC 7 Shifted and Rotated Griewank’s Function 700
CEC 8 Shifted Rastrigin’s Function 800
CEC 9 Shifted and Rotated Rastrigin’s Function 900
CEC 10 Shifted Schwefel’s Function 1000
CEC 11 Shifted and Rotated Schwefel’s Schwefel’s Function 1100
CEC 12 Shifted and Rotated Katsuura Function 1200
CEC 13 Shifted and Rotated HappyCat Function 1300
CEC 14 Shifted and Rotated HGBat Function 1400

CEC 15 Shifted and Rotated Expanded Griewank’splus
Rosenbrock’s Function 1500

CEC 16 Shifted and Rotated Expanded Scaffer’s F6 Function 1600

Hybrid
Function 1

CEC 17 Hybrid Function 1 (N = 3) 1700
CEC 18 Hybrid Function 2 (N = 3) 1800
CEC 19 Hybrid Function 3 (N = 4) 1900
CEC 20 Hybrid Function 4 (N = 4) 2000
CEC 21 Hybrid Function 5 (N = 5) 2100
CEC 22 Hybrid Function 6 (N = 5) 2200

Composition
Functions

CEC 23 Composition Function 1 (N = 5) 2300
CEC 24 Composition Function 2 (N = 3) 2400
CEC 25 Composition Function 3 (N = 3) 2500
CEC 26 Composition Function 4 (N = 5) 2600
CEC 27 Composition Function 5 (N = 5) 2700
CEC 28 Composition Function 6 (N = 5) 2800
CEC 29 Composition Function 7 (N = 3) 2900
CEC 30 Composition Function 8 (N = 3) 3000

Search Range: [−100, 100] dim

As can be seen in Table 8, MGTOA has achieved good results compared with GTOA.
However, some results are inferior to BTLBO and TLBO. In CEC1–CEC3, MGTOA got the
third place after BTLBO and TLBO. In CEC4–CEC5, MGTOA got the first. In CEC6–CEC9,
the value of MGTOA is due to GTOA. In CEC10–CEC16, MGTOA has found a better
value and is more stable. Among other functions, only the value of CEC20–CEC22 has not
achieved the best result, and other functions have obtained better solutions.

Figure 7 shows the convergence curves of MGTOA and the other nine algorithms. It
can be seen that MGTOA has achieved good results and is obviously superior to GTOA.
However, MGTOA has some shortcomings in some functions. In Unimodal Functions,
MGTOA has achieved the third place in CEC1 and CEC2. It can be seen from the figure
that the convergence ability of MGTOA in the later period is insufficient. The convergence
ability of TBLO and BTLBO is better than that of MGTOA. However, in CEC3, MGTOA
achieved good results. In Simple Multimodal Functions, MGTOA has some shortcomings
in CEC6 and CEC8. Among other functions, MGTOA has better convergence ability,
which can converge quickly and get a good solution. Hybrid Function 1 and Composition
Functions test the overall ability of the algorithm, and MGTOA has also achieved good
results. In CEC25 and CEC27, MGTOA can jump out of the local optimum to find a better
solution. Compared with GTOA, MGTOA has greatly improved its overall performance. It
can be concluded that MGTOA has a good optimization effect in CEC2014.
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Table 8. Results of algorithms on the CEC2014 test suite.

CEC Metric MGTOA GTOA [28] GA [11] SCA [37] BES [38] ROA [10] AOA [39] WOA [9] BTLBO [40] TLBO [25]

CEC 1
min 1.13 × 107 3.30 × 108 4.18 × 108 3.58 × 108 5.35 × 108 1.81 × 108 8.42 × 108 1.27 × 108 1.76 × 106 1.35 × 106

mean 7.02 × 107 7.36 × 108 9.95 × 108 5.44 × 108 9.45 × 108 4.23 × 108 1.36 × 109 2.56 × 108 5.36 × 106 6.54 × 106

std 4.06 × 107 3.16 × 108 3.86 × 108 1.84 × 108 3.72 × 108 2.1 × 108 4.95 × 108 1.08 × 108 5.46 × 106 4.13 × 106

CEC 2
min 1.69 × 108 3.19 × 1010 3.12 × 1010 2.43 × 1010 4.8 × 1010 2.11 × 1010 5.93 × 1010 5.05 × 109 3.79 × 103 6.05 × 103

mean 4.21 × 109 5.18 × 1010 4.36 × 1010 3.1 × 1010 6.67 × 1010 3.2 × 1010 7.33 × 1010 7.99 × 109 9.18 × 105 9.76 × 105

std 3.56 × 109 1.3 × 1010 9.53 × 109 5.62 × 109 1.54 × 1010 1.12 × 1010 1.12 × 1010 3.85 × 109 4.92 × 106 5.05 × 106

CEC 3
min 1.80 × 104 6.36 × 104 6.11 × 104 6.04 × 104 8.35 × 104 5.72 × 104 7.61 × 104 6.93 × 104 1.37 × 103 2.14 × 104

mean 4.61 × 104 7.68 × 104 1.74 × 106 7.68 × 104 1.82 × 105 6.89 × 104 8.55 × 104 1.46 × 105 6.31 × 103 3.44 × 104

std 6.52 × 103 1.86 × 104 6.76 × 106 1.81 × 104 1.46 × 105 8.82 × 103 1.59 × 104 7.68 × 104 4.53 × 103 1.13 × 104

CEC 4
min 4.06 × 102 4.33 × 103 3.31 × 103 2.04 × 103 7.52 × 103 1.38 × 103 8.54 × 103 9.5 × 102 4.82 × 102 4.78 × 102

mean 5.23 × 102 8.75 × 103 6.11 × 103 3.01 × 103 1.34 × 104 3.57 × 103 1.54 × 104 1.47 × 103 5.38 × 102 5.34 × 102

std 33.4 3.32 × 103 3.13 × 103 1.07 × 103 3.91 × 103 1.93 × 103 4.11 × 103 5.22 × 102 48.1 40

CEC 5
min 5.2 × 102 5.21 × 102 5.2 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102

mean 5.2 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102

std 1.26 × 10−1 8.36 × 10−2 1.35 × 10−1 8.9 × 10−2 7.53 × 10−2 9.95 × 10−2 6.16 × 10−2 1.1 × 10−1 6.04 × 10−2 6.73 × 10−2

CEC 6
min 6.2 × 102 6.34 × 102 6.32 × 102 6.35 × 102 6.38 × 102 6.33 × 102 6.37 × 102 6.35 × 102 6.18 × 102 6.16 × 102

mean 6.31 × 102 6.38 × 102 6.35 × 102 6.38 × 102 6.41 × 102 6.35 × 102 6.39 × 102 6.4 × 102 6.21 × 102 6.2 × 102

std 2.6 3.07 3 2.67 3.17 3.91 2.79 3.85 3.27 3.17

CEC 7
min 7.02 × 102 1.02 × 103 9.78 × 102 8.99 × 102 1.1 × 103 7.95 × 102 1.25 × 103 7.3 × 102 7 × 102 7 × 102

mean 7.25 × 102 1.21 × 103 1.07 × 103 9.69 × 102 1.28 × 103 9.09 × 102 1.39 × 103 7.51 × 102 7 × 102 7.01 × 102

std 22.1 1.35 × 102 87.4 53.2 1.33 × 102 92 1.29 × 102 25.7 1.32 3.21

CEC 8
min 8.98 × 102 1.03 × 103 1.07 × 103 1.06 × 103 1.1 × 103 1 × 103 1.11 × 103 9.97 × 102 8.62 × 102 8.6 × 102

mean 9.69 × 102 1.07 × 103 1.11 × 103 1.09 × 103 1.13 × 103 1.05 × 103 1.16 × 103 1.06 × 103 8.91 × 102 8.91 × 102

std 23.8 31.9 30.6 28.1 26.8 35.2 37.9 51.2 21.6 19

CEC 9
min 9.83 × 102 1.16 × 103 1.16 × 103 1.19 × 103 1.23 × 103 1.14 × 103 1.2 × 103 1.15 × 103 9.86 × 102 9.75 × 102

mean 1.05 × 103 1.2 × 103 1.21 × 103 1.22 × 103 1.25 × 103 1.17 × 103 1.23 × 103 1.23 × 103 1.02 × 103 1.01 × 103

std 28.7 33.2 34.5 26.8 38 32.8 27.8 68.1 27.3 35.4

CEC 10
min 2.81 × 103 6.52 × 103 6 × 103 7.37 × 103 7.6 × 103 5.49 × 103 6.8 × 103 5.8 × 103 3.79 × 103 3.06 × 103

mean 4.33 × 103 7.3 × 103 6.54 × 103 8.18 × 103 8.36 × 103 6.44 × 103 7.56 × 103 6.6 × 103 4.96 × 103 4.93 × 103

std 7.19 × 102 7.33 × 102 6.39 × 102 4.82 × 102 5.9 × 102 7.79 × 102 6.27 × 102 8.51 × 102 9.58 × 102 1.71 × 103

CEC 11
min 1.26 × 103 1.83 × 103 2.64 × 103 2.32 × 103 2.32 × 103 1.73 × 103 1.8 × 103 1.82 × 103 1.33 × 103 1.42 × 103

mean 1.96 × 103 2.19 × 103 3.08 × 103 2.59 × 103 2.68 × 103 2.18 × 103 2.17 × 103 2.39 × 103 1.56 × 103 2.04 × 103

std 2.79 × 102 3.24 × 102 3.38 × 102 2.65 × 102 3.04 × 102 4.18 × 102 3.04 × 102 3.53 × 102 1.41 × 102 4.34 × 102
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Table 8. Cont.

CEC Metric MGTOA GTOA [28] GA [11] SCA [37] BES [38] ROA [10] AOA [39] WOA [9] BTLBO [40] TLBO [25]

CEC 12
min 1.2 × 103 1.2 × 103 1.2 × 103 1.2 × 103 1.2 × 103 1.2 × 103 1.2 × 103 1.2 × 103 1.2 × 103 1.2 × 103

mean 1.2 × 103 1.2 × 103 1.2 × 103 1.2 × 103 1.2 × 103 1.2 × 103 1.2 × 103 1.2 × 103 1.2 × 103 1.2 × 103

std 9.13 × 10−2 3.46 × 10−1 8.91 × 10−1 3.53 × 10−1 3.9 × 10−1 4.11 × 10−1 3.44 × 10−1 4.41 × 10−1 1.32 × 10−1 3.2 × 10−1

CEC 13
min 1.3 × 103 1.3 × 103 1.3 × 103 1.3 × 103 1.3 × 103 1.3 × 103 1.3 × 103 1.3 × 103 1.3 × 103 1.3 × 103

mean 1.3 × 103 1.3 × 103 1.3 × 103 1.3 × 103 1.3 × 103 1.3 × 103 1.3 × 103 1.3 × 103 1.3 × 103 1.3 × 103

std 7.62 × 10−2 9.25 × 10−1 1.06 1.8 × 10−1 1.27 8.07 × 10−1 1.27 2.31 × 10−1 6.65 × 10−2 9.29 × 10−2

CEC 14
min 1.4 × 103 1.4 × 103 1.41 × 103 1.4 × 103 1.41 × 103 1.4 × 103 1.42 × 103 1.4 × 103 1.4 × 103 1.4 × 103

mean 1.4 × 103 1.41 × 103 1.42 × 103 1.4 × 103 1.42 × 103 1.4 × 103 1.43 × 103 1.4 × 103 1.4 × 103 1.4 × 103

std 8.69 × 10−2 6.63 9.5 1.21 9.72 5.12 12.2 3.22 × 10−1 1.63 × 10−1 1.42 × 10−1

CEC 15
min 1.5 × 103 1.5 × 103 1.6 × 103 1.51 × 103 1.53 × 103 1.5 × 103 1.64 × 103 1.5 × 103 1.5 × 103 1.5 × 103

mean 1.5 × 103 1.64 × 103 2.38 × 104 1.57 × 103 4.03 × 103 1.63 × 103 4.77 × 103 1.51 × 103 1.5 × 103 1.5 × 103

std 1 5.46 × 102 1.1 × 105 2.2 × 102 5.63 × 103 4.47 × 102 6.16 × 103 7.08 7.64 × 10−1 8.25 × 10−1

CEC 16
min 1.6 × 103 1.6 × 103 1.6 × 103 1.6 × 103 1.6 × 103 1.6 × 103 1.6 × 103 1.6 × 103 1.6 × 103 1.6 × 103

mean 1.6 × 103 1.6 × 103 1.6 × 103 1.6 × 103 1.6 × 103 1.6 × 103 1.6 × 103 1.6 × 103 1.6 × 103 1.6 × 103

std 1.8 × 10−1 4.4 × 10−1 3.08 × 10−1 2.87 × 10−1 2.99 × 10−1 3.03 × 10−1 3.38 × 10−1 4.32 × 10−1 4.31 × 10−1 3.3 × 10−1

CEC 17
min 1.89 × 103 2.47 × 103 2.12 × 106 1.6 × 104 5 × 104 4.42 × 103 8.19 × 104 1.83 × 104 1.98 × 103 2.65 × 103

mean 5.49 × 103 7.59 × 103 1.13 × 107 1.03 × 105 1.05 × 106 1.55 × 105 5.67 × 105 4.66 × 105 2.5 × 103 4.47 × 103

std 2.83 × 103 1.55 × 104 1.48 × 107 1.57 × 105 2.75 × 106 2.25 × 105 5.48 × 105 7.91 × 105 1.01 × 103 2.12 × 103

CEC 18
min 1.86 × 103 1.89 × 103 1.02 × 106 1.19 × 104 1.49 × 104 2.94 × 103 2.35 × 103 2.81 × 103 1.83 × 103 1.95 × 103

mean 5.73 × 103 1.97 × 103 5.55 × 107 7.88 × 104 1.15 × 106 1.41 × 104 1.76 × 104 1.93 × 104 1.89 × 103 5.9 × 103

std 3.25 × 103 7.04 × 101 5.88 × 107 1.05 × 105 4.68 × 106 9.68 × 103 1.26 × 104 3.48 × 104 65.4 4.92 × 103

CEC 19
min 1.9 × 103 1.9 × 103 1.91 × 103 1.91 × 103 1.91 × 103 1.9 × 103 1.91 × 103 1.9 × 103 1.9 × 103 1.9 × 103

mean 1.9 × 103 1.91 × 103 1.95 × 103 1.91 × 103 1.92 × 103 1.91 × 103 1.95 × 103 1.91 × 103 1.9 × 103 1.9 × 103

std 7.98 × 10−1 2.7 3.22 × 101 1.04 14.2 9.77 30.4 2.1 9.63 × 10−1 8.29 × 10−1

CEC 20
min 2.04 × 103 2.1 × 103 3.63 × 104 3.21 × 103 4.53 × 103 3.79 × 103 5.79 × 103 3.18 × 103 2.02 × 103 2.1 × 103

mean 5.12 × 103 6.43 × 103 3.6 × 107 1.16 × 104 3.03 × 105 1.03 × 104 1.37 × 104 1.78 × 104 2.08 × 103 2.55 × 103

std 2.65 × 103 1.15 × 104 6.32 × 107 9.7 × 103 9.12 × 105 4.92 × 103 9.2 × 103 2.44 × 104 61.3 6.62 × 102

CEC 21
min 2.28 × 103 2.55 × 103 2.8 × 105 7.79 × 103 7.91 × 103 3.58 × 103 6.76 × 103 1.54 × 104 2.12 × 103 2.27 × 103

mean 6.23 × 103 4.47 × 103 5.37 × 106 2.07 × 104 4.94 × 105 1.84 × 104 1.74 × 106 9.71 × 105 2.29 × 103 2.52 × 103

std 4.38 × 103 4.9 × 103 7.59 × 106 1.03 × 104 9.91 × 105 4.06 × 104 2.64 × 106 2.23 × 106 1.51 × 102 2.11 × 102

CEC 22
min 2.22 × 103 2.24 × 103 2.42 × 103 2.25 × 103 2.3 × 103 2.23 × 103 2.27 × 103 2.24 × 103 2.21 × 103 2.22 × 103

mean 2.32 × 103 2.33 × 103 2.63 × 103 2.29 × 103 2.44 × 103 2.29 × 103 2.43 × 103 2.33 × 103 2.23 × 103 2.24 × 103

std 5.34 × 101 8.78 × 101 1.79 × 102 4.29 × 101 1.21 × 102 90.3 1.24 × 102 96.9 6.67 30.3
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Table 8. Cont.

CEC Metric MGTOA GTOA [28] GA [11] SCA [37] BES [38] ROA [10] AOA [39] WOA [9] BTLBO [40] TLBO [25]

CEC 23
min 2.5 × 103 2.5 × 103 2.66 × 103 2.64 × 103 2.5 × 103 2.5 × 103 2.5 × 103 2.63 × 103 2.63 × 103 2.63 × 103

mean 2.5 × 103 2.5 × 103 2.74 × 103 2.65 × 103 2.6 × 103 2.5 × 103 2.5 × 103 2.64 × 103 2.63 × 103 2.63 × 103

std 0 5.32 × 10−1 1.1 × 102 9.53 95.5 0 2.66 × 10−1 26.9 2.42 × 10−12 2.02 × 10−12

CEC 24
min 2.51 × 103 2.54 × 103 2.57 × 103 2.55 × 103 2.57 × 103 2.6 × 103 2.57 × 103 2.56 × 103 2.51 × 103 2.51 × 103

mean 2.59 × 103 2.58 × 103 2.60 × 103 2.56 × 103 2.6 × 103 2.6 × 103 2.59 × 103 2.58 × 103 2.52 × 103 2.53 × 103

std 2.31 × 101 2.94 × 101 2.06 × 101 1.18 × 101 9.04 14.2 18.5 27.5 16.4 35.5

CEC 25
min 2.63 × 103 2.7 × 103 2.7 × 103 2.7 × 103 2.69 × 103 2.7 × 103 2.7 × 103 2.69 × 103 2.63 × 103 2.63 × 103

mean 2.7 × 103 2.7 × 103 2.71 × 103 2.7 × 103 2.7 × 103 2.7 × 103 2.7 × 103 2.7 × 103 2.66 × 103 2.66 × 103

std 5.77 1.09 × 101 6.1 5.58 6.77 0 1.38 13.4 30.6 30.9

CEC 26
min 2.7 × 103 2.7 × 103 2.7 × 103 2.7 × 103 2.7 × 103 2.7 × 103 2.7 × 103 2.7 × 103 2.7 × 103 2.7 × 103

mean 2.7 × 103 2.71 × 103 2.71 × 103 2.7 × 103 2.7 × 103 2.7 × 103 2.72 × 103 2.7 × 103 2.7 × 103 2.7 × 103

std 6.25 × 10−2 3.03 × 101 3.11 × 101 2.91 × 10−1 1.3 18.1 33.4 18.2 5.84 × 10−2 7.31 × 10−2

CEC 27
min 2.7 × 103 2.9 × 103 3.13 × 103 2.73 × 103 2.88 × 103 2.9 × 103 2.9 × 103 3.11 × 103 2.7 × 103 2.7 × 103

mean 2.89 × 103 3 × 103 3.25 × 103 3.04 × 103 3.17 × 103 2.88 × 103 2.91 × 103 3.16 × 103 2.75 × 103 2.96 × 103

std 4.86 × 101 1.45 × 102 1.04 × 102 1.47 × 102 1.86 × 102 64.3 80.2 1.72 × 102 1.1 × 102 1.75 × 102

CEC 28
min 3 × 103 3 × 103 3.65 × 103 3.24 × 103 3 × 103 3 × 103 3 × 103 3.23 × 103 3.18 × 103 3.18 × 103

mean 3 × 103 3.16 × 103 3.99 × 103 3.32 × 103 3.47 × 103 3 × 103 3.09 × 103 3.45 × 103 3.22 × 103 3.24 × 103

std 0 2.07 × 102 3.04 × 102 7.3 × 101 1.92 × 102 0 2.71 × 102 2.02 × 102 47.3 71.2

CEC 29
min 3.1 × 103 3.33 × 103 5.69 × 105 5.56 × 103 8.13 × 103 3.41 × 103 3.1 × 103 3.54 × 103 3.22 × 103 3.37 × 103

mean 3.1 × 103 1.87 × 106 1.06 × 107 3.17 × 104 1.63 × 106 3.17 × 105 2.53 × 106 4.71 × 105 3.38 × 103 2.55 × 105

std 5.47 3.59 × 106 1.49 × 107 4.6 × 104 3.1 × 106 8.49 × 105 1.11 × 107 1.26 × 106 2.03 × 102 6.54 × 105

CEC 30
min 3.2 × 103 4.13 × 103 1.26 × 104 4.56 × 103 5.93 × 103 3.99 × 103 5.49 × 103 4.42 × 103 3.53 × 103 3.5 × 103

mean 3.2 × 103 1.76 × 104 1.2 × 105 5.73 × 103 2.7 × 104 5.49 × 103 1.58 × 105 7.62 × 103 3.86 × 103 3.8 × 103

std 5.44 4.25 × 104 1.64 × 105 1.5 × 103 5.38 × 104 2.21 × 103 7 × 105 9.8 × 103 3.12 × 102 4.13 × 102
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Figure 7. Cont.
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Figure 7. Convergence curves for the optimization algorithms for test functions on CEC2014.

Table 9 shows the Wilcoxon rank sum test results obtained by running MGTOA and
other nine different algorithms 30 times in CEC2014. It can be seen from the table that most
p is less than 0.05, but many of the composite functions of CEC22–CEC30 have p greater
than 0.05. This is because these functions are relatively simple, and many algorithms can
find a better value. In CEC11 and CEC14, there are three p greater than 0.05. In CEC16 and
CEC18, one p is greater than 0.05. In CEC16 and CEC18, one p is greater than 0.05, and the
rest is less than 0.05. It shows that there is a big gap between MGTOA and these algorithms.
Moreover, only two p values between MGTOA and GTOA are greater than 0.05, which
indicates that MGTOA is very different from GTOA, which demonstrates that MGTOA
achieves good results in Wilcoxon rank sum detection.



Mathematics 2022, 10, 3765 26 of 36

Table 9. Experimental results of Wilcoxon rank sum test on the CEC2014 test suite.

CEC
MGTOA

vs.
GTOA [28]

MGTOA
vs.

GA [11]

MGTOA
vs.

SCA [37]

MGTOA
vs.

BES [38]

MGTOA
vs.

ROA [10]

MGTOA
vs.

AOA [39]

MGTOA
vs.

WOA [9]

MGTOA
vs.

BTLBO [40]

MGTOA
vs.

TLBO [25]

CEC 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 2.88 × 10−6 1.73 × 10−6 3.72 × 10−5 1.73 × 10−6 1.73 × 10−6

CEC 2 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 2.13 × 10−6 1.73 × 10−6 6.16 ×10 −4 1.73 × 10−6 1.73 × 10−6

CEC 3 3.88 × 10−6 2.13 × 10−6 6.98 × 10−6 1.73 × 10−6 4.29 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.92 × 10−6

CEC 4 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 2.13 × 10−6 1.73 × 10−6 1.36 × 10−4 1.73 × 10−6 1.73 × 10−6

CEC 5 1.73 × 10−6 3.18 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.92 × 10−6 2.35 × 10−6 9.63 × 10−4

CEC 6 7.51 × 10−5 5.71 × 10−4 2.6 × 10−5 2.35 × 10−6 3.06 × 10−4 8.47 × 10−6 2.88 × 10−6 1.92 × 10−6 1.73 × 10−6

CEC 7 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.92 × 10−6 1.73 × 10−6 2.30 × 10−2 1.73 × 10−6 1.73 × 10−6

CEC 8 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 2.35 × 10−6 1.73 × 10−6 9.32 × 10−6 1.73 × 10−6 1.73 × 10−6

CEC 9 2.88 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 3.18 × 10−6 1.73 × 10−6 1.73 × 10−6

CEC 10 1.73 × 10−6 4.29 × 10−6 1.73 × 10−6 1.73 × 10−6 1.6 × 10−4 1.73 × 10−6 3.88 × 10−6 4.29 × 10−6 3.72 × 10−5

CEC 11 1.31 × 10−1 2.13 × 10−6 6.98 × 10−6 6.32 × 10−5 6.29 × 10−1 4.72 × 10−2 4.72 × 10−2 3.52 × 10−6 3.29 × 10−1

CEC 12 2.88 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 4.29 × 10−6 8.94 × 10−4 1.92 × 10−6 4.72 × 10−2 1.92 × 10−6

CEC 13 2.61 × 10−4 1.73 × 10−6 3.88 × 10−6 1.73 × 10−6 1.89 × 10−4 1.73 × 10−6 3.32 × 10−4 5.75 × 10−6 4.11 × 10−3

CEC 14 1.83 × 10−3 1.73 × 10−6 1.49 × 10−5 1.73 × 10−6 1.29 × 10−3 1.73 × 10−6 2.13 × 10−1 7.66 × 10−1 5.44 × 10−1

CEC 15 3.52 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.02 × 10−5 1.73 × 10−6 7.69 × 10−6 1.73 × 10−6 1.73 × 10−6

CEC 16 4.49 × 10−2 1.73 × 10−6 6.89 × 10−5 5.79 × 10−5 1.65 × 10−1 4.29 × 10−6 2.22 × 10−4 1.73 × 10−6 3.18 × 10−6

CEC 17 5.67 × 10−3 1.73 × 10−6 2.13 × 10−6 1.73 × 10−6 5.32 × 10−3 1.73 × 10−6 2.60 × 10−6 6.34 × 10−6 7.16 × 10−4

CEC 18 1.92 × 10−6 1.73 × 10−6 2.13 × 10−6 1.73 × 10−6 3 × 10−2 3.71 × 10−1 3.68 × 10−2 1.73 × 10−6 4.53 × 10−4

CEC 19 3.11 × 10−5 1.73 × 10−6 3.88 × 10−6 1.92 × 10−6 2.26 × 10−3 1.73 × 10−6 1.80 × 10−5 1.92 × 10−6 2.35 × 10−6

CEC 20 2.43 × 10−2 1.73 × 10−6 3.50 × 10−2 1.64 × 10−5 9.84 × 10−3 4.72 × 10−2 7.73 × 10−3 1.73 × 10−6 2.60 × 10−6

CEC 21 2.16 × 10−5 1.73 × 10−6 3.16 × 10−3 5.75 × 10−6 2.96 × 10−3 1.83 × 10−3 1.92 × 10−6 1.73 × 10−6 1.73 × 10−6

CEC 22 1.04 × 10−2 1.92 × 10−6 4.49 × 10−2 4.11 × 10−3 8.94 × 10−1 3.72 × 10−5 4.41 × 10−1 1.73 × 10−6 8.47 × 10−6

CEC 23 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.22 × 10−4 1 1 5.61 × 10−6 4.32 × 10−8 4.32 × 10−8

CEC 24 8.59 × 10−2 2.29 × 10−1 3.72 × 10−5 6.89 × 10−1 6.45 × 10−2 4.54 × 10−1 3.49 × 10−1 1.73 × 10−6 3.52 × 10−6

CEC 25 7.73 × 10−3 5.75 × 10−6 2.41 × 10−3 3.91 × 10−2 4.38 × 10−1 1.88 × 10−1 9.91 × 10−1 1.73 × 10−6 1.80 × 10−5

CEC 26 1.48 × 10−4 3.11 × 10−5 3.11 × 10−5 3.11 × 10−5 2.22 × 10−4 2.84 × 10−5 1.83 × 10−3 1.73 × 10−6 2.88 × 10−6

CEC 27 1.32 × 10−2 7.69 × 10−6 4.73 × 10−6 7.03 × 10−6 3.75 × 10−1 1.88 × 10−1 2.35 × 10−6 6.34 × 10−6 4.99 × 10−3

CEC 28 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 3.79 × 10−6 1 2.50 × 10−1 3.79 × 10−6 1.73 × 10−6 1.73 × 10−6

CEC 29 1.64 × 10−5 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 4.73 × 10−6 1.86 × 10−2 1.73 × 10−6 1.11 × 10−2 8.19 × 10−5

CEC 30 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.92 × 10−6 2.35 × 10−6 1.73 × 10−6 7.52 × 10−2 3.39 × 10−1
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5. Constrained Engineering Design Problems

The previous experiments have shown the optimization effect of MGTOA. In order to
clearly understand the practical effect of MGTOA on engineering problems, six engineering
problems are selected for our experiment, namely: welding beam design, pressure vessel
design, tension/pressure spring design, three-bar truss design, car crashworthiness design,
and gear train design. The detailed experimental results are as follows.

5.1. Welded Beam Design Problem

The design problem of the welded beam is to minimize the cost of the welded beam
under four decision variables and seven constraints. Four variables need to be optimized:
weld width h, connecting beam thickness b, connecting beam length l, and beam height t.
The specific model of this problem is from literature [7]. The objective function f of this
problem is shown in Figure 8.

Figure 8. The welded beam design.

The mathematical formulation of this problem is shown below:
Consider:

x = [x1 x2 x3 x4] = [h l t b] (24)

Minimize:
f (x) = 1.10471x2

1x2 + 0.04811x3x4(14.0 + x2) (25)

Subject to:
g1(X) = τ(x)− 13, 600 ≤ 0, (26)

g2(X) = σ(x)− 30, 000 ≤ 0, (27)

g3(X) = x1 − x4 ≤ 0, (28)

g4(X) = 0.10471x2
1 + 0.04811x3x4(14 + x2)− 5, (29)

g5(X) = 0.125− x1 ≤ 0, (30)

g6(X) = δ(x)− 0.25 ≤ 0, (31)

g7(X) = 6000− Pc(x) ≤ 0 (32)

Variable Range:

τ(x) =

√
(τ′)2 + 2τ′τ′′

x2

2R
+ (τ′′ )2, (33)

τ′ =
6000√
2x1x2

, τ′′
MR

J
, M = 6000(14 +

x2

2
), (34)

R =

√
x2

2
4

+ (
x1 + x3

2
)

2
, (35)

J = 2{
√

2x1x2[
x2

2
12

+ (
x1 + x3

2
)

2
]}, (36)
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σ(x) =
504, 000

x2
3x4

, δ(x) =
65, 856, 000

(30× 106)x3
3x4

(37)

Pc(x) =
4.013(30× 106)

√
x2

3x6
4

36
196

(1−
x3

√
30×106

4(12×106)

28
) (38)

The results obtained from the welded beam design are shown in Table 10. It can be
seen that the optimal solution obtained by MGTOA is much smaller than that obtained by
GTOA, and the minimum weight is obtained when compared with other algorithms. It is
proven that MGTOA has a better effect on the welded beam design.

Table 10. Experimental results of Welded Beam Design.

Algorithm
Optimal Values for Variables

Best Weight
h l t b

MGTOA 0.205351 3.268419 9.069875 0.205621 1.701633939
GTOA [28] 0.20573 3.470489 9.036624 0.20573 1.724852

TSA [41] 0.244157 6.223066 8.29555 0.244405 2.38241101
MFO [42] 0.2057 3.4703 9.0364 0.2057 1.72452
MVO [21] 0.205463 3.473193 9.044502 0.205695 1.72645

RO [22] 0.203687 3.528467 9.004233 0.207241 1.735344

5.2. Pressure Vessel Design Problem

The purpose of pressure vessel design problems is to meet production needs while
reducing the total cost of the container. The four design variables are shell thickness Ts,
head thickness Th, inner radius R, and container length L regardless of the head. Where Ts
and Th are integers of 0.625 and R and L are continuous variables. The specific constraints
are referred to in [43]. The schematic diagram of optimal structure design is shown in
Figure 9.

Figure 9. The pressure vessel design.

The mathematical formulation of this problem is shown below:
Consider:

→
x = [x1 x2 x3 x4] = [Ts Th R L] (39)

Minimize:

f
(→

x
)

= 0.6224x1x2x3 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3 (40)

Subject to:
g1(
→
x ) = −x1 + 0.0193x3 ≤ 0 (41)

g2(
→
x ) = −x3 + 0.00954x3 ≤ 0 (42)
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g3(
→
x ) = −πx2

3x4 +
4
3

πx3
3
+ 1, 296, 000 ≤ 0 (43)

g4(
→
x ) = −x4 − 240 ≤ 0 (44)

Variable Range:

0 ≤ x1 ≤ 99, 0 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200 (45)

The results of pressure vessel design problems are shown in Table 11. In the table,
Ts = 0.754364, Th = 0.366375, R = 40.42809, L = 198.5652 of MGTOA. While for GTOA,
Ts = 0.778169, Th = 0.38465, R = 40.3196, L = 200, the variables obtained by MGTOA are
obviously better. The final cost of MGTOA is 5752.402458. Compared with other algorithms,
the cost of MGTOA is greatly reduced, and good results are achieved, which shows that
MGTOA has excellent effects on this problem.

Table 11. Experimental results of Pressure Vessel Design.

Algorithm
Optimal Values for Variables

Best Cost
Ts Th R L

MGTOA 0.754364 0.366375 40.42809 198.5652 5752.402458
GTOA [28] 0.778169 0.38465 40.3196 200 5885.333
CPSO [44] 0.8125 0.4375 42.0913 176.7465 6061.0777
HPSO [45] 0.8125 0.4375 42.0984 176.6366 6059.7143

CS [46] 0.8125 0.4375 42.09845 176.6366 6059.714335
AO [47] 1.054 0.182806 59.6219 39.805 5949.2258

5.3. Tension/Compression Spring Design Problem

As shown in Figure 10, the tension/pressure spring design problem’s purpose is to
reduce the spring’s weight under four constraint conditions. The constraint conditions
include the minimum deviation (g1), shear stress (g2), impact frequency (g3), and outer
diameter limit (g4). The specific constraints are referred to in [48]. Corresponding decision
variables include wire diameter d, average coil diameter D, and adequate coil number N.
f (x) is the minimum spring mass.

Figure 10. Tension/Compression Spring Design.

The mathematical formulation of this problem is shown below:
Consider:

x = [x1 x2 x3 ] = [d D N] (46)

Minimize:
f (x) = (x3 + 2)× x2 × x2

1 (47)

Subject to:

g1(x) = 1−
x3 × x3

2
71, 785× x4

1
≤ 0 (48)
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g2(x) =
4× x2

2 − x1 × x2

12, 566× x4
1

+
1

5108× x2
1
− 1 ≤ 0 (49)

g3(x) = 1− 140.45× x1

x2
2 × x3

≤ 0 (50)

g4(x) =
x1 + x2

1.5
− 1 ≤ 0 (51)

Variable Range:

0.05 ≤ x1 ≤ 2.0; 0.25 ≤ x2 ≤ 1.3; 2.0 ≤ x3 ≤ 15.0 (52)

The results of tension/pressure spring design problem are shown in Table 12. In the
table, the wire diameter d of MGTOA has obtained the optimal value. Although the average
coil diameter D and the effective coil number N have not reached the optimal value, the
difference is not significant, and the minimum weight has been finally obtained, which can
effectively indicate that MGTOA has a good effect on this problem.

Table 12. Experimental results of tension/Compression Spring Design.

Algorithm
Optimal Values for Variables

Best Weight
d D V

MGTOA 0.05 0.374396 8.549078 0.009875
IROA [49] 0.053799 0.46951 5.811 0.010614
HHO [50] 0.051796 0.359305 11.13886 0.012665
GWO [7] 0.05169 0.356737 11.28885 0.012666
MFO [42] 0.051994 0.364109 10.86842 0.012667
DE [16] 0.051609 0.354714 11.41083 0.01267

5.4. Three-Bar Truss Design Problem

The main purpose of studying the design of a three-bar truss is to reduce the structure’s
weight under the action of the total supporting load P. The geometry of this problem is
given in Figure 11, where the cross-sectional area represents the design variable. Due to
the system’s symmetry, it is necessary to determine the cross sections with A1 (=x1) and
A2 (=x2). Among them, the constraint conditions refer to literature [4].

Figure 11. Pressure Vessel Design Problem.
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The mathematical formulation of this problem is shown below:
Consider:

→
x = [x1 x2] = [A1 A2] (53)

Minimize:
f (
→
x ) = (2

√
2x1 + x2) ∗ l (54)

Subject to:

g1(
→
x ) =

√
2x1 + x2√

2x2
1 + 2x1x2

P− σ ≤ 0, (55)

g2(
→
x ) =

x2√
2x2

1 + 2x1x2
P− σ ≤ 0, (56)

g3(
→
x ) =

1√
2x1 + x1

P− σ ≤ 0, (57)

l = 100 cm, P = 2 kN/cm3, σ = 2 kN/cm3 (58)

Variable Range:
0 ≤ x1, x2 ≤ 1, (59)

The results of the three-bar truss design problem are shown in Table 13. It can be seen
from the results obtained by each algorithm that the results of each algorithm are very
different, which also indicates that it is difficult to better optimize the problem. However,
it can be seen from the table that MGTOA has achieved the best results among these
algorithms and has a particular improvement compared with other algorithms.

Table 13. Experimental results of Three-Bar Truss Design.

Algorithm
Optimal Values for Variables

Best Weight
x1 x2

MGTOA 0.788413 0.408121 263.8523
PSO-DE [51] 0.788675 0.408248 263.8958

Tsa [52] 0.788 0.408 263.68
DEDS [53] 0.788675 0.408248 263.8958
GOA [54] 0.788898 0.40762 263.8959
RSA [55] 0.78873 0.40805 263.8928

5.5. Car Crashworthiness Design Problem

The frequently used car crashworthiness design problem is considered firstly proposed
by Gu et al. This problem also belongs to a minima problem with eleven variables, subject
to ten constraints. Figure 12 shows the finite element model of this problem. The decision
variables are, respectively, the internal thickness of B-pillar, the thickness of B-pillar rein-
forcement, the internal thickness of floor, the thickness of cross beam, the thickness of door
beam, the thickness of door belt line reinforcement, the thickness of roof longitudinal beam,
the internal material of B-pillar, the internal material of floor, the height of obstacle, and
the impact position of obstacle. The constraints are, respectively, the abdominal load, the
upper viscosity standard, the middle viscosity standard, the lower viscosity standard, the
upper rib deflection, the middle rib deflection, the lower rib deflection Pubic symphysis
force, B-pillar midpoint speed, and B-pillar front door speed. The constraints refer to
literature [49].
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Figure 12. Car Crashworthiness Design.

The mathematical formulation of this problem is shown below:
Minimize:

f (
→
x ) = Weight, (60)

Subject to:
g1(
→
x ) = Fa (load in abdomen) ≤ 1 kN, (61)

g2(
→
x ) = V × Cu (dummy upper chest) ≤ 0.32 m/s, (62)

g3(
→
x ) = V × Cm (dummy middle chest) ≤ 0.32 m/s, (63)

g4(
→
x ) = V × Cl (dummy lower chest) ≤ 0.32 m/s, (64)

g5(
→
x ) = ∆ur (upper rib deflection) ≤ 32 mm, (65)

g6(
→
x ) = ∆mr (middle rib deflection) ≤ 32 mm, (66)

g7(
→
x ) = ∆lr (lower rib deflection) ≤ 32 mm, (67)

g8(
→
x ) = F (Public force)p ≤ 4 kN, (68)

g9(
→
x ) = VMBP (Velocity of V−

Pillar at middle point) ≤ 9.9 mm/ms,
(69)

g10(
→
x ) = VFD (Velocity of front door at V−

Pillar) ≤ 15.7 mm/ms,
(70)

Variable Range:

0.5 ≤ x1 − x7 ≤ 1.5, x8, x9 ∈ (0.192, 0.345),−30 ≤ x10, x11 ≤ 30 (71)

Table 14 shows the results of the car crashworthiness design problem. In MGTOA, the
variables x1, x3, x4, and x7 all reached 0.5, and the final weight obtained the best solution
compared with other algorithms.
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Table 14. Experimental results of Car Crashworthiness Design.

Algorithm MGTOA GTOA MPA [56] HHOCM
[57]

ROLGWO
[58]

MALO
[59]

x1 0.5 0.662833 0.5 0.500164 0.501255 0.5
x2 1.227894 1.217247 1.22823 1.248612 1.245551 1.2281
x3 0.5 0.734238 0.5 0.659558 0.500046 0.5
x4 1.203472 1.11266 1.2049 1.098515 1.180254 1.2126
x5 0.5 0.613197 0.5 0.757989 0.500035 0.5
x6 1.065913 0.670197 1.2393 0.767268 1.16588 1.308
x7 0.5 0.615694 0.5 0.500055 0.500088 0.5
x8 0.345 0.271734 0.34498 0.343105 0.344895 0.3449
x9 0.192 0.23194 0.192 0.192032 0.299583 0.2804
x10 0.367345 0.174933 0.44035 2.898805 3.59508 0.4242
x11 0.969872 0.462294 1.78504 - 2.29018 4.6565

Best
Weight 23.19125 25.70607 23.19982 24.48358 23.22243 23.2294

5.6. Gear Train Design Problem

The gear train design problem aims to minimize the gear ratio. This problem has four
parameters. The gear transmission is as follows:

Gear ratio =
angular velocity of output shaft
angular velocity of input shaft

(72)

The parameters of this problem are discrete, and the increment is one because this
problem only defines the tooth profiles of four gears (nA, nB, nC, nD). The constraints refer
to literature [60]. Specific schematic diagram is shown in Figure 13.

Figure 13. Gear train design problem.

The mathematical formulation of this problem is shown below:
Consider:

→
x = [x1 x2 x3 x4] = [nA nB nC nD] (73)

Minimize:

f (
→
x ) =

(
1

6.931
− x3x2

x1x4

)2
(74)

Variable Range:
12 ≤ x1, x2, x3, x4 ≤ 60 (75)

Table 15 shows the results of MGTOA and other comparison algorithms in gear train
design. It can be seen from the table that MGTOA has obtained the optimal solution for the
design of the gear train, which is greatly improved compared with GTOA.
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Table 15. Experimental results of gear train design.

Algorithm
Optimal Values for Variables

Best Gear Ratio
nA nB nC nD

MGTOA 43.90536 16.01273 19.59159 49.11997 2.70086 × 10−12

GTOA 54.68955 37.07689 12 57.13786 8.88761 × 10−10

CS [46] 43 16 19 49 2.7009 × 10−12

GA [11] 49 16 19 43 2.7019 × 10−12

ABC [6] 49 16 19 43 2.7009 × 10−12

MBA [61] 43 16 19 49 2.7009 × 10−12

6. Conclusions

This paper proposes a modified GTOA (MGTOA), which improves the student phase
of the algorithm according to the different learning motivations of different students and
adopts the random opposition-based learning and restart strategy to enhance the optimiza-
tion performance of the algorithm. The effect of MGTOA was tested using 23 standard
benchmark functions and CEC2014 test functions and compared with nine other state-
of-the-art algorithms. The proposed MGTOA was further verified by the Wilcoxon rank
sum test. The data analysis illustrates that MGTOA has an excellent optimization effect.
Compared with GTOA, the optimization performance of MGTOA has been greatly im-
proved, with better optimization capability and lower error. However, the exploitation
capability of MGTOA is weaker than that of BTLBO algorithms. In future work, we will
strengthen the exploitation capability of MGTOA. After that, MGTOA will be used to
solve the three-dimensional path planning problem of UAVs, text clustering problem,
feature selection problem, scheduling in cloud computing, parameter estimation, image
segmentation, intrusion detection problem, and others.
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