
Citation: Stripinis, L.; Paulavičius, R.

Experimental Study of Excessive

Local Refinement Reduction

Techniques for Global Optimization

DIRECT-Type Algorithms.

Mathematics 2022, 10, 3760.

https://doi.org/

10.3390/math10203760

Academic Editors: Cláudio Alves

and Telmo Pinto

Received: 12 September 2022

Accepted: 30 September 2022

Published: 12 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Experimental Study of Excessive Local Refinement Reduction
Techniques for Global Optimization DIRECT-Type Algorithms
Linas Stripinis † and Remigijus Paulavičius *,†

Institute of Data Science and Digital Technologies, Vilnius University, Akademijos 4, LT-08663 Vilnius, Lithuania
* Correspondence: remigijus.paulavicius@mif.vu.lt
† These authors contributed equally to this work.

Abstract: This article considers a box-constrained global optimization problem for Lipschitz
continuous functions with an unknown Lipschitz constant. The well-known derivative-free global
search algorithm DIRECT (DIvide RECTangle) is a promising approach for such problems. Several
studies have shown that recent two-step (global and local) Pareto selection-based algorithms are very
efficient among all DIRECT-type approaches. However, despite its encouraging performance, it was
also observed that the candidate selection procedure has two possible shortcomings. First, there is no
limit on how small the size of selected candidates can be. Secondly, a balancing strategy between
global and local candidate selection is missing. Therefore, it may waste function evaluations by
over-exploring the current local minimum and delaying finding the global one. This paper reviews
and employs different strategies in a two-step Pareto selection framework (1-DTC-GL) to overcome
these limitations. A detailed experimental study has revealed that existing strategies do not always
improve and sometimes even worsen results. Since 1-DTC-GL is a DIRECT-type algorithm, the results
of this paper provide general guidance for all DIRECT-type algorithms on how to deal with excessive
local refinement more efficiently.

Keywords: optimization; global optimization; derivative-free optimization; exact optimization
algorithms; DIRECT-type algorithms

MSC: 90C56; 90C26; 65K05

1. Introduction

In this paper, we consider a box-constrained global optimization problem of the form:

min
x∈D

f (x), (1)

where f : Rn → R suppose to be the Lipschitz-continuous objective function, x is the input
vector, and the feasible region (D) is an n-dimensional hyper-rectangle D = [a, b] = {x ∈
Rn : aj ≤ xj ≤ bj, j = 1, . . . , n}. The objective function can be non-linear, non-differentiable,
non-convex, multi-modal, and potentially a “black-box.” In a black-box case, analytical
information is unavailable and can be obtained only by evaluating the function at feasible
points. Therefore, traditional derivative-information based local optimization methods
cannot be used in this situation.

Among derivative-free global optimization algorithms addressing the black-box
problem, two main classes [1] are stochastic meta-heuristic algorithms [2–4] and
deterministic ones [5,6]. The DIRECT algorithm developed by Jones [7] is a popular and
widely used deterministic solution technique for various real-world optimization
problems [8–12]. The proposed algorithm is an extension of the classical Lipschitz
optimization [13–15], which no longer requires the knowledge of the Lipschitz constant.
The DIRECT algorithm [7] seeks global optima by dividing the most promising
hyper-rectangles and evaluating the objective function at their centers.

Mathematics 2022, 10, 3760. https://doi.org/10.3390/math10203760 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10203760
https://doi.org/10.3390/math10203760
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9680-5847
https://orcid.org/0000-0003-2057-2922
https://doi.org/10.3390/math10203760
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10203760?type=check_update&version=1

Mathematics 2022, 10, 3760 2 of 18

Since the original algorithm introduction, many researchers have suggested various
modifications or extensions of the DIRECT algorithm in various directions. Recent extensive
numerical studies [1,16,17] show that DIRECT-type algorithms are often among the most
efficient derivative-free global optimization solution techniques. Various hybridized
approaches [10,18,19] that are enriched with local search procedures are among the most
effective [16,17,20]. However, on average, among traditional (non-hybridized) DIRECT-type
algorithms, two-step (global and local) Pareto selection scheme-based approaches,
DIRECT-GL [17], 1-DTC-GL [21], often showed the best performance [17]. Moreover, for
complex multi-modal and non-convex problems, they often outperformed hybrid ones.

Nevertheless, in a recent survey [22], two possible shortcomings of such two-step
Pareto selection were specified. First, these scheme-based algorithms have no protection
against “over-exploring” a local minimum, e.g., no limitation of how small the size of
selected potentially optimal hyper-rectangles (POHs) can be. Secondly, a balancing strategy
between global and local candidate selection is missing. The two-step-based Pareto selection
scheme performs global and local search-oriented selection at each iteration. If the current
best solution has remained unchanged for several iterations, it can be deduced that the
local selection step is potentially unnecessary.

We note that some proposals and studies have already been carried out in the context of
the DIRECT algorithm. In [17], we have experimentally investigated a few strategies [7,23–26]
devoted to preventing the original DIRECT algorithm from selecting tiny hyper-rectangles
around current local minima. Moreover, the same study also investigated different strategies
for balancing global and local phases [10,18,27,28]. However, we cannot generalize from these
results which strategy is the most efficient, as individual algorithms were compared, which
may have varied not only in the selection step but also in other steps such as partitioning and
sampling. It is therefore unclear which of the proposed improvements has the most potential
to prevent excessive local refinement.

Contributions and Structure

The main contributions of this work are summarized below:

• It reviews the proposed techniques for excessive local refinement reduction for DIRECT-
type algorithms.

• It experimentally validates them on one of the fastest two-step Pareto selection based
1-DTC-GL algorithm.

• It accurately assesses the impact of each of them and, based on these results, makes
recommendations for DIRECT-type algorithms in general.

• All six of the newly developed DIRECT-type algorithmic variations are freely available
to anyone, ensuring complete reproducibility and re-usability of all results.

The rest of the paper is organized as follows. Section 2.1 reviews the original DIRECT
algorithm. Section 2.2 describes a two-step Pareto selection-based DIRECT-GL algorithm.
The review of existing local refinement reduction techniques for DIRECT-type algorithms
is given in Section 2.3. New 1-DTC-GL algorithmic variations are given in Section 2.4.
The numerical investigation using 287 DIRECTGOLib v1.2 test problems is presented and
discussed in Section 3. Finally, Section 4 concludes the paper and highlights possible
future directions.

2. Materials and Methods

This section introduces the original DIRECT and 1-DTC-GL algorithms. Additionally,
existing strategies for preventing excessive refinement around the current minima are
reviewed, summarizing their strengths and weaknesses.

2.1. Overview of the DIRECT Algorithm

The original DIRECT algorithm applies to box-constrained problems and works most
of the time in the normalized domain. Therefore, the DIRECT algorithm initially normalizes
the domain D = [a, b] to the unit hyper-rectangle D̄ = [0, 1] = {x ∈ Rn : 0 ≤ aj ≤ xj ≤

Mathematics 2022, 10, 3760 3 of 18

bj ≤ 1, j = 1, . . . , n}. The algorithm only refers to the original space (D) when performing
objective function evaluations. Therefore, when we say that the value of the objective
function is evaluated at f (c), where c ∈ D̄ is the midpoint of the hyper-rectangle, it means
that the corresponding midpoint of the original domain (x ∈ D) is used, i.e.,

f (c) = f (x), where xj = (bj − aj)cj + aj, j = 1, . . . , n. (2)

The DIRECT algorithm starts the search by evaluating the objective function at the
midpoint c1 = (1/2, . . . , 1/2) of the initial unit hyper-rectangle D̄ = D̄1

0. Then, the
algorithm identifies and selects potentially optimal hyper-rectangles. Initially, only one
hyper-rectangle is available (see the left panel in Figure 1). Therefore, selection is trivial.
After this, DIRECT creates new midpoints at the positions

c1 ± 1
3

dmej, j ∈ M, (3)

where dm is the maximum side length, M is a set of coordinates with the maximum side
length, and ej is the jth unit vector. The DIRECT algorithm uses n-dimensional trisection,
so the objective function is evaluated at each POH only once. The midpoint of selected
POH becomes the midpoint of the new smaller “middle” third hyper-rectangle and does
not requires additional re-evaluation.

If POH has more than one longest coordinate, i.e., card(M) > 1 (e.g., for the
n-dimensional initial hyper-rectangle card(M) = n), DIRECT starts trisection from the
coordinate (j ∈ M) with the lowest wj value

wj = min{ f (c1 +
1
3

dmej), f (c1 − 1
3

dmej)}, j ∈ M, (4)

and continues to the highest [7,22]. By using this procedure, it is ensured that lower
function values are placed in larger hyper-rectangles. It can be seen in the middle panel
of Figure 1. If all coordinates are equal, 2n + 1 new smaller non-overlapping hyper-
rectangles of n distinct measures are created. Figure 1 demonstrates the selection, sampling,
and partitioning process at the initialization and the first two DIRECT iterations on the
two-dimensional Bukin6 test problem.

0 1
6

1
3

1
2

2
3

5
6

1
0

1
6

1
3

1
2

2
3

5
6

1

c1

c 2

Initialization

Sampling point

0 1
6

1
3

1
2

2
3

5
6

1
0

1
6

1
3

1
2

2
3

5
6

1

c1

Iteration 1

Selected POH

0 1
6

1
3

1
2

2
3

5
6

1
0

1
6

1
3

1
2

2
3

5
6

1

c1

Iteration 2

Unselected region

0

50

100

150

200

250
fu

nc
ti

on
va

lu
e

Color key

Figure 1. Two-dimensional illustration of trisection used in the original DIRECT algorithm [7], solving
Bukin6 test problem.

In contrast to initialization, from the first iteration onward (k > 1), the selection of
the so-called “potentially optimal” hyper-rectangles that should be further explored is not
trivial. Let us formalize this selection process.

Let the current partition in iteration k be defined as

Pk = {D̄i
k : i ∈ Ik},

Mathematics 2022, 10, 3760 4 of 18

where D̄i
k = [ai

k, bi
k] = {x ∈ D̄ : 0 ≤ ai

kj
≤ xj ≤ bi

kj
≤ 1, j = 1, . . . , n, ∀i ∈ Ik} and Ik is

the index set identifying the current partition Pk. The next partition, Pk+1, is obtained by
subdividing selected POHs from the current partition Pk. Note that at the first iteration,
there is only one candidate, D̄1

1, which is automatically potentially optimal. The formal
requirement of potential optimality in future iterations is stated in Definition 1.

Definition 1. Let ci denote the center sampling point and δi
k be a measure (equivalently, sometimes

called distance or size) of the hyper-rectangle D̄i
k. Let ε > 0 be a positive constant and f min be

the best currently found value of the objective function. A hyper-rectangle D̄h
k , h ∈ Ik is said to be

potentially optimal if there exists some rate-of-change (Lipschitz) constant L̃ > 0 such that

f (ch)− L̃δh
k ≤ f (ci)− L̃δi

k, ∀i ∈ Ik, (5)

f (ch)− L̃δh
k ≤ f min − ε| f min|, (6)

where the measure of the hyper-rectangle D̄i
k is

δi
k =

1
2
‖bi − ai‖. (7)

The hyper-rectangle D̄h
k is potentially optimal if the lower Lipschitz bound for the

objective function computed by the left-hand side of (5) is the smallest one with some
positive constant L̃ in the current partition Pk. A geometrical interpretation of POH
selection using Definition 1 is illustrated on the left side of Figure 2. Here, each hyper-
rectangle is represented as a point whose horizontal coordinate is equal to the measure (δi

k)
and vertical coordinate is equal to the function value attained at the midpoint (ci). The
hyper-rectangles satisfying Definition 1 are marked in blue and correspond to the lower-
right convex hull of the points. Selected hyper-rectangles are then sampled and subdivided.
This process continues until some stopping condition is satisfied and is summarized in
Algorithm 1.

Algorithm 1: Main steps of the DIRECT algorithm
input :Optimization problem, algorithmic options (if any);
output : f min, cmin, and performance measures;

1 Initialization. Normalize the feasible region (D) to the unit hyper-rectangle (D̄).
Initialize algorithmic performance measures (e.g., number of function evaluations,
execution time, etc.) and stopping criteria (e.g, the maximal number of function
evaluations, the maximal execution time, etc.). Evaluate the objective function (f)
at the midpoint c1. Set f min = f (c1), cmin = c1, k = 1. Create the current
partition (Pk).

2 while stopping criteria are not satisfied do
3 Selection. Identify the set Sk of POHs (subregions of D̄).
4 Sampling. For each POH (D̄i

k ∈ Sk) sample and evaluate the objective function
at new domain points. Update f min, cmin, and algorithmic performance
measures.

5 Subdivision. Each POH (D̄i
k ∈ Sk) subdivide (trisect). Increase iteration

counter k = k + 1 and update the partition (Pk).
6 end

Mathematics 2022, 10, 3760 5 of 18

0.00 0.05 0.10 0.15 0.20 0.25
0

40

80

120

160

200

δ

Fu
nc

ti
on

va
lu

es

POH selection

non-potentially optimal
potentially optimal

0 1
6

1
3

1
2

2
3

5
6

1
0

1
6

1
3

1
2

2
3

5
6

1

c1

c 2

DIRECT sampling and partitioning

0

50

100

150

200

250

fu
nc

ti
on

va
lu

e

Color key

Figure 2. Visualization of selected potentially optimal rectangles in the fifth iteration of the DIRECT
algorithm solving two-dimensional Bukin6 test problem.

2.2. Two-Step Pareto Selection Based 1-DTC-GL Algorithm

Our previous work [29] introduced a new two-step Pareto selection [30] based
algorithm DIRECT-GL. In [21], we investigated the most efficient partitioning schemes
combined with a Pareto selection based on two steps. Hyper-rectangular partitioning
based on 1-Dimensional Trisection and sampling at the Center points combined with
two-step (Global and Local) Pareto selection (1-DTC-GL) was one of the most efficient
DIRECT-type approaches. The POH selection in 1-DTC-GL is the most significant difference
compared to the original DIRECT. In each iteration, 1-DTC-GL performs the identification of
POHs twice. Both times, it selects only Pareto-optimal hyper-rectangles. In the following,
we formally state two algorithms used to find them.

Let Lk be the set of all different indices at the current partition Pk, corresponding to
the groups of hyper-rectangles having the same measure δk. Then, the minimum value
lmin
k ∈ Lk corresponds to the group of hyper-rectangles having the smallest measure

δmin
k , while lmax

k ∈ Lk — having the largest measure δmax
k , i. e., lmax

k = max{Lk} < ∞.
Algorithm 2 presents the main steps for identifying Pareto optimal hyper-rectangles, i.e.,
non-dominated on measure (the higher, the better) and midpoint function value (the lower,
the better).

Algorithm 2: Pareto selection enhancing the global search
input :Current partition Pk and related information;
output :Set of selected POHs (SG

k);

1 Set SG
k = ∅ ;

2 Set lmin
k to be the group of hyper-rectangles having the smallest measure δmin

k ;

3 Find an index j ∈ Ik and a corresponding hyper-rectangle Dj
k, such that

Dj
k = arg max

j
{l j

k : j = arg min
i ∈ Ik : lmin

k ≤ li
k ≤ lmax

k

{ f (xi)}} (8)

4 SG
k = SG

k ∪ Dj
k; // Add Dj

k as potential optimal

5 Set lmin
k = l j

k + 1;

6 if l j
k ≤ lmax

k then
7 goto Step 3 ;
8 end
9 Return SG

k ;

Mathematics 2022, 10, 3760 6 of 18

Similarly, Algorithm 3 selects the hyper-rectangles that are non-dominated in measure
and distance from the current minimum point (the closer, the better). When both steps are
completed, the unique union of these two sets, SG

k from Algorithm 2 and SL
k from

Algorithm 3, is used. This way, in 1-DTC-GL, the set of POHs is enlarged with various size
hyper-rectangles nearest the current minimum point (cmin), ensuring a broader
examination around the current minima.

Algorithm 3: Pareto selection enhancing the local search
input :Current partition Pk and related information;
output :Set of selected POHs (SLS

k);

1 Set SL
k = ∅ ;

2 At each iteration k, evaluate the Euclidean distance from the current minimum
point (cmin) to other sampled points:

d(cmin, ci) =

√√√√ n

∑
j=1

(cmin
j − ci

j)
2 (9)

3 Apply Algorithm 2 using d(cmin, ci) instead of f (xi) in (8);
4 Return SLS

k ;

Let us summarize the differences between the two-step Pareto selection schemes and
the original DIRECT. The selection of POH in 1-DTC-GL is performed twice, taking into
account the objective function values and Euclidean distances from the current minima.
This way, the set of POHs is enlarged by considering more medium-sized hyper-rectangles
and may be more global. The local selection step includes more hyper-rectangles around
current minima. In this way, refinement of the solution is accelerated. On the other hand,
it can have the opposite effect, as this selection scheme does not protect against over-
exploration in sub-optimal regions. In the original DIRECT, the parameter ε in Equation (6)
is used to protect against this [7,28]. However, in 1-DTC-GL, even a tiny hyper-rectangle,
where only negligible improvement can be expected, can be selected. Furthermore, the
local selection step may be excessive when the current minima (f min) do not improve in a
series of consecutive iterations.

2.3. Review of Excessive Local Refinement Reduction Techniques

This section reviews techniques introduced in the DIRECT literature for reducing
excessive local refinement.

2.3.1. Replacing the Minimum Value with an Average and Median Values

In the original selection of POHs, Equation (6) in Definition 1 is used to protect against
excessive refinement around the current local minima [7,28]. In [7], the authors obtained
good results for values of ε ranging from 10−3 to 10−7, while in [24,26,31,32], the authors
introduced an adaptive scheme for the parameter ε.

However, in [23], it was observed that such a selection strategy is sensitive to additive
scaling of the objective function. Additionally, the DIRECT algorithm performs poorly when the
objective function values are large. To overcome this, the authors suggested scaling the values
of the functions by subtracting the median value (f median) calculated from all the collected
values. Formally, a new DIRECT variation, called DIRECT-m, replaces Equation (6) with:

f (xh)− L̃δh
k ≤ f min − ε| f min − f median|. (10)

Mathematics 2022, 10, 3760 7 of 18

A few years later, a similar idea was extended in [25]. Again, to reduce the sensitivity
for additive scaling of the objective function, the authors of the DIRECT-a algorithm
proposed using the average value (f average) instead:

f (xh)− L̃δh
k ≤ f min − ε| f min − f average|. (11)

Equations (10) and (11) also work as protection from over-exploration of the local minima.

2.3.2. Limiting the Measure of Hyper-Rectangles

In [33], the authors introduced the aggressive selection of POH. This strategy selects
at least one hyper-rectangle from each group of different measures (δi

k) with the lowest
function value. This way, the set of POHs enlarges by including non-potentially Lipschitz
optimal hyper-rectangles. Although this solution positively affected parallelism [34], it did
not have a strong positive effect on sequential algorithms of type DIRECT. In the sequential
context, the apparent shortcoming is that hyper-rectangles proliferate as the number of
iterations increases, often leading to a memory allocation failure.

To overcome it, the authors in [34] suggested limiting the refinement of the search
space when the measure of hyper-rectangles (δi

k) reached some prescribed limit (δlimit).
It has been shown that memory usage may be reduced from 10% to 70%. The parameter
δlimit has the same purpose as Equation (6), i.e., to avoid wasting function evaluations
by “over-exploring” the local minimum. The authors of [21] have set δlimit to the size of
a hyper-rectangle subdivided 50n times. It is a relatively small and safe value since the
choice of the parameter δlimit can be dangerous. More significant value can prevent the
algorithm from reaching the minimum within the required tolerance.

2.3.3. Balancing the Local and Global Searches

Jones in [22] argued the need for the strategy to better balance emphasis on the local
and global search. An approach could be to run a local search subroutine when there
is an improvement in the current minima value [18]. However, this would already be a
hybridized DIRECT-type algorithm requiring incorporating a separate local algorithm. This
paper focuses on strategies without leaving the DIRECT algorithm framework.

Another approach for balancing the emphasis on the global and local search within
the DIRECT-type method is the two-phase “globally-biased” technique. DIRECT-type
globally-biased algorithms were proposed and experimentally investigated recently [10,28].
The suggested algorithms operate in the traditional phase until a sufficient number of
subdivisions have been completed without improving f min. Once f min is explored well,
the algorithm switches to the global phase and examines larger and far away
hyper-rectangles. The algorithm switches back to the traditional phase when the f min

value is improved. It also performs one “security” iteration of the traditional phase at
every certain number of iterations. Therefore, the global phase reduces the number of
POHs, excluding small hyper-rectangles around the well-explored minimum.

2.4. New Two-Step Pareto Selection Based Algorithmic Variations for Excessive Local
Refinement Reduction

In this section, we define six novel 1-DTC-GL algorithmic variations to reduce the
potentially excessive local refinement of the original two-step Pareto selection scheme.

2.4.1. 1-DTC-GL-min Algorithm

The 1-DTC-GL-min algorithm incorporates Equation (6) from Definition 1 into the
original two-step Pareto selection scheme. Therefore, in Algorithm 2, Line 2, lmin

k is set
to the group of hyper-rectangles with the lowest δmin

k such that Equation (6) still holds.
When such a candidate is found, a traditional two-step Pareto selection scheme is applied
between hyper-rectangles of larger diameters.

The candidate selection of 1-DTC-GL-min is illustrated in part (a) of Figure 3. The
illustrative example is given on a two-dimensional Csendes test problem in the thirteenth

Mathematics 2022, 10, 3760 8 of 18

iteration of the algorithm. Since the considered techniques do not affect the selection of
larger hyper-rectangles, the x-axis is limited to 0.03. The y-axis has also been reduced to
demonstrate the effectiveness of the strategies under consideration.

Here, the current minimum value is very close to zero (f min ≈ 10−12). Equation (6)
requires the Lipschitz lower bound to be less than f min − ε| f min|. Therefore, 1-DTC-GL-min
excludes tiny hyper-rectangles where the value of the objective function at their midpoint
is close to the f min value. When the current best point is not the global one, selecting tiny
hyper-rectangles could significantly delay the discovery of the global one.

2.4.2. 1-DTC-GL-median Algorithm

The 1-DTC-GL-median algorithm incorporates Equation (10) into the original two-step
Pareto selection scheme. In Algorithm 2 Line 2, 1-DTC-GL-median sets lmin

k to the group
of hyper-rectangles with the lowest measure (δmin

k) such that Equation (10) still holds. As
for 1-DTC-GL-min, when such a hyper-rectangle is found, a traditional two-step Pareto
selection scheme is applied between hyper-rectangles of larger diameters.

The result of 1-DTC-GL-median selection is illustrated in part (b) of Figure 3.
Equation (10) requires the Lipschitz lower bound to be less than f min − ε| f min − f median|.
Since the median value is much higher than 0, 1-DTC-GL-median selects less small
hyper-rectangles than 1-DTC-GL-min. This makes the search more global, but can also have
a negative impact on the refinement of the global solution.

2.4.3. 1-DTC-GL-average Algorithm

The 1-DTC-GL-average algorithm incorporates Equation (11) into the original two-
step Pareto selection scheme. In Algorithm 2, Line 2, 1-DTC-GL-average sets lmin

k to the
group of hyper-rectangles with the slightest measure (δmin

k) such that Equation (11) still
holds. The selection between larger hyper-rectangles is analogous to the 1-DTC-GL-min
and 1-DTC-GL-median algorithms.

The result of 1-DTC-GL-average selection is illustrated in part (c) of Figure 3.
Equation (11) requires the Lipschitz lower bound to be less than f min − ε| f min − f average|.
Since the Csende test problem has large extreme values, f average is much larger than f median.
Thus, the 1-DTC-GL-average makes the search even more global 1-DTC-GL-median, which
can hurt the refinement of the global solution, requiring the selection of smaller
hyper-rectangles.

2.4.4. 1-DTC-GL-limit Algorithm

1-DTC-GL-limit limits the refinement of the search space when the measure of hyper-
rectangles reaches some prescribed limit δlimit. In 1-DTC-GL-limit, δlimit is set to the size
of a hyper-rectangle subdivided 20n times. Furthermore, regardless of the hyper-rectangle
measure, 1-DTC-GL-limit always selects the hyper-rectangle with f min.

The result of 1-DTC-GL-limit selection is illustrated in part (d) of Figure 3. Since
all hyper-rectangles have measures δi

13 ≥ δlimit, ∀i, the selected set is the same as for the
1-DTC-GL. The differences will appear in later iterations when the hyper-rectangles already
subdivided more than 20 times appear.

2.4.5. 1-DTC-GL-gb Algorithm

1-DTC-GL-gb incorporates the “globally-biased” technique into a two-step Pareto
selection scheme. The 1-DTC-GL-gb algorithm performs traditional two-step Pareto
selection, using Algorithms 2 and 3, until a sufficient number of subdivisions have been
completed without improving f min. Once f min has been well explored, the 1-DTC-GL-gb
algorithm switches to the global phase and performs only Pareto selection improving the
global search (Algorithm 2). The 1-DTC-GL-gb algorithm switches back to the traditional
phase when the f min value is improved and during “security” iteration. Finally, we note
that the recommended values [10,28] for the additional parameters necessary to switch
between phases are used in 1-DTC-GL-gb.

Mathematics 2022, 10, 3760 9 of 18

2.4.6. 1-DTC-GL-rev Algorithm

1-DTC-GL-rev incorporates the idea from [18], i.e., it performs the local search selection
using Algorithm 3 only when there is an improvement in f min. The rest of the time, it
selects hyper-rectangles using only Algorithm 2 and reduces the impact on local search.

−4

−2

0

2

4

6

f min

(a)

Fu
nc

ti
on

va
lu

es

1-DTC-GL-min

Pareto-dominated
Pareto optimal

f min − ε| f min|
f (ci)− L̃δi

k −4

−2

0

2

4

6

f min

(b)

Fu
nc

ti
on

va
lu

es

1-DTC-GL-median

Pareto-dominated
Pareto optimal

f min − ε| f min − f median|
f (ci)− L̃δi

k

0.00 0.01 0.02 0.03

-3000

-2000

...

0

2

4

6

f min

(c)

δ

Fu
nc

ti
on

va
lu

es

1-DTC-GL-average

Pareto-dominated
Pareto optimal

f min − ε| f min − f average|
f (ci)− L̃δi

k

0.00 0.01 0.02 0.03

−4

−2

0

2

4

6
(d)

δ

Fu
nc

ti
on

va
lu

es

1-DTC-GL-limit

non-Pareto optimal
Pareto optimal

δlimit

Figure 3. Comparison of two-step Pareto selection using four excessive local refinement reduction
techniques implemented to 1-DTC-GL. All four graphs illustrate the selection in the thirteenth iteration
of the two-dimensional Csendes test problem with ε = 10−4. The selected hyper-rectangles using
1-DTC-GL-min are shown in part (a), 1-DTC-GL-median in part (b), 1-DTC-GL-average in part (c),
and 1-DTC-GL-limit in part (d). For clarity, only small diameter hyper-rectangles are shown, as all
excessive refinement reduction techniques have no impact on larger hyper-rectangles.

3. Results and Discussions

In this section, we compare the performance of six techniques for reducing the local
refinement applied to the 1-DTC-GL algorithm, which showed promising results in our
recent computational studies [17,21]. Six newly constructed algorithmic modifications are
empirically evaluated and compared with the original 1-DTC-GL algorithm. The
algorithmic variations are examined using the most up-to-date version of the DIRECTGOLib
v1.2 [35] library. A summary and properties of all box-constrained optimization problems
from DIRECTGOLib v1.2 [35] are given in Appendix A, Tables A1 and A2. Table A1
provides the characteristics of 67 test problems with fixed dimensions, while Table A2
presents 55 test problems with varying dimensionality. In both tables, the main features are
reported: problem number (#), problem name, source, dimension (n), default optimization
domain (D), perturbed optimization domain (D̃), problem type, and known minimum (f ∗).
The default domains are taken from the literature and listed in the third column of
Tables A1 and A2. For some problems, the original domain is perturbed (D̃) so that the
solutions are not located at their midpoints or other locations favorable for any tested
algorithm. Some of these test problems have several variants, e.g. AckleyN, BiggsEXP,
Bohachevsky, Hartman, ModSchaffer, and Shekel. All test problems listed in Table A2 can be

Mathematics 2022, 10, 3760 10 of 18

tested for varying dimensionality. For the 55 test problems that can be used specifying any
dimension size (n), we considered four different values, n = 2, 5, 10, and 20, leading to the
287 test problems (see the summary in Table 1).

Table 1. Characteristics of DIRECTGOLib v1.2 test problems.

Problems Overall n ≤ 5 n > 5 Convex Non-Convex Uni-Modal Multi-Modal f min = 0 f min 6= 0

of cases 287 174 113 69 218 53 234 181 106

Implementation and testing are performed using an Intel R CoreTM i5-10400@2.90 GHz
Processor, 16 GB of RAM, and MATLAB R2022a software running on the Windows 10
Education operating system. The results returned by the algorithms were compared with
the solution for each problem. An algorithm was assumed to have solved the test problem
if it returned a solution whose objective function value did not exceed 0.01% error. For all
analytical test cases where the global optimal value f ∗ is known prior, a stopping criterion
based on the percentage error (pe) was applied:

pe = 100×
{ f (c)− f ∗

| f ∗ | , f ∗ 6= 0,

f (c), f ∗ = 0,
(12)

where f ∗ is the known global optimum. The algorithms were stopped if the percentage
error became smaller than the set value εpe = 0.01 or if the number of function evaluations
exceeded the prescribed 106.

Three criteria were recorded for each algorithm: the average number of function
evaluations (mavg.), the average number of iterations (kavg.), and the average execution
time (tavg.) measured in seconds. Table 2 summarizes experimental results on 287 test
problems from DIRECTGOLib v1.2. Here, the first column gives the algorithm’s name,
while the second column indicates the criteria. Average values are given in columns three
to eleven, solving different subsets of test problems, such as low dimensional (n ≤ 5),
higher-dimensionality (n > 5), convex, non-convex, uni-modal, multi-modal, problems
with global minimum value equal to zero, or only those with a non-zero global minimum.
The twelfth column shows the median values, while the last column shows the success rate
as the proportion of solved problems.

Table 2. The average number of function evaluations (mavg.), iterations (kavg.) and execution time (tavg.)
using 1-DTC-GL and six newly introduced variations, on the DIRECTGOLib v1.2 test problems set.

Algorithm Criteria
Average

Median Success Rate
Overall n ≤ 5 n > 5 Convex Non-Convex Uni-Modal Multi-Modal f min = 0 f min 6= 0

1-DTC-GL
mavg. 244135 77155 501255 81666 295559 74085 282651 252345 230325 5515

0.7805 (224/287)kavg. 901 297 1831 233 1113 198 1060 512 1555 76
tavg. 139.41 27.52 311.72 29.80 174.11 24.85 165.36 118.10 175.27 0.77

1-DTC-GL-min
mavg. 267833 123235 490489 82747 326416 74774 311560 266234 270524 5411

0.7526 (216/287)kavg. 2119 1372 3268 362 2675 293 2532 1335 3438 75
tavg. 362.83 166.14 665.70 53.58 460.71 50.95 433.47 313.83 445.25 0.76

1-DTC-GL-median
mavg. 313159 138673 581836 124182 372973 126666 355399 337280 272582 6003

0.7073 (203/287)kavg. 2594 1659 4035 561 3238 572 3052 2062 3490 88
tavg. 503.59 232.42 921.13 169.75 609.25 195.92 573.27 504.30 502.38 0.78

1-DTC-GL-average
mavg. 361511 180635 640029 169850 422175 180637 402479 404591 289041 9483

0.6551 (188/287)kavg. 3804 3179 4765 561 1456 1653 4291 3462 4379 120
tavg. 671.62 376.73 1125.70 320.79 782.66 384.45 736.66 697.58 627.95 1.51

1-DTC-GL-limit
mavg. 262205 106080 502608 92052 316060 74085 304813 271809 246047 5411

0.7631 (219/287)kavg. 1123 633 1877 357 1365 228 1325 742 1764 75
tavg. 185.67 76.18 354.26 49.97 228.62 34.40 219.93 168.78 214.07 0.54

1-DTC-GL-gb
mavg. 237783 69758 496513 84037 286446 71725 275395 253218 211818 3871

0.7840 (225/287)kavg. 998 323 2037 288 1223 215 1175 609 1651 80
tavg. 246.30 53.59 543.02 54.77 306.92 44.13 292.09 208.81 309.35 0.65

1-DTC-GL-rev
mavg. 286942 136047 519293 85872 350583 70626 335936 286353 287931 5329

0.7317 (210/287)kavg. 1694 936 2861 323 2128 250 2021 1019 2828 95
tavg. 263.31 113.25 494.37 55.35 329.13 38.99 314.11 224.26 329.00 0.84

Mathematics 2022, 10, 3760 11 of 18

As can be seen from the success rate values, 1-DTC-GL-gb (0.7805) ranks first among
the seven algorithmic variations tested. However, the difference between the first two
places is minimal. The 1-DTC-GL-gb algorithm solved only one more problem (225) than
the original 1-DTC-GL algorithm (224). It indicates that the original 1-DTC-GL, which does
not require additional parameters as 1-DTC-GL-gb, can successfully handle the excessive
local refinement. The third best is 1-DTC-GL-limit (0.7631), and the fourth is
1-DTC-GL-min (0.7526), based on the original DIRECT strategy for excessive local
refinement prevention. 1-DTC-GL-rev is only in fifth place but works well on uni-modal
test problems. Meanwhile, the worst algorithms are 1-DTC-GL-average (0.6551) and
1-DTC-GL-median (0.7073). The [25] technique applied in the 1-DTC-GL-average
algorithm worsened the overall average number of objective function evaluations by 32%
compared to 1-DTC-GL. Further, it was observed that the 1-DTC-GL-average algorithm had
suffered the most on test problems with f min = 0, but the opposite when f min 6= 0.

These findings suggest that the restriction on selecting small hyper-rectangles may
prevent the algorithm from converging to a solution, even with the relatively low accuracy
used in this study. It is especially apparent when the solution is equal to zero. All tested
local refinement reduction techniques hurt 1-DTC-GL performance.

Not surprisingly, the lowest overall average number of objective function evaluations is
obtained again with the 1-DTC-GL-gb algorithm and is approximately 3% lower than with the
second best, 1-DTC-GL. As can be seen, ranking the algorithms in terms of success rate and overall
average results is analogous, since the success rate depends directly on the number of functions.

Furthermore, although the lowest value median is obtained again with the 1-DTC-GL-gb
algorithm, the second best is the 1-DTC-GL-rev. The median values mean that 1-DTC-GL-gb
can solve at least half of these test problems with the best performance. Interestingly,
1-DTC-GL-rev was only in fifth place regarding the overall success rate but is second in
median value. Like 1-DTC-GL-gb, it restricts local selection, and it seems this technique
has the most potential to combat excessive local refinement. According to the median
value, the original 1-DTC-GL is only in fifth place, and a value of around 30% is higher than
1-DTC-GL-gb. Moreover, the 1-DTC-GL-gb algorithm proved to be the most effective for
non-convex, multi-modal, f min 6= 0, n ≤ 5, and n > 5 subsets of test problems.

However, the improvement in the performance of 1-DTC-GL-gb also had some negative
consequences. In general, the 1-DTC-GL-gb algorithm required 10% more iterations (kavg.)
than the best algorithm for this criterion, 1-DTC-GL. Since the 1-DTC-GL algorithm has no
limitation on selecting extremely small and locally located hyper-rectangles, it results in
more calculations of the objective functions being performed per iteration. Moreover, the
average execution time (tavg.) is best with the original 1-DTC-GL algorithm. The local
refinement reduction techniques increased the total number of iterations as well as the
average running time of the algorithms. From this, we can summarize that in the case of
cheap test functions, the original 1-DTC-GL is the best of all the algorithms tested, meaning
that the local refinement reduction schemes are redundant. However, when the objective
functions are expensive, the local refinement reduction techniques improve the performance,
and 1-DTC-GL-gb is the best technique among all tested.

Furthermore, Figure 4 produces line plots of the operational characteristics [36,37], showing
the relationship between the number of problems solved and the number of function evaluations.
Four out of six techniques (1-DTC-GL-median, 1-DTC-GL-average, 1-DTC-GL-min, 1-DTC-GL-
rev) implemented to restrict the selection of small hyper-rectangles had almost no impact on
the original 1-DTC-GL algorithm solving the simplest test problems. All these four algorithms
have almost identical performance curves to 1-DTC-GL. They were able to solve approximately
33% (95 out of 287) test problems when the maximum allowed number of function evaluations
was 1000. However, as the maximum allowed number of function evaluations increases, the
performance efficiency of the four approaches starts to deteriorate compared to the original
1-DTC-GL algorithm. The algorithms with the worst performance are 1-DTC-GL-average and
1-DTC-GL-median. The best performance was achieved with the 1-DTC-GL-gb and 1-DTC-GL-
rev algorithms. Moreover, while for simpler problems, 1-DTC-GL-rev performed well, for

Mathematics 2022, 10, 3760 12 of 18

more complex problems, the efficiency deteriorates. The 1-DTC-GL-gb is the only algorithm
with the same or better performance than the original 1-DTC-GL algorithm.

0 100 200 300 400 500 600 700 800 900
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Function evaluations (m)

Pr
op

or
ti

on
of

so
lv

ed
pr

ob
le

m
s

Operational characteristics

1-DTC-GL 1-DTC-GL-min

1-DTC-GL-median 1-DTC-GL-average

1-DTC-GL-limit 1-DTC-GL-gb

1-DTC-GL-rev

103 104 105 106

Figure 4. Operational characteristics based on the number of function evaluations for all seven
1-DTC-GL algorithmic variations on the whole set of DIRECTGOLib v1.2 test problems.

Finally, in Figures 5 and 6, the operational characteristics based on the number of iterations
of the function and the execution time are illustrated. Although the average number of iterations
(kavg.) using the 1-DTC-GL algorithm is the lowest (see Table 2), Figure 5 reveals that at least two
other algorithms (1-DTC-GL-limit and 1-DTC-GL-gb) perform similarly. A similar situation can
be seen in Figure 6, where the x-axis indicates the time in seconds while the y-axis represents the
proportion of the problems solved. The most straightforward problems are solved slightly faster
using 1-DTC-GL-rev and 1-DTC-GL-gb algorithms. However, as the execution time increases
(t ≥ 0.8), the performance efficiency of 1-DTC-GL and 1-DTC-GL-gb becomes almost identical,
although the average time of the 1-DTC-GL algorithm is better (see tavg. in Table 2).

0 5 10 15 20 25 30 35 40 45 50
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Number of iterations (k)

Pr
op

or
ti

on
of

so
lv

ed
pr

ob
le

m
s

Operational characteristics

1-DTC-GL 1-DTC-GL-min

1-DTC-GL-median 1-DTC-GL-average

1-DTC-GL-limit 1-DTC-GL-gb

1-DTC-GL-rev

102 103 104

Figure 5. Operational characteristics based on the number of iterations for all seven 1-DTC-GL
algorithmic variations on the whole set of DIRECTGOLib v1.2 test problems.

Mathematics 2022, 10, 3760 13 of 18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Running time (t)

Pr
op

or
ti

on
of

so
lv

ed
pr

ob
le

m
s

Operational characteristics

1-DTC-GL 1-DTC-GL-min

1-DTC-GL-median 1-DTC-GL-average

1-DTC-GL-limit 1-DTC-GL-gb

1-DTC-GL-rev

100 101 102 103

Figure 6. Operational characteristics based on the execution time in seconds for all seven 1-DTC-GL
algorithmic variations on the whole set of DIRECTGOLib v1.2 test problems.

4. Conclusions and Potential Future Directions

This study reviewed existing excessive local refinement reduction techniques in the
DIRECT context. The six identified techniques were applied to one of the fastest two-
step Pareto selection-based algorithms (1-DTC-GL). As other algorithmic parameters were
unchanged, this allowed us to assess the impact of each of them objectively.

The seven 1-DTC-GL algorithms were compared using three criteria: the average
number of function evaluations, the average number of iterations and the average execution
time. In terms of the number of objective functions, the 1-DTC-GL-gb algorithm performed
the best, but only one less objective function solved 1-DTC-GL. The other five strategies
tested hurt the speed of the original algorithm 1-DTC-GL. This finding made it clear that the
restriction on selecting small hyper-rectangles may prevent the algorithms from converging
to a solution, even with the relatively low accuracy used in this study. This is particularly
evident when the solution to the problem equals zero. No strategy used in 1-DTC-GL
has resulted in any noticeable improvements in this case, but instead has worsened it.
Interestingly, in terms of iterations and execution time, the original algorithm 1-DTC-GL
performed the best. That is because the local refinement reduction techniques increase the
total number of iterations, as well as the average running time of the algorithms.

To sum up, the original 1-DTC-GL is the best of all tested algorithms for the cheap test
functions, meaning that the local refinement reduction scheme is redundant. However,
when objective functions are expensive, local refinement reduction techniques improve
performance, and 1-DTC-GL-gb is the best algorithm among all tested. However, its
effectiveness is also limited. Therefore, one of the potential future directions is the
development of better-suited local refinement reduction techniques for two-step Pareto
selection-based DIRECT-type algorithms. Another potential direction is the integration of
all DIRECT-type algorithms into the new web-based tool for algebraic modeling and
mathematical optimization [38,39]. Finally, since 1-DTC-GL is a DIRECT-type algorithm, the
results of this paper can also be generalized to any DIRECT-type algorithm. We leave this as
another promising future direction.

Author Contributions: L.S. and R.P. contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Mathematics 2022, 10, 3760 14 of 18

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: DIRECTGOLib—DIRECT Global Optimization test problems
Library is designed as a continuously-growing open-source GitHub repository to which anyone can
easily contribute. The exact data underlying this article from DIRECTGOLib v1.2 can be accessed
either on GitHub or at Zenodo: (accessed on 12 September 2022)
https://github.com/blockchain-group/DIRECTGOLib and https://zenodo.org/record/6617799,
and used under the MIT license. We welcome contributions and corrections to it. The original
1-DTC-GL algorithm and six new variations are available at the open-access GitHub repository
(accessed on 27 September 2022): https://github.com/blockchain-group/DIRECTGO.

Acknowledgments: Vilnius University Institute of Data Science and Digital Technologies.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. DIRECTGOLib v1.2 Library

Table A1. Key characteristics of box-constrained global optimization problems with fixed n from
DIRECTGOLib v1.2 [35]. Data adapted from [20].

Name Source n D D̃ Type No. of
Minima f ∗

1 AckleyN2α [40] 2 [−15, 30]n [−18, 47]n uni-modal convex −200.0000
2 AckleyN3α [40] 2 [−15, 30]n [−18, 47]n uni-modal convex −186.4112
3 AckleyN4α [40] 2 [−15, 30]n [−18, 47]n non-convex multi-modal −4.5901
4 Adjiman [40] 2 [−1, 2]n - non-convex multi-modal −2.0218
5 BartelsConnα [40] 2 [−500, 500]n [−300, 700]n non-convex multi-modal 1.0000
6 Beale [41,42] 2 [−4.5, 4.5]n - non-convex multi-modal 0.0000
7 BiggsEXP2 [40] 2 [0, 20]n - non-convex multi-modal 0.0000
8 BiggsEXP3 [40] 3 [0, 20]n - non-convex multi-modal 0.0000
9 BiggsEXP4 [40] 4 [0, 20]n - non-convex multi-modal 0.0000

10 BiggsEXP5 [40] 5 [0, 20]n - non-convex multi-modal 0.0000
11 BiggsEXP6 [40] 6 [0, 20]n - non-convex multi-modal 0.0000
12 Bird [40] 2 [−2π, 2π]n - non-convex multi-modal −106.7645
13 Bohachevsky1α [41,42] 2 [−100, 100]n [−55, 145]n convex uni-modal 0.0000
14 Bohachevsky2α [41,42] 2 [−100, 100]n [−55, 145]n non-convex multi-modal 0.0000
15 Bohachevsky3α [41,42] 2 [−100, 100]n [−55, 145]n non-convex multi-modal 0.0000
16 Booth [41,42] 2 [−10, 10]n - convex uni-modal 0.0000

17 Brad [40] 3 [−0.25, 0.25]×
[0.01, 2.5]2 - non-convex multi-modal 6.9352

18 Branin [41,43] 2 [−5, 10]×
[10, 15] - non-convex multi-modal 0.3978

19 Bukin4 [40] 2 [−15,−5]×
[−3, 3] - convex multi-modal 0.0000

20 Bukin6 [42] 2 [−15, 5]×
[−3, 3] - convex multi-modal 0.0000

21 CarromTable [44] 2 [−10, 10]n - non-convex multi-modal −24.1568
22 ChenBird [40] 2 [−500, 500]n - non-convex multi-modal −2000.0000
23 ChenV [40] 2 [−500, 500]n - non-convex multi-modal −2000.0009
24 Chichinadze [40] 2 [−30, 30]n - non-convex multi-modal −42.9443
25 Cola [40] 17 [−4, 4]n - non-convex multi-modal 12.0150
26 Colville [41,42] 4 [−10, 10]n - non-convex multi-modal 0.0000
27 Cross_function [44] 2 [−10, 10]n - non-convex multi-modal 0.00004
28 Cross_in_Tray [42] 2 [0, 10]n - non-convex multi-modal −2.0626
29 CrownedCross [44] 2 [−10, 15]n - non-convex multi-modal 0.0001
30 Crosslegtable [44] 2 [−10, 15]n - non-convex multi-modal −1.0000
31 Cube [44] 2 [−10, 10]n - convex multi-modal 0.0000
32 Damavandi [44] 2 [0, 14]n - non-convex multi-modal 0.0000
33 Dejong5 [42] 2 [−65.536, 65.536]n - non-convex multi-modal 0.9980
34 Dolan [40] 5 [−100, 100]n - non-convex multi-modal −529.8714
35 Drop_waveα [42] 2 [−5.12, 5.12]n [−4, 6]n non-convex multi-modal −1.0000

36 Easomα [41,42] 2 [−100, 100]n [−100(i +
1)−1, 100i]i non-convex multi-modal −1.0000

37 Eggholder [42] 2 [−512, 512]n - non-convex multi-modal −959.6406
38 Giunta [44] 2 [−1, 1]n - non-convex multi-modal 0.0644

https://github.com/blockchain-group/DIRECTGOLib
https://zenodo.org/record/6617799
https://github.com/blockchain-group/DIRECTGO.

Mathematics 2022, 10, 3760 15 of 18

Table A1. Cont.

Name Source n D D̃ Type No. of
Minima f ∗

39 Goldstein_and
_Priceα [41,43] 2 [−2, 2]n [−1.1, 2.9]n non-convex multi-modal 3.0000

40 Hartman3 [41,42] 3 [0, 1]n - non-convex multi-modal −3.8627
41 Hartman4 [41,42] 4 [0, 1]n - non-convex multi-modal −3.1344
42 Hartman6 [41,42] 6 [0, 1]n - non-convex multi-modal −3.3223
43 HelicalValley [44] 3 [−10, 20]n - convex multi-modal 0.0000
44 HimmelBlau [44] 2 [−5, 5]n - convex multi-modal 0.0000
45 Holder_Table [42] 2 [−10, 10]n - non-convex multi-modal −19.2085
46 Hump [41,42] 2 [−5, 5]n - non-convex multi-modal −1.0316
47 Langermann [42] 2 [0, 10]n - non-convex multi-modal −4.1558
48 Leon [44] 2 [−1.2, 1.2]n - convex multi-modal 0.0000
49 Levi13 [44] 2 [−10, 10]n - non-convex multi-modal 0.0000
50 Matyasα [41,42] 2 [−10, 10]n [−5.5, 14.5]n convex uni-modal 0.0000

51 McCormick [42] 2 [−1.5, 4]×
[−3, 4] - convex multi-modal −1.9132

52 ModSchaffer1α [45] 2 [−100, 100]n [−100, 150]n non-convex multi-modal 0.0000
53 ModSchaffer2α [45] 2 [−100, 100]n [−100, 150]n non-convex multi-modal 0.0000
54 ModSchaffer3α [45] 2 [−100, 100]n [−100, 150]n non-convex multi-modal 0.0015
55 ModSchaffer4α [45] 2 [−100, 100]n [−100, 150]n non-convex multi-modal 0.2925
56 PenHolder [41,42] 2 [−11, 11]n - non-convex multi-modal −0.9635
57 Permdb4 [41,42] 4 [−i, i]i - non-convex multi-modal 0.0000
58 Powell [41,42] 4 [−4, 5]n - convex multi-modal 0.0000
59 Power_Sumα [41,42] 4 [0, 4]n [1, 4 + i√2]i convex multi-modal 0.0000
60 Shekel5 [41,42] 4 [0, 10]n - non-convex multi-modal −10.1531
61 Shekel7 [41,42] 4 [0, 10]n - non-convex multi-modal −10.4029
62 Shekel10 [41,42] 4 [0, 10]n - non-convex multi-modal −10.5364
63 Shubert [41,42] 2 [−10, 10]n - non-convex multi-modal −186.7309
64 TestTubeHolder [44] 2 [−10, 10]n - non-convex multi-modal −10.8722
65 Trefethen [44] 2 [−2, 2]n - non-convex multi-modal −3.3068
66 Woodα [45] 4 [−100, 100]n [−100, 150]n non-convex multi-modal 0.0000
67 Zettl [44] 2 [−5, 5]n - convex multi-modal −0.0037

i—indexes used for variable bounds (1, . . . , n). α—domain D was perturbed. The sign “-” means that D̃ is the
same as D.

Table A2. Key characteristics of box-constrained global optimization problems with varying n from
DIRECTGOLib v1.2 [35]. Data adapted from [20].

Name Source D D̃ Type No. of
Minima f ∗

1 Ackleyα [41,42] [−15, 30]n [−18, 47]n non-convex multi-modal 0.0000
2 AlpineN1α [44] [−10, 10]n [−10, 7.5]n non-convex multi-modal 0.0000
3 Alpineα [44] [0, 10]n [i√2, 8 + i√2]i non-convex multi-modal −2.8081n

4 Brown [40] [−1, 4]n - convex uni-modal 0.0000
5 ChungR [40] [−100, 350]n - convex uni-modal 0.0000
6 Csendesα [44] [−10, 10]n [−10, 25]n convex multi-modal 0.0000
7 Cubic [42] [−4, 3]n - convex uni-modal 0.0000
8 Deb01α [44] [−1, 1]n [−0.55, 1.45]n non-convex multi-modal −1.0000
9 Deb02α [44] [0, 1]n [0.225, 1.225]n non-convex multi-modal −1.0000

10 Dixon_and_Price [41,42] [−10, 10]n - convex multi-modal 0.0000
11 Dejong [42] [−3, 7]n - convex uni-modal 0.0000
12 Exponential [40] [−1, 4]n - non-convex multi-modal −1.0000
13 Exponential2 [42] [0, 7]n - non-convex multi-modal 0.0000
14 Exponential3 [42] [−30, 20]n - non-convex multi-modal 0.0000
15 Griewankα [41,42] [−600, 600]i [−

√
600i, 600

√
i
−1

]i non-convex multi-modal 0.0000
16 Layeb01α [46] [−100, 100]n [−100, 90]n convex uni-modal 0.0000
17 Layeb02 [46] [−10, 10]n - convex uni-modal 0.0000
18 Layeb03α [46] [−10, 10]n [−10, 12]n non-convex multi-modal −n + 1

19 Layeb04 [46] [−10, 10]n - non-convex multi-modal (ln(0.001)−
1)(n− 1)

20 Layeb05 [46] [−10, 10]n - non-convex multi-modal (ln(0.001))
(n− 1)

21 Layeb06 [46] [−10, 10]n - non-convex multi-modal 0.0000
22 Layeb07α [46] [−10, 10]n [−10, 12]n non-convex multi-modal 0.0000

Mathematics 2022, 10, 3760 16 of 18

Table A2. Cont.

Name Source D D̃ Type No. of
Minima f ∗

23 Layeb08 [46] [−10, 10]n - non-convex multi-modal log(0.001)(n− 1)
24 Layeb09 [46] [−10, 10]n - non-convex multi-modal 0.0000
25 Layeb10 [46] [−100, 100]n - non-convex multi-modal 0.0000
26 Layeb11 [46] [−10, 10]n - non-convex multi-modal n− 1
27 Layeb12 [46] [−5, 5]n - non-convex multi-modal −(e + 1)(n− 1)
28 Layeb13 [46] [−5, 5]n - non-convex multi-modal 0.0000
29 Layeb14 [46] [−100, 100]n - non-convex multi-modal 0.0000
30 Layeb15 [46] [−100, 100]n - non-convex multi-modal 0.0000
31 Layeb16 [46] [−10, 10]n - non-convex multi-modal 0.0000
32 Layeb17 [46] [−10, 10]n - non-convex multi-modal 0.0000
33 Layeb18 [46] [−10, 10]n - non-convex multi-modal ln(0.001)(n− 1)
34 Levy [41,42] [−5, 5]n [−10, 10]n non-convex multi-modal 0.0000
35 Michalewicz [41,42] [0, π]n - non-convex multi-modal χ
36 Pinterα [44] [−10, 10]n [−5.5, 14.5]n non-convex multi-modal 0.0000
37 Qing [44] [−500, 500]n - non-convex multi-modal 0.0000
38 Quadratic [42] [−2, 3]n - convex uni-modal 0.0000

39 Rastriginα [41,42] [−5.12, 5.12]n [−5 i√2, 7 +
i√2]i

non-convex multi-modal 0.0000

40 Rosenbrockα [41,43] [−5, 10]n [−5
√

i
−1

, 10
√

i]i non-convex uni-modal 0.0000
41 Rotated_H_Ellipα [42] [−65.536, 65.536]n [−35, 95]n convex uni-modal 0.0000

42 Schwefelα [41,42] [−500, 500]n
[−500 +

100
√

i
−1

,
500− 40

√
i
−1

]i
non-convex multi-modal 0.0000

43 SineEnvelope [44] [−100, 100]n - non-convex multi-modal −2.6535(n− 1)
44 Sinenvsinα [45] [−100, 100]n [−100, 150]n non-convex multi-modal 0.0000
45 Sphereα [41,42] [−5.12, 5.12]n [−2.75, 7.25]n convex uni-modal 0.0000
46 Styblinski_Tang [47] [−5, 5]n [−5, 5 + 31/i]n non-convex multi-modal −39.1661n
47 Sum_Squaresα [47] [−10, 10]n [−5.5, 14.5]n convex uni-modal 0.0000
48 Sum_Of_Powersα [42] [−1, 1]n [−0.55, 1.45]n convex uni-modal 0.0000

49 Trid [41,42] [−100, 100]n - convex multi-modal
− 1

6 n3 − 1
2 n2 +

2
3 n

50 Trigonometricα [41,42] [−100, 100]n [−100, 150]n non-convex multi-modal 0.0000
51 Vincent [47] [0.25, 10]n - non-convex multi-modal −n
52 WWavyα [40] [−π, π]n [−π, 3π]n non-convex multi-modal 0.0000
53 XinSheYajngN1 [40] [−11, 29]n [−11, 29]n non-convex multi-modal −1.0000
54 XinSheYajngN2α [40] [−π, π]n [−π, 3π]n non-convex multi-modal 0.0000
55 Zakharovα [41,42] [−5, 10]n [−1.625, 13.375]n convex multi-modal 0.0000

i—indexes used for variable bounds (1, . . . , n). χ—solution depend on problem dimension. α—domain D was
perturbed. The sign “-” means that D̃ is the same as D.

References
1. Sergeyev, Y.D.; Kvasov, D.E.; Mukhametzhanov, M.S. On the efficiency of nature-inspired metaheuristics in expensive global

optimization with limited budget. Sci. Rep. 2018, 8, 453. https://doi.org/10.1038/s41598-017-18940-4.
2. Lee, C.Y.; Zhuo, G.L. A Hybrid Whale Optimization Algorithm for Global Optimization. Mathematics 2021, 9, 1477. https://

doi.org/10.3390/math9131477.
3. Al-Shaikh, A.; Mahafzah, B.A.; Alshraideh, M. Hybrid harmony search algorithm for social network contact tracing of COVID-19.

Soft Comput. 2021, 1–23. https://doi.org/10.1007/s00500-021-05948-2.
4. Zhigljavsky, A.; Žilinskas, A. Stochastic Global Optimization; Springer: New York, NY, USA, 2008.
5. Horst, R.; Pardalos, P.M.; Thoai, N.V. Introduction to Global Optimization; Nonconvex Optimization and Its Application; Kluwer

Academic Publishers: Berlin, Germany, 1995.
6. Sergeyev, Y.D.; Kvasov, D.E. Deterministic Global Optimization: An Introduction to the Diagonal Approach; SpringerBriefs in

Optimization; Springer: Berlin, Germany, 2017. https://doi.org/10.1007/978-1-4939-7199-2.
7. Jones, D.R.; Perttunen, C.D.; Stuckman, B.E. Lipschitzian Optimization Without the Lipschitz Constant. J. Optim. Theory Appl.

1993, 79, 157–181. https://doi.org/10.1007/BF00941892.
8. Carter, R.G.; Gablonsky, J.M.; Patrick, A.; Kelley, C.T.; Eslinger, O.J. Algorithms for noisy problems in gas transmission pipeline

optimization. Optim. Eng. 2001, 2, 139–157. https://doi.org/10.1023/A:1013123110266.
9. Cox, S.E.; Haftka, R.T.; Baker, C.A.; Grossman, B.; Mason, W.H.; Watson, L.T. A Comparison of Global Optimization Methods for

the Design of a High-speed Civil Transport. J. Glob. Optim. 2001, 21, 415–432. https://doi.org/10.1023/A:1012782825166.
10. Paulavičius, R.; Sergeyev, Y.D.; Kvasov, D.E.; Žilinskas, J. Globally-biased BIRECT algorithm with local accelerators for expensive

global optimization. Expert Syst. Appl. 2020, 144, 11305. https://doi.org/10.1016/j.eswa.2019.113052.

Mathematics 2022, 10, 3760 17 of 18

11. Paulavičius, R.; Žilinskas, J. Simplicial Global Optimization; SpringerBriefs in Optimization; Springer New York: New York, NY,
USA, 2014. https://doi.org/10.1007/978-1-4614-9093-7.

12. Stripinis, L.; Paulavičius, R.; Žilinskas, J. Penalty functions and two-step selection procedure based DIRECT-type algorithm for
constrained global optimization. Struct. Multidiscip. Optim. 2019, 59, 2155–2175. https://doi.org/10.1007/s00158-018-2181-2.

13. Paulavičius, R.; Žilinskas, J. Analysis of different norms and corresponding Lipschitz constants for global optimization. Technol.
Econ. Dev. Econ. 2006, 36, 383–387. https://doi.org/10.1080/13928619.2006.9637758.

14. Piyavskii, S.A. An algorithm for finding the absolute minimum of a function. Theory Optim. Solut. 1967, 2, 13–24. https://doi.org/
10.1016/0041-5553(72)90115-2. (In Russian)

15. Sergeyev, Y.D.; Kvasov, D.E. Lipschitz global optimization. In Wiley Encyclopedia of Operations Research and Management Science (in
8 volumes); Cochran, J.J., Cox, L.A., Keskinocak, P., Kharoufeh, J.P., Smith, J.C., Eds.; John Wiley & Sons: New York, NY, USA,
2011; Volume 4, pp. 2812–2828.

16. Rios, L.M.; Sahinidis, N.V. Derivative-free optimization: a review of algorithms and comparison of software implementations. J.
Glob. Optim. 2007, 56, 1247–1293. https://doi.org/10.1007/s10898-012-9951-y.

17. Stripinis, L.; Paulavičius, R. DIRECTGO: A New DIRECT-Type MATLAB Toolbox for Derivative-Free Global Optimization. ACM
Trans. Math. Softw. 2022, 1–45. https://doi.org/10.1145/3559755.

18. Jones, D.R. The DIRECT Global Optimization Algorithm. In The Encyclopedia of Optimization; Floudas, C.A., Pardalos, P.M., Eds.;
Kluwer Academic Publishers: Dordrect, The Netherlands, 2001; pp. 431–440.

19. Holmstrom, K.; Goran, A.O.; Edvall, M.M. User’s Guide for TOMLAB 7. 2010. Available online: https://tomopt.com/docs/
TOMLAB.pdf (accessed on 15 November 2021).

20. Stripinis, L.; Paulavičius, R. An extensive numerical benchmark study of deterministic vs. stochastic derivative-free global
optimization algorithms. arXiv 2022, arXiv:2209.05759. https://doi.org/10.48550/ARXIV.2209.05759.

21. Stripinis, L.; Paulavičius, R. An empirical study of various candidate selection and partitioning techniques in the DIRECT
framework. J. Glob. Optim. 2022, 1–31. https://doi.org/10.1007/s10898-022-01185-5.

22. Jones, D.R.; Martins, J.R.R.A. The DIRECT algorithm: 25 years later. J. Glob. Optim. 2021, 79, 521–566. https://doi.org/10.1007/
s10898-020-00952-6.

23. Finkel, D.E.; Kelley, C.T. Additive scaling and the DIRECT algorithm. J. Glob. Optim. 2006, 36, 597–608. https://doi.org/10.1007/
s10898-006-9029-9.

24. Finkel, D.; Kelley, C. An Adaptive Restart Implementation of DIRECT; Technical Report CRSC-TR04-30; Center for Research in
Scientific Computation: North Carolina State University: Raleigh, NC, USA, 2004; pp. 1–16.

25. Liu, Q. Linear scaling and the DIRECT algorithm. J. Glob. Optim. 2013, 56, 1233–1245. https://doi.org/10.1007/s10898-012-9952-x.
26. Liu, Q.; Zeng, J.; Yang, G. MrDIRECT: A multilevel robust DIRECT algorithm for global optimization problems. J. Glob. Optim.

2015, 62, 205–227. https://doi.org/10.1007/s10898-014-0241-8.
27. Sergeyev, Y.D.; Kvasov, D.E. Global search based on diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 2006,

16, 910–937. https://doi.org/10.1137/040621132.
28. Paulavičius, R.; Sergeyev, Y.D.; Kvasov, D.E.; Žilinskas, J. Globally-biased DISIMPL algorithm for expensive global optimization.

J. Glob. Optim. 2014, 59, 545–567. https://doi.org/10.1007/s10898-014-0180-4.
29. Stripinis, L.; Paulavičius, R.; Žilinskas, J. Improved scheme for selection of potentially optimal hyper-rectangles in DIRECT.

Optim. Lett. 2018, 12, 1699–1712. https://doi.org/10.1007/s11590-017-1228-4.
30. De Corte, W.; Sackett, P.R.; Lievens, F. Designing pareto-optimal selection systems: Formalizing the decisions required for

selection system development. J. Appl. Psychol. 2011, 96, 907–926. https://doi.org/10.1037/a0023298.
31. Liu, Q.; Cheng, W. A modified DIRECT algorithm with bilevel partition. J. Glob. Optim. 2014, 60, 483–499. https://doi.org/10.1007/

s10898-013-0119-1.
32. Liu, H.; Xu, S.; Wang, X.; Wu, X.; Song, Y. A global optimization algorithm for simulation-based problems via the extended

DIRECT scheme. Eng. Optim. 2015, 47, 1441–1458. https://doi.org/10.1080/0305215X.2014.971777.
33. Baker, C.A.; Watson, L.T.; Grossman, B.; Mason, W.H.; Haftka, R.T., Parallel Global Aircraft Configuration Design Space

Exploration. In Practical Parallel Computing; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2001; pp. 79–96.
34. He, J.; Verstak, A.; Watson, L.T.; Sosonkina, M. Design and implementation of a massively parallel version of DIRECT. Comput.

Optim. Appl. 2008, 40, 217–245. https://doi.org/10.1007/s10589-007-9092-2.
35. Stripinis, L.; Paulavičius, R. DIRECTGOLib—DIRECT Global Optimization Test Problems Library, Version v1.2, GitHub. 2022.

Available online: https://github.com/blockchain-group/DIRECTGOLib/tree/v1.2 (accessed on 10 July 2022).
36. Grishagin, V.A. Operating characteristics of some global search algorithms. In Problems of Stochastic Search; Zinatne: Riga, Latvia,

1978; Volume 7, pp. 198–206. (In Russian)
37. Strongin, R.G.; Sergeyev, Y.D. Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms; Kluwer Academic

Publishers: Dordrecht, The Netherlands, 2000.
38. Jusevičius, V.; Oberdieck, R.; Paulavičius, R. Experimental Analysis of Algebraic Modelling Languages for Mathematical

Optimization. Informatica 2021, 32, 283–304. https://doi.org/10.15388/21-INFOR447.
39. Jusevičius, V.; Paulavičius, R. Web-Based Tool for Algebraic Modeling and Mathematical Optimization. Mathematics 2021, 9, 2751.

https://doi.org/10.3390/math9212751.

https://tomopt.com/docs/TOMLAB.pdf
https://tomopt.com/docs/TOMLAB.pdf
https://github.com/blockchain-group/DIRECTGOLib/tree/v1.2

Mathematics 2022, 10, 3760 18 of 18

40. Jamil, M.; Yang, X.S. A literature survey of benchmark functions for global optimisation problems. Int. J. Math. Model. Numer.
Optim. 2013, 4, 150–194,https://doi.org/10.1504/IJMMNO.2013.055204.

41. Hedar, A. Test Functions for Unconstrained Global Optimization. 2005. Available online: http://www-optima.amp.i.kyoto-u.ac.
jp/member/student/hedar/Hedar_files/TestGO.htm (accessed on 22 March 2017).

42. Surjanovic, S.; Bingham, D. Virtual Library of Simulation Experiments: Test Functions and Datasets. 2013. Available online:
http://www.sfu.ca/~ssurjano/index.html (accessed on 22 March 2017).

43. Dixon, L.; Szegö, C. The Global Optimisation Problem: An Introduction. In Towards Global Optimization; Dixon, L., Szegö, G., Eds.;
North-Holland Publishing Company: Amsterdam, The Netherlands, 1978; Volume 2, pp. 1–15.

44. Gavana, A. Global Optimization Benchmarks and AMPGO. Available online: http://infinity77.net/global_optimization/index.
html (accessed on 22 July 2021).

45. Mishra, S.K. Some New Test Functions for Global Optimization and Performance of Repulsive Particle Swarm Method. 2006.
http://doi.org/10.2139/ssrn.926132. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=926132 (accessed
on 23 August 2006).

46. Abdesslem, L. New hard benchmark functions for global optimization. arXiv 2022, arxiv.org/abs/2202.04606.
47. Clerc, M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In Proceedings of

the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; Volume 3,
pp. 1951–1957. https://doi.org/10.1109/CEC.1999.785513.

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
http://www.sfu.ca/~ssurjano/index.html
http://infinity77.net/global_optimization/index.html
http://infinity77.net/global_optimization/index.html
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=926132

	Introduction
	Materials and Methods
	Overview of the DIRECT Algorithm
	Two-Step Pareto Selection Based 1-DTC-GL Algorithm
	Review of Excessive Local Refinement Reduction Techniques
	Replacing the Minimum Value with an Average and Median Values
	Limiting the Measure of Hyper-Rectangles
	Balancing the Local and Global Searches

	New Two-Step Pareto Selection Based Algorithmic Variations for Excessive Local Refinement Reduction
	1-DTC-GL-min Algorithm
	1-DTC-GL-median Algorithm
	1-DTC-GL-average Algorithm
	1-DTC-GL-limit Algorithm
	1-DTC-GL-gb Algorithm
	1-DTC-GL-rev Algorithm

	Results and Discussions
	Conclusions and Potential Future Directions
	DIRECTGOLib v1.2 Library
	References

