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Abstract: This study presents a data reconstruction-based two-step non-intrusive reduced-order mod-
eling (ROM) based on discrete Fourier transformation (DFT) and proper orthogonal decomposition-
radial basis function (POD-RBF) interpolation. To efficiently approximate a system for various
parametric inputs, two offline and one online stage are proposed. The first offline stage adjusts and
reconstructs sampled data using a scaling factor. During the adjusting procedure, the fast Fourier
transform operation is used to transform a domain between the time and frequency, and the POD-RBF
interpolation method efficiently generates adjusted data. The second offline stage constructs multiple
ROMs in the frequency domain for interpolation with respect to the parameter. Finally, in the online
stage, the solution field depending on the changes in input parameters, is approximated using the
POD-RBF interpolation and the inverse Fourier transformation. The accuracy and efficiency of the
proposed method are verified using the 2-D unsteady incompressible Newtonian fluid problems and
are compared to the OpenFOAM software program showing remarkable efficiencies in computing
approximated solutions.

Keywords: reduced-order model; proper orthogonal decomposition; radial basis function; discrete
Fourier transformations; non-intrusive method

MSC: 70-08

1. Introduction

Although computational science has been actively studied, a high computational cost
is still required to solve complex phenomena or large-scale system problems. Furthermore,
research fields that involve iterative calculations require expensive computational resources
and time. Therefore, studies on reduced order modeling (ROM) have gained much at-
tention in various fields. Numerous ROM methods have been explored depending on
the requirements of research fields, such as vibration/acoustic systems [1], molecular sys-
tems [2], computational fluid dynamics [3–6], microelectromechanical systems [7], weather
prediction [8], structure systems [9–13], etc.

Among the various model reduction techniques, the proper orthogonal decomposition
(POD) based approach is one of the most popular methods. Additionally, the POD-ROM
that commonly approximates a high-order full system to a low-dimensional ROM uses
proper orthogonal mode (POM) as a transformation matrix projecting the system matrices
to the reduced-order space in an intrusive manner. The projection-based intrusive ROM
has been applied in many research fields due to its advantages over other ROMs: parabolic
equations [14], oceanic models [15,16], nonstationary Navier–Stokes equations [17], bifur-
cation problem [18], and linear dynamical systems [19,20]. However, most intrusive ROMs
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require system matrices that are derived from the governing equation and change de-
pending on discretization methods. Furthermore, reproducing algorithms and developing
source codes are essential for implementing the ROM to various scientific and engineering
problems. Such a cumbersome process is one of the major limitations of the intrusive ROM
from the viewpoint of scalability, even though the intrusive ROMs have several advantages,
such as showing higher accuracy and containing more flexibility than other surrogates for
handling the changes in parameters.

On the other hand, the non-intrusive reduction methods commonly construct a model
surrogate using input/output data without intruding into the governing equation. In gen-
eral, the data set for the non-intrusive ROM is obtained from simulations and experiments,
which means that simulation results from open-source or commercial software can also be
used for constructing ROM. The input/output relation is approximated by post-processing
the data, and this does not require a large amount of work compared with those using
intrusive ROMs.

Among various non-intrusive ROMs based on the POD method, adapting the radial
basis function (RBF) and discrete empirical interpolation method (DEIM) to derive the ROM
was proposed by Klie [21]. A non-intrusive ROM related to the POD method was proposed
by Guénot et al. [22] and Casenave et al. [23]. The non-intrusive POD–ROM for aerody-
namic shape optimizations was proposed by Iiliano and Quagliarella [24]. Peherstorfer and
Willcox developed a non-intrusive model reduction approach for operator inference within
a data-driven framework [25]. Xiao et al. proposed various non-intrusive POD-based ROM
methods for Navier–Stokes equations [26,27] or fluid–structure interactions (FSIs) [28]. The
non-intrusive POD/RBF method efficiently reduces the computational cost for nonlinear
fluid problems [27]. However, such methods usually reconstruct and solve a new ROM
when the input condition changes. Recently, non-intrusive ROM using POD/RBF was pro-
posed by Nguyen and Kim [29] showing efficient approximation with respect to the change
in parameters for nonlinear contact problems. In addition, ROMs based on POD-ANN [30],
deep learning [31], and the convolutional autoencoder and predictive adversarial network
approach [32] were actively proposed, widening the scope and applications of the ROM to
complex fluid problems. Additionally, many studies have been performed regarding adap-
tive ROMs to the change of input parameter, which are usually referred to as parametric
ROM (PROM). For various physical systems, reduced-basis methods [33,34], interpolation-
based ROM [35–37], and PROM combined with substructuring schemes [38–40] have been
developed and applied to many engineering applications. Nevertheless, research on the
non-intrusive ROM that adapts to the parametric variation for dynamic problems is less
active than that on the intrusive ROM.

In this study, we propose a two-step, non-intrusive ROM based on a data reconstruc-
tion process. In a fluid model, if an inlet velocity changes, several output parameters of
solution response, such as the frequency, phase, and amplitude, also change nonlinearly.
Because of this issue, it is difficult to construct a ROM that can analyze the problems for
various initial input conditions using conventional non-intrusive methods. However, the
proposed method can efficiently analyze the fluid problems for various inlet velocities with-
out querying the governing equations. To construct such a surrogate model, the proposed
approach uses the discrete Fourier transform, in particular, the fast Fourier transform (FFT),
and the POD/RBF interpolation. A three-stage procedure is proposed, which consists of
two-step offline stages: Step 1 and Step 2, and one online stage.

Step 1 consists of sampling analyses and adjusting data sets in the virtual time and
frequency domains. The sampling analyses are performed to construct data sets with the
solution responses and initial input conditions using available software packages. The
study sets the frequency value that has the most dominant effect in each sampling case
as a scaling factor and creates a virtual time/frequency domain using the scaling factor
and interpolations. Step 1 uses the interpolation method and the scaling factor to adjust
the sampled solution responses so that the peaks of each frequency response are matched
at the same degree of freedom (DOF) in the virtual domain. During the reconstruction
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process, the proposed approach invokes a POD/RBF interpolation method to efficiently
interpolate the high-dimensional solution responses.

In Step 2, the adjusted sampled data sets are used to construct the surrogate ROM. Step
2 gathers the adjusted solution responses for the same DOF in all cases and transforms them
to the virtual frequency domain using the FFT operation. The new data sets for each DOF
that consist of real and imaginary numbers are constructed in the virtual frequency domain.
The proposed approach constructs a surrogate ROM with interpolation formulas for three
types of data sets: (1) scaling factor, (2) real numbers of each DOF, and (3) imaginary
numbers of each DOF. The input variable of the interpolation formulas is the initial inlet
velocity that basically changes the Reynolds number, and the POD/RBF interpolation
method with respect to the parameter is used to increase efficiency.

In the online stage, the surrogate ROM approximates the data sets, such as the solution
responses in the virtual frequency domain and the scaling factor for the perturbed initial
inlet velocity. Because the approximated responses still exist in the virtual frequency
domain, they should be returned to the original time domain. Such a process is performed
in the reverse of the adjustment procedure of Step 1. Subsequently, solution responses for
the perturbed input condition can be efficiently obtained.

The structure of this paper is as follows. The problem setup, which includes the
governing equations of fluids and the simulation software, is introduced in Section 2. In
Section 3, the data reconstruction procedures and ROM derivations are presented, providing
the FFT operations and the POD/RBF interpolations. Two numerical examples, the flows
past a circular cylinder and the flow around an airfoil, are illustrated in Section 4, verifying
the efficiency and accuracy of the proposed approach. Finally, the conclusions are given in
Section 5.

2. Problem Setup

In Section 2.1, the governing equations of the fluid problem are presented. Because
the proposed method basically handles the solution data of numerical simulations, the
software and its characteristics on the solvers and algorithm are briefly introduced.

2.1. Governing Equations

This study considers a two-dimensional, unsteady incompressible Newtonian fluid
problem. To perform the analysis, we need to solve the governing equations that consist of
the continuity equation and the Navier–Stokes equation, as expressed below:

∇·u = 0, (1)

∂u
∂t

+ (u·∇)u = −1
ρ
∇p + v∇·(∇u), (2)

where u(t; µ) =
(
ux(t; µ), uy(t; µ), uz(t; µ)

)T is a velocity vector at time t in a Euclidean
space. Also, ρ, p, and v are the density, pressure, and kinematic viscosity, respectively. A
parameter µ is introduced to express the dependency of the velocity field on the changes
of the initial condition. The governing equations are solved using well-known numerical
techniques during the sampling process. Thus, a discretized velocity vector represented
by u(t; µ) = (u1(t; µ), u2(t; µ), · · · , uN(t; µ))T is introduced, where N denotes the size of
discrete velocity vector of a full-order model (FOM). For a two-dimensional flow, two times
of the number of vertex (node) equals N.

2.2. Simulation Tool-Based Approach: OpenFOAM Solver and Algorithm

Basically, the proposed approach utilizes simulation software due to its convenience
and robustness for acquiring simulation data. In this study, we adapt OpenFOAM software,
which is one of the popular packages for computational fluid dynamics (CFD) simulations.
Of course, the proposed method can be applied to other packages, including open-source
and commercial software as well as in-house codes.
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OpenFOAM provides the pressure implicit splitting operator (PISO), semi-implicit
method for pressure-linked equations (SIMPLE), and PISO–SIMPLE (PIMPLE) algorithms
as the main algorithms to analyze the Navier–Stokes equations. simpleFoam is a steady-
state solver consisting of the SIMPLE algorithm to analyze the incompressible and turbulent
flow problems. pisoFoam is a transient solver for the incompressible non-Newtonian tur-
bulent flow problems based on the PISO algorithm. It can set the turbulence model by
selecting the laminar, Reynolds-Averaged Navier–Stokes (RANS), or large eddy simulation
(LES) options. Lastly, pimpleFoam is a large time-step transient solver for the incompress-
ible turbulent flow that uses the PIMPLE algorithm, the merged form of the PISO and
SIMPLE algorithms. pimpleFoam can substitute the simpleFoam and pisoFoam solvers for
unsteady, incompressible flows. The PISO and SIMPLE algorithms are comprehensively
explained in [41].

In this study, we analyze the pressure–velocity coupling fluid model using the pimple-
Foam solver because it is more robust and efficient than the pisoFoam and simpleFoam
solvers. The pimpleFoam solver is described in [42,43]. To analyze the problems of turbu-
lent fluid, it is necessary to set an appropriate turbulence model. In this study, we set the
simulation type of the turbulence model to the k-epsilon RANS model.

3. Data Reconstruction-Based Two-Step Non-Intrusive ROM

To efficiently compute the solution response for the perturbed initial inlet velocity, we
present the data reconstruction-based non-intrusive ROM method. The proposed approach
consists of two offline steps, which are data reconstruction in a time domain and a ROM
construction with an interpolation model in a frequency domain. In the online stage,
the constructed ROM can efficiently compute the solution responses for arbitrary initial
inlet velocity. At the end of this section, the overall algorithm of the proposed method is
presented.

3.1. Offline Step 1: Data Reconstruction in a Virtual Time Domain

In turbulent fluid problems, even if the input condition changes linearly, the velocity
profiles at the same DOF show nonlinearities with respect to the input condition. In other
words, the velocity profiles at the same DOF exhibit different vibrational occurrences,
amplitudes, and frequencies depending on the initial inlet velocity. Therefore, we should
reconstruct the data through time-step scaling to align the frequency peaks of the solution
response of all sampling cases. In the reconstruction procedure, while maintaining the
magnitude of the data, the time step is scaled by adopting a scaling factor. The scaling
factor of each case is respectively set, and it reconstructs the data by adjusting the scale of
time steps with the scaling factor.

Firstly, a set of parameters representing the sampling points is expressed as follows:

S =
{

µ(k) ∈ R : k = 1, 2, · · · , p
}

, (3)

where the superscript k denotes the sample number of inlet conditions. The sampled data
with a velocity response for several initial inlet conditions can be expressed as follows:

u(k)(t) = u
(

t; µ(k)
)

. (4)

The proposed approach searches for the most dominant frequency value that can
be representative of each case, which has the most dominant effect on the solution re-
sponse. The most dominant frequency value becomes the scaling factor for each sampling
case. Thus, the data are converted into the frequency domain using the FFT operation to
determine the scaling factor for each case, such that

F
{

u(k)(t)
}
= U (k)(ω), (5)



Mathematics 2022, 10, 3738 5 of 16

where F denotes a Fourier transform operator. The frequency of the 1st peak point except
0 Hz is commonly the dominant frequency value in most DOFs. Therefore, the scaling
factor of each case is determined with the most dominant frequency value. Let the scaling
factor of sample k be ω(k) = ω

(
µ(k)

)
, which can be written by

ω(k) = arg max
ω

∣∣∣U (k)(ω)
∣∣∣. (6)

In Equation (6), the upper bar • is used to represent a scaling factor, which is a function
of the parameter, µ. Note that for a specific input parameter, the scaling factor is a constant.
Then the time variable of each case can be scaled as follows:

t̃(k) = ω(k)t. (7)

Time steps can also be scaled using ω(k) as the same manner in Equation (7). Based on
the scaling, the solution field in a scaled time can be expressed using the •̃ symbol, and the
following relationship holds for all sample cases:

~
u
(k)(

t̃(k)
)
= u(k)(t). (8)

After the time scaling, each solution must be aligned in a virtual, common time domain,
t̃ that is defined by the following index representing maximum frequency among each case:

t̃ := t̃(m), (9)

where the superscript m is determined by

m = arg max
k

ω(k). (10)

One unavoidable issue of the scaling is that the time steps of each sample case are
not the same as others. To be specific, let the subscript i be the ith time step, then t̃i 6= t̃(k)i

except for k = m. Thus, since
~
u
(k)

are not evaluated at identical time instances, we need to

compute
~
u
(k)(

t̃i
)
, which requires high-fidelity simulations with sample cases once more.

To avoid such cost-consuming work, we perform the interpolation of existing data with
respect to the virtual time domain. However, the interpolation requires a great amount of
computational cost as the solution lies in N-dimensional space. To overcome this issue, the
RBF-based POD interpolation method is introduced to enhance computational efficiency.
By the POD of the sampling data, proper orthogonal modes (POM), Φ(k) ∈ RN×R, and their

coefficients,
~
p
(k)
∈ RN×R, are obtained, and the linear combination gives the approximation

such that
~
u
(k)(

t̃i
)
≈ Φ(k)~

p
(k)(

t̃i
)
, (11)

where R is the dimension of the reduced system, which is usually much smaller than N. In
general, R is determined by the truncation from the distribution of singular values. The
interpolation is expressed using the RBF as follows:

ũ(k)
q
(
t̃
)
≈

R

∑
j=1

Φ(k)
qj p̃(k)j

(
t̃
)
=

R

∑
j=1

{
Φ(k)

qj

Nt

∑
i=1

w(k)
ij φ

(
r
(

t̃, t̃(k)i

))}
, (12)

where r
(

t̃, t̃(k)i

)
represents the Euclidean distance between the t̃ and t̃(k)i , and φ is a basis

function. In this study, a multiquadric φ(r) =
√

1 + (r/ε)2 was used as the RBF, and

the weightings are obtained by using the sample data set that consists of t̃(k)i and
~
u
(k)(

t̃i
)
.
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Substituting the sample data set into Equation (12) results in a linear system, and R× Nt
unknown weightings are determined by solving the linear system. Note that the interpola-
tion in Equation (12) is for the reconstruction of data in a virtual time domain, which needs
to be discriminated the interpolation with respect to the parametric approximation that
will be shown in Section 3.2.

3.2. Offline Step 2: Constructing Reduced-Order Model in a Frequency Domain

In Step 2, the surrogate reduction system for approximating the scaling factor and ad-
justing solution responses with respect to the perturbed initial inlet velocity is constructed.
To this end, new data sets from the adjusted solutions are generated to capture the dynamics

of the system. By converting the adjusted responses
~
u
(k)(

t̃
)

to the virtual frequency domain
using the FFT operation, new data sets are expressed as follows:

F
{

~
u
(k)(

t̃
)}

= Ũ (k)
(ω̃) = Ã(k)

(ω̃) + iB̃(k)
(ω̃), (13)

where Ã(k)
(ω̃) ∈ RN and B̃(k)

(ω̃) ∈ RN denote the new data sets for real and imaginary
numbers, respectively. For a new initial inlet velocity denoted by µ∗, we interpolate the
data in the virtual frequency domain with respect to the parameter. However, even though
the interpolation with respect to the new input parameter is different from that with data
reconstruction in the virtual time domain, there also exists a chance to relieve computational
burdens using the POD/RBF interpolation. Thus, by using the POM of the new data sets of
the real and imaginary parts, the transformations can be expressed as follows:

Ã∗(ω̃) ≈ ΦA(ω̃)
~
α
∗
(ω̃), (14)

B̃∗(ω̃) ≈ ΦB(ω̃)
~
β
∗
(ω̃), (15)

where each POM is obtained using N× p vectors of Ã(k)
and B̃(k)

at the discrete frequency,
ω̃, respectively. Corresponding POD/RBF interpolation of the component of Ã∗ and B̃∗

are written as

Ã∗i (ω̃) ≈
R

∑
j=1

ΦA,ij(ω̃)α̃∗j (ω̃) =
R

∑
j=1

{
ΦA,ij(ω̃)

p

∑
k=1

wA,jkφ
(

r
(

µ∗, µ(k)
))}

, (16)

B̃∗i (ω̃) ≈
R

∑
j=1

ΦB,ij(ω̃)β̃∗j (ω̃) =
R

∑
j=1

{
ΦB,ij(ω̃)

p

∑
k=1

wB,jkφ
(

r
(

µ∗, µ(k)
))}

, (17)

where R� N. wA,jk and wB,jk represent (j, k) component of weighting coefficient, wA and
wB , which are obtained by solving conventional RBF linear maps between the function
values and parameters constructed by the sampling points. Also, ΦA,ij and ΦB,ij are (i, j)
component of the POM, ΦA and ΦB . As stated at the end of Section 3.1, the interpolations
in Equations (16) and (17) are for a new parametric input, which needs to be distinguished
from the interpolation for the data reconstruction of the offline step 1.

The POD/RBF interpolation models for each DOF are constructed using the POMs,
weight coefficients, and radial basis function. Because the solution response obtained using
Equations (14)–(17) stays in the virtual domain, it should be transformed to the original
time domain. Therefore, the scaling factor is also required for the perturbed initial inlet
velocity. The interpolation model for the scaling factor is constructed using the set of scaling
factors and the RBF interpolations as follows:

ω∗ = ω(µ∗) =
p

∑
k=1

wω,kφ
(

r
(

µ∗, µ(k)
))

, (18)
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where the weighting, wω ∈ Rp, is determined by solving a linear system substituting µ(k)

into µ∗ of Equation (18).
Finally, the surrogate reduction system is completed using three types of interpolation

formulas about the (1) scaling factor, (2) real, and (3) imaginary numbers in the virtual
frequency domain.

3.3. Online Stage

In the online stage, the solution response is approximated for the perturbed input
parameter using the surrogate ROM. First, the interpolations of Equations (16)–(18) are
performed with respect to a new input µ∗ /∈ S. Since the POM and the weighting coefficients
are computed in the offline stage, the results associated with a new input are efficiently
approximated via additions and multiplications. After recovering the parts of real and
imaginary data in Equations (16) and (17), the inverse FFT (IFFT) operation is applied to
convert them to the virtual time domain such that

F−1
{
Ã∗(ω̃) + iB̃∗(ω̃)

}
=

~
u
∗(

t̃
)
, (19)

As
~
u
∗

exists in the virtual time domain, it should be transformed to the original
time using the reverse procedure of the offline stage. To return the virtual domain to
the original one, the scaling factor for the target input parameter is approximated via the
surrogate reduction system, and the virtual time scale is divided by the factor, as shown in
Equation (7). Finally, the solution response of the new input parameter can be obtained,
which can be written as

u∗(t) =
~
u
∗(

t̃
)
. (20)

The surrogate ROM efficiently computes the solution response for various input
parameters in the online stage. Algorithm 1 shows the computational procedure of the
proposed method. Step 1 and Step 2 are distinguished depending on the data before and
after the reconstruction process. The performances of the two-step non-intrusive ROM
method are demonstrated by the numerical problems in the next section.

Algorithm 1: Data reconstruction-based two-step non-intrusive ROM

//Offline stage—Step 1//

1: for k = 1, 2, · · · , p, do
2: Solve FOM at sample parameters, µ(k).
3: Execute FFT of the sampled data sets and compute scaling factors, ω(k).
4: end for
5: Find a virtual time domain, t̃← t̃(m) as in Equation (10).
6: for k = 1, 2, · · · , p, do
7: Adjust data sets to the virtual time domain.
8: Apply POD to the adjusted data.
9: Perform RBF interpolation in a reduced dimension for data reconstruction.

//Offline stage—Step 2//

10: Execute FFT of the reconstructed data.
11: Apply POD to the reconstructed data.
12: end for

//Online stage//

13: Perform RBF interpolations to find ω∗,
~
α
∗

and
~
β
∗

of a new input parameter, µ∗.
14: Compute Ã∗ and B̃∗ by the recovering process of Equations (14) and (15).

15: Execute IFFT to find
~
u
∗(

t̃
)
.

16: Perform scaling using ω∗ to return to the original time domain.
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4. Numerical Examples

In this section, the proposed method is applied to two examples of Navier–Stokes
problems. The examples are modeled with a 2-D turbulent fluid with an unsteady incom-
pressible Newtonian fluid. In the problems, the initial inlet velocity is set as the input
parameter changing the Reynolds number for each problem. Depending on the change in
the initial inlet velocity, the response does not change drastically. However, the frequency,
amplitude, and phase change nonlinearly. As stated in Section 2.2, sampling analyses
are performed using the pimpleFoam solver of the OpenFOAM software to construct a
surrogate ROM for the problems.

4.1. Flow Past a Circular Cylinder in Channel

The two-dimensional circular cylinder in the channel problem is investigated to
validate the efficiency and accuracy of the surrogate ROM. The problem is a model with
dimensions 50 × 15 m2 and a cylinder with a radius of 1.5 m. The model is meshed with
13,424 nodes and 21,526 triangular elements, as shown in Figure 1. The left and right
edges are set as the entrance and exit boundary conditions, respectively, and the Dirichlet
boundary condition is applied to the upper and lower walls and around the cylinder. The
temperature of the fluid is set to 20 ◦C, and the kinematic viscosity value is 1.5× 10−5 m2/s.
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Figure 1. Example 1: Mesh of the flows past a circular cylinder in the channel.

The sampling analyses are simulated at inlet velocities of 20 m/s, 30 m/s, and 40 m/s
using OpenFOAM. Thus, the x-directional velocity of the left edge in Figure 1 was imposed
as a constant value with respect to time. Figure 2 represents time-dependent velocities
of each inlet condition, and as expected, initiations of oscillation, amplitudes, and time
periods, also presented in Figure 2b, are different from each other. For each sampling case,
Table 1 represents the analysis time, CPU time, and the scaling factors. As shown in Table 1,
the sampling analysis of each case was performed for the analysis time that is inversely
proportional to the scaling factor value. This is related to the time step changed using the
scaling factor in the Step 1 procedure. The time domain of the sampled data is adjusted, and
the data are reconstructed, as presented in Figure 3. If the sampling analyses are performed
during the same analysis time, garbage data is generated. Therefore, because the scaling
factors are proportional to the inlet velocity, we run the sampling analysis for a suitable
analysis time based on the inlet velocity.

The validation case is performed for the initial inlet velocity of 35 m/s to verify the
performance of the ROM. The CPU time and solution response of the OpenFOAM are
used to compare computational efficiency and accuracy. Using the offline stage of the
two-step non-intrusive ROM method, we can construct the surrogate reduction model for
this problem. The scaling factor is computed to 3.2778 via the surrogate ROM, and the
solution response is obtained for 0.006–25.93 s with a time step of 0.0024 s. OpenFOAM
spent a CPU time of 2.024 s, whereas the reduction system took a CPU time of only 41.59 s.
Consequently, the proposed method is 48.67 times more efficient than OpenFOAM. In
fact, the CPU time of the ROM majorly contains the RBF interpolation on the parameter
and IFFT for the scaling back to the time domain, which is similar to the costs of the RBF
interpolation with respect to the virtual time steps and FFT. Additionally, the cost of 2p
times POD is added to the total offline computations, as presented in Algorithm 1.
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Table 1. Example 1: Sampling cases.

Inlet Velocity (m/s) [t0, tf] (s) ω(k) CPU Time (s)

20 [0, 45] 1.889 3208
30 [0, 35] 2.822 2612
40 [0, 30] 3.733 2338
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Figure 4 illustrates the velocity distribution results of the proposed method and
OpenFOAM at specific times, 4.0016 s, 12.002 s, and 24.0712 s. Figure 5 shows the x-
direction velocity profiles at locations (20.9761, 7.8896) and (39.3667, 11.3086). The blue and
red lines indicate the results of the proposed ROM method and OpenFOAM, respectively.
It can be observed that the reduction system is in good agreement with the OpenFOAM
solution. Figure 6 shows the velocity profiles for different inlet velocities obtained by using
the proposed method at the same locations as Figure 5. The initiations of the oscillation and
the magnitudes change nonlinearly with respect to the inlet condition. Furthermore, the
relative root mean square error (RRMSE) is used to estimate the accuracy of the proposed
method. The RRMSE method can measure the accuracy of the high-dimensional data at
each time step. It can be expressed as follows:

(RRMSE) =

√
∑N

i=1
(
u∗i (t)− u∗i (t)

)2√
∑N

i=1(u
∗
i (t))

2
, (21)
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where the upper bar represents the solution obtained by the OpenFOAM and u∗i is the
velocity computed by the proposed ROM. The RRMSEs of the velocity in x-direction at
each time step are depicted in Figure 7. Although the error increases with oscillations that
can be understood as a basic characteristic of the interpolation-based ROMs [26–28,32–37],
the maximum error is relatively small, with a value of 0.0515.
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Figure 4. Example 1: Adjusted solution responses in x-direction with an inlet velocity of 35 m/s:
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4.2. Flow around Airfoil

The second example is a two-dimensional turbulence fluid problem with flow around
an airfoil using the NACA0012 model. The width and height of the full model are 9 m and
6 m, respectively. The center of the airfoil is located at (3.5, 3), and the angle of attack is set
to α = 20◦ to generate a wake phenomenon. The model is meshed with 21,955 rectangular
elements, as illustrated in Figure 8. At the edge of the airfoil, the Dirichlet boundary
condition is applied, while the front-facing semicircle and other edges are set to the inlet
and outlet boundary conditions, respectively. The temperature of the fluid is set to 20 ◦C,
and the kinematic viscosity is 1.5 × 10–5 m2/s.

The sampling analyses are simulated at inlet velocities of 130 m/s, 150 m/s, and
170 m/s using the OpenFOAM. The solution responses for all cases are collected for 0–20 s
analysis time with the time step of 0.002 s. Unlike the first example, because the ratio of inlet
velocity is closed to 1, the sampling analyses are simulated with the same analysis time. To
demonstrate the efficiency and accuracy of the proposed method, the analysis is performed
for the inlet velocity of 140 m/s using the OpenFOAM and surrogate reduction system.

As presented in Table 2, the scaling factors obtained using the determination procedure
are 84.65, 97.8, and 110.9. It can be observed that the scaling factor is calculated using a rate
similar to the inlet velocity. Next, the surrogate reduction system for flow around an airfoil
problem is constructed using the scaling factor and sampled data set. The solution response
is obtained for 0.0033–18.5245 s using the surrogate reduction system. Figure 9 illustrates
the velocity distributions of the proposed method and OpenFOAM at specific times. In
addition, Figure 10 plots the x-direction velocity profile for the specific positions: (4.1175,
2.9034) and (7.1536, 1.9996). The results of the reduction system are in good agreement with
OpenFOAM. To estimate the accuracy, the RRMSE method is used, and the error values
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of each time step are depicted in Figure 11. Although the RRMSE increases gradually, the
maximum error value is estimated to be 0.0285.
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Table 2. Example 2: Sampling cases.

Inlet Velocity (m/s) [t0, tf] (s) ω(k) CPU Time (s)

130 [0, 20] 84.65 41,780
150 [0, 20] 97.80 48,473
170 [0, 20] 110.9 55,223
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Figure 11. Example 2: RRMSEs of the proposed method from OpenFOAM.

Finally, we measure the efficiency of the proposed method using the CPU times. The
OpenFOAM and the proposed method took 40.613 s and 41.38 s, respectively, to analyze
the problem for the perturbed initial inlet velocity. Comparing the CPU times, the proposed
method is 981.46 times faster than the OpenFOAM. Consequently, the proposed method is
well applied to the airfoil model and shows satisfactory accuracy and high efficiency.

5. Conclusions

We present a two-step non-intrusive ROM method based on data reconstruction by
RBF interpolation and POD-based dimensionality reduction. The conventional intrusive
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reduction methods require intrusive works such as studying the governing equations
or modifying the source code to construct reduction systems. However, the proposed
method does not require intrusive works because the surrogate reduced order model is
constructed using only the input/output data obtained from the analysis software. Instead,
the proposed approach requires dealing with analysis programs and post-processing of
data. The proposed approach uses the FFT operation and POD/RBF interpolation method
to adjust the solution data sets and to construct the surrogate ROM with interpolation
formulas. The proposed ROM can efficiently compute the solution response for various
input conditions. In this study, two numerical examples of the Navier–Stokes problem are
investigated to demonstrate the accuracy and efficiency of the proposed method. Conse-
quently, the two-step non-intrusive ROM method was well applied with high efficiency
and reasonable accuracy.

The sampling analyses and determination of the scaling factor in the offline process
require intensive analyses in future studies. The time step of the sampling analyses influ-
ences the computation time of Step 1. If the sampling time step is smaller, the accuracy of
the scaling factor increases, whereas the calculation time of Step 1 increases. Further, in the
case of a problem with strong nonlinearity, because the solution data sets are complex, the
determination process of the scaling factor will become important. In future investigations,
the proposed method is expected to be utilized for the analysis of fluid–structure interaction
and highly nonlinear fluid for various applications. Additionally, the extension to problems
with multiple parameters is a promising research topic.
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