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By “model”, we mean a mathematical description of a world aspect [1]. Mathematical
models, implemented in software, are often engaged to drive hardware.

Models are typically developed in the Euclidean space RN, for an integer number
N, where R is the totally ordered lattice of real numbers. Note that modelling in RN is
inherently related to the physical world, where the conventional measurement process
gives rise to the set, R, of real numbers. Nevertheless, alternative spaces for modelling, even
in physics, have been proposed, such as a probability space whose “event space” suggests
a mathematical lattice. The interest here is in explicit, rigorous modelling in a mathematical
lattice data domain. Mathematical lattices emerged in the mid-19th century as a spin-off of
work on the formalizing of propositional logic [1]. Furthermore, it was Birkhoff’s work in
the mid-1930s [2] that started the general development of mathematical lattice theory.

The proliferation of computers has triggered a growing interest in mathematical lat-
tices [3], including Boolean algebra for computer design as well as for software verification.
As a result of the proliferation of computers, cyber–physical systems (CPSs) have emerged
as devices with both sensing and reasoning capacities [4], which may also interact with
humans. Notably, in addition to numerical (multimodal) sensory data during their inter-
actions with one another, humans engage non-numerical data such as spoken language,
gestures, rules, moral principles, concepts, symbols, etc. Therefore, for seamless interactions
with humans, CPSs are also expected to cope with non-numerical data.

Lately, the “Lattice Computing (LC) information processing paradigm” has been
proposed in CPS applications for mathematical modelling based on lattice theory by
rigorously unifying (and fusing), in a Cartesian product, lattice-ordered numerical data
and/or non-numerical data [4]. Especially promising is the capacity of mathematical
lattices for knowledge representation [1]. For instance, mathematical lattices may suggest
useful alternatives for representing human intensions/emotions and other.

Part of the interest of lattice theory is still in mathematics. However, the interest in
practical applications is growing. This Special Issue presents recent advances in the LC
paradigm, including studies in abstract/applied mathematics, formal concept analysis
(FCA), mathematical morphology and image processing, machine learning, and compu-
tational intelligence, including both neural computing and fuzzy classifier designs. The
proposed collection of studies includes eight articles outlined subsequently.

First, the abstract mathematics study [5] by Jia-Bao Liu, Mobeen Munir, Qurat-ul-Ain
Munir and Abdul Rauf Nizami develops combinatorial invariants of some finite groups
stemming from their corresponding lattice graphs. In conclusion, it calculates the diameter
and girth, as well as other aspects of those lattice graphs.

Second, the machine learning study [6] by Chris Lytridis, Anna Lekova, Christos
Bazinas, Michail Manios and Vassilis G. Kaburlasos introduces a k-nearest neighbor (kNN)
classifier, namely, WINkNN, to time-series classification using lattice-ordered intervals’
numbers (INs); the advantage of an IN is that it represents all-order data statistics in
a time-series. Tunable, parametric non-linearities result in good performance in two
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benchmark datasets involving electroencephalography (EEG) signals, as well as audio
time-series signals.

Third, the mathematical morphology study [7] by Marcos Eduardo Valle introduces the
reduced dilation–erosion perceptron (r-DEP) classifier to deal with the shortage of a natural
ordering of feature patterns by endowing the feature space with a reduced ordering. The
proposed r-DEP classifier yielded average higher balanced accuracy scores than alternative
classifiers from the literature on several binary classification datasets.

Additionally, the neural computing study [8] by Gerhard X. Ritter, Gonzalo Urcid
and Luis-David Lara-Rodríguez presents a novel lattice-based biomimetic neural network
trained by means of a similarity measure derived from a positive lattice valuation. Pat-
tern recognition is achieved without any iterative scheme subject to convergence issues.
Applications to real-world datasets demonstrate the overall classification performance.

Next, the applied mathematics study [9] by Francisco J. Valverde-Albacete and Car-
men Peláez-Moreno introduces a basic technique for lattice computing, analogous to the
singular value decomposition technique for rectangular matrices over complete idempotent
semifields (i-SVD). It shows that instances of the proposed algebras are already useful in
applications, e.g., morphological processing. A relation to an extension of formal concept
analysis (FCA), namely K-FCA, is also shown.

Moreover, the applied mathematics investigation [10] by Francisco J. Valverde-Albacete
and Carmen Peláez-Moreno extends the formal concept analysis (FCA) formalism to include
all four Galois connections between four different semivectors spaces over idempotent
semifields, resulting in K-four-fold formal concept analysis (K-4FCA). The partial results
lead to a fundamental theorem that defines quadrilattices and discuss its relevance vis à vis
previous formal conceptual analyses.

Furthermore, the machine-learning study [11] by Nina S. T. Hirata and George A.
Papakostas firstly reviews and discusses the representational structure of morphological
image operators, secondly addresses the problem of learning morphological image oper-
ators from data, and thirdly, it focuses on recent morphological image operator learning
methods that take advantage of deep-learning frameworks.

Finally, the granular computing study [12] by Vassilis G. Kaburlasos, Chris Lytridis,
Eleni Vrochidou, Christos Bazinas, George A. Papakostas, Anna Lekova, Omar Bouattane,
Mohamed Youssfi and Takashi Hashimoto introduces the granule-based classifier (GbC)
applicable to tree data structures, where a tree data structure represents a human face during
human–robot interactions. Computational experiments, regarding three different pattern
recognition problems, comparatively demonstrate the advantages of the GbC classifier.
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