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Abstract

:

Let G be a group. An automorphism  α  of G is said to be a cyclic automorphism if the subgroup   〈 x ,  x α  〉   is cyclic for every element x of G. In [F. de Giovanni, M.L. Newell, A. Russo: On a class of normal endomorphisms of groups, J. Algebra and its Applications 13, (2014), 6pp] the authors proved that every cyclic automorphism is central, namely, that every cyclic automorphism acts trivially on the factor group   G / Z ( G )  . In this paper, the class   F W   of groups in which every element induces by conjugation a cyclic automorphism on a (normal) subgroup of finite index will be investigated.
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1. Introduction


Let G be a group. Following the work in [1], an automorphism  α  of G is called a cyclic automorphism if the subgroup   〈 x ,  x α  〉   is cyclic for every element x of G. Clearly, any power automorphism of G (i.e., an automorphism which maps every subgroup onto itself) is cyclic; however, the multiplication by a rational number greater than 1 is a cyclic automorphism of the additive group of rational numbers which is not a power automorphism. Finally, it is easy to show that any cyclic automorphism of a periodic group is a power automorphism.



In [1], it was proved that any cyclic automorphism of a group G is central, i.e., it acts trivially on the factor group   G / Z ( G )  . Notice that this result is an extension to cyclic automorphisms of a renowned theorem by Cooper [2] for power automorphisms. It is not difficult to prove that the set   C A u t ( G )   of all cyclic automorphisms of G forms a normal abelian subgroup of the automorphism group   A u t ( G )   of G. In [3], the structure of   C A u t ( G )   has been investigated in detail and some well-known properties of power automorphisms (see in [2]) has been extended to cyclic automorphisms. Moreover, the groups in which every automorphism is cyclic have been characterized there.



In the following, we will say that an element g of a group G induces by conjugation a weakly cyclic automorphism of G if there exists a normal subgroup   W ( g )   of G such that the index   | G : W ( g ) |   is finite and the subgroup   〈 x ,  x g  〉   is cyclic for each element x of   W ( g )  . Let   g 1   and   g 2   be elements of G inducing weakly cyclic automorphisms and put   W = W  (  g 1  )  ∩ W  (  g 2  )   . If x is an element of W, then    〈 x ,  x  g 1   〉  =  〈 y 〉    for some   y ∈ W  , and so   〈 x ,  x  g 1   〉   is contained in the cyclic subgroup   〈 y ,  y  g 2   〉  . It follows that    g 1   g 2    induces a weakly cyclic automorphism of G and hence the set   F W ( G )   of all elements of G inducing by conjugation weakly cyclic automorphisms of G is a subgroup of G. Moreover, if g is an element of   F W  , x is an element of   W ( g )   and y is an element of G, we have that    〈  x  y  − 1    ,  x   y  − 1   g   〉  y   is again a cyclic subgroup of   W ( g )  , so that   F W ( G )   is a normal subgroup of G. We name this subgroup the   F W  -  c e n t r e   of G. A group which coincides with its   F W  -center will be called an   F W  -  g r o u p  .



Recall that the cyclic norm   C ( G )   of a group G is defined as the intersection of the normalizers of every maximal locally cyclic subgroup of G. By [3], Lemma 2.1, any cyclic automorphism of G fixes all maximal locally cyclic subgroups of G. It follows that   C ( G )   coincides with the set of all elements of G inducing cyclic automorphisms of G. In particular,   C ( G )   is a subgroup of   F W ( G )  .



In the first part of the article, the class  FW  of groups in which every element induces by conjugation a weakly cyclic automorphism will be investigated. In particular, it will be proved that the class  FW  coincides with the class  FP  recently studied by De Falco et al. [4]. Recall here that a group G is said to be an   F P  -  g r o u p   if every element of G induces by conjugation a power automorphism on some subgroup of finite index of G. Clearly, the groups with finitely many conjugacy classes (the so-called   F C  -  g r o u p s  ) are   F P  -groups, while every   F P  -group is an   F W  -group. The consideration of the infinite dihedral group   D ∞   shows that there are   F P  -groups which are not   F C  -groups.



Let G be a group and denote by   C y c ( G )   the set of all elements x of G such that   〈 x , y 〉   is cyclic for every y in G. It is easy to show that   C y c ( G )   is a central, characteristic subgroup of G called the cyclicizer of G (see [5,6]). Clearly,   C y c ( G )   is locally cyclic and hence every automorphism of G induces a cyclic automorphism on   C y c ( G )  . In the last part of the article, groups with non-trivial cyclicizer will be investigated extending to the infinite case some results in [6,7,8]. In particular, it is shown that any torsion-free or primary generalized soluble group with non-trivial cyclicizer is an   F W  -group. Moreover, the well-known characterization of finite p-groups with only one subgroup of order p (see, for instance, [9], 5.3.6) will be extended to locally finite groups. Finally, it is proved that the factor group   G / C y c ( G )   is finite if and only if G has a finite covering of locally cyclic subgroups.



Most of our notation is standard and can be found in [10].




2. FW-Groups


Our first result is an easy remark concerning cyclic automorphisms of finite order.



Lemma 1.

Let G be a group. Every periodic cyclic automorphism of G is a power automorphism.





Proof. 

Let  α  be a cyclic automorphism of G, let g be an element of G, and consider a maximal locally cyclic subgroup M of G such that   g ∈ M  . As one can easily see that    M α  = M   (see, for instance, in [3], Lemma 2.1), then the normal closure    〈 x 〉   〈 α 〉    is locally cyclic and hence there exists an element x of G such that     〈 g 〉   〈 α 〉   =  〈 x 〉   . Clearly,     〈 x 〉   〈 α 〉   =  〈 x 〉    and we may suppose that g has infinite order. Therefore,    x α  =  x  − 1     and    g α  =  g  − 1    . Thus,  α  induces a power automorphism on G. □





Let G be a group. A normal subgroup W of G is said to be weakly central if every element of G induces by conjugation a cyclic automorphism of W. Clearly, if G contains a weakly central subgroup of finite index, then G is an   F W  -group.



Proposition 1.

Let G be a group. If W is a weakly central subgroup of finite index of G, then every subgroup of W is normal in G. In particular, G is an   F P  -group.





Proof. 

First, assume that every inner automorphism of G is cyclic. Then, G coincides with its cyclic norm and hence every maximal locally cyclic subgroup of G is normal. Let g be an element of G and consider a maximal locally cyclic subgroup M containing g. As G is an   F C  -group (see [3], Theorem 4.2), then the normal closure    〈 g 〉  G   of g in G is a finitely generated subgroup of M. Therefore,   〈 g 〉   is normal in G and thus G is a Dedekind group.



The above argument shows that W is a Dedekind group. Since a cyclic automorphism of a periodic group is a power automorphism (see in [3], Lemma 2.3), we may suppose that W is abelian. It follows that the factor group   G /  C G   ( W )    is finite and hence every element g of G induces on W a cyclic automorphism of finite order. The statement now follows from Lemma 1. □





Corollary 1.

Let G be a group all of whose inner automorphisms are cyclic automorphisms. Then G is a Dedekind group.





Let G be a group. We denote here with   F P ( G )   the   F P  -  c e n t r e   of G, namely the subgroup of all elements of G inducing by conjugation power automorphisms on some subgroup of finite index of G. Clearly,   F P ( G )   is a subgroup of   F W ( G )  .



Recall that a non-periodic group is said to be weak if it can be generated by its elements of infinite order, while it is said to be strong otherwise. In particular, all non-periodic abelian groups are weak.



Theorem 1.

Let G be a group. Then,   F W  -centre and   F P  -centre of G coincide.





Proof. 

As the   F P  -centre of G is a subgroup of   F W ( G )  , we just have to show that every element of G inducing a weakly cyclic automorphism of G induces a weakly power automorphism of G. Therefore, let g be an element of   F W ( G )   and let   W ( g )   be a normal subgroup of finite index of G such that g induces on   W ( g )   a cyclic automorphism. By Lemma 1, we may assume that g induces an aperiodic automorphism on   W ( g )  . Clearly,    g n  ∈ W  ( g )    for some positive integer n and    g n  ≠ 1  . If   W ( g )   is weak, then g acts universally on   W ( g )   (see [3], Theorem 3.5) and then   [ W ( g ) , g ] = { 1 }   as   g n   belongs to   W ( g )  , so we may further assume that   W ( g )   is strong. If we let W be the subgroup of G generated by every element of infinite order of G, by Theorem 3.5 in [3], g fixes W and   G / W   elementwise. Let now x be an element of finite order of   W ( g )   and let m be the order of x. As   〈 x 〉   and   〈  x g  〉   are both subgroups of order m of the cyclic group   〈 x ,  x g  〉  , they coincide and this shows that g acts as a power automorphism on every finite cyclic subgroup of   W ( g )  . As g centralizes every element of infinite order of G, it follows that g induces a power automorphism on   W ( g )   and our thesis is proved. □





Corollary 2.

Let G be a group. Then, G is an   F W  -group if and only if G is an   F P  -group.





Recall that a subgroup X of a group G is said to be pronormal if the subgroups X and   X g   are conjugate in the subgroup   〈 X ,  X g  〉   for all elements g of G. As any subnormal and pronormal subgroup of a group is normal, it follows that a group all of whose subgroups are pronormal is a   T ¯  -  g r o u p   (i.e., a group in which normality is a transitive relation in every subgroup). However, the converse is false, as an example due to Kuzennyi and Subbotin [11] shows. We point out incidentally that in the universe of groups with no infinite simple sections the property   T ¯   for a group G is equivalent to saying that every subgroup of G is weakly normal (see [12]). A tool which is useful to control pronormal subgroups of a group G is the   p r o n o r m   of G, which is defined as the set   P ( G )   of all elements g of G such that X and   X g   are conjugate in   〈 X ,  X g  〉   for any subgroup X of G. The consideration of the alternating group   A 5   shows that the pronorm of a group need not be in general a subgroup. On the other hand, the pronorm of a   T ¯  -group G with no infinite simple sections is a subgroup of G which coincides with the set   L ( G )   consisting of all elements   g ∈ G   such that, if H is a subgroup of G, then g normalizes a subgroup of finite index of H (see [13], Theorem 2.2). The last result of this section shows in particular that a   T ¯  -group G with no infinite simple sections has all subgroups pronormal whenever G belongs to the class  FW .



Corollary 3.

Let G be a group. Then,   F W ( G )   is contained in   L ( G )  . In particular, if G is a   T ¯  -group with no infinite simple sections,   F W ( G )   is a subgroup of   P ( G )  .





Proof. 

By Theorem 1, for every element g of   F W ( G )   we may find a normal subgroup   W ( g )   of finite index of G on which g acts as a power automorphism. If we let H be a subgroup of G, then the subgroup   H ∩ W ( g )   of   W ( g )   is normalized by g, has finite index in H and this proves our claim. □






3. Groups with Non-Trivial Cyclicizer


It is straightforward to see that a group with non-trivial cyclicizer is either torsion-free or periodic. Therefore, it is natural to inspect the cases in which the groups are either torsion-free or primary groups. As some arguments can be unified, in the following elements of infinite order will be said elements of order 0 and torsion-free groups will be called 0-  g r o u p s  .



Lemma 2.

Let G be a p-group where p is a prime or 0. If the cyclicizer   C y c ( G )   of G is not trivial, then it coincides with the centre   Z ( G )   of G.





Proof. 

Assume for a contradiction that   C y c ( G )   is a proper subgroup of   Z ( G )  . Then, we may find an element x of G and an element   y ∈ Z ( G )   such that   〈 x , y 〉 = 〈 x 〉 × 〈 y 〉  . Let now c be a non-trivial element of   C y c ( G )  . As the subgroups   〈 x , c 〉   and   〈 y , c 〉   are cyclic, there is a power of c which belongs to   〈 x 〉 ∩ 〈 y 〉 = { 1 }  . It follows that   C y c ( G )   is periodic, so that also G is periodic and hence the subgroups   〈 x , c 〉   and   〈 y , c 〉   have a unique subgroup of order p for a prime p dividing the order of, say,   〈 x , c 〉  . In particular, the intersection   〈 x 〉 ∩ 〈 y 〉   is not trivial. This contradiction completes the proof. □





The consideration of the direct product of a group of order 3 and a dihedral group of order 8 shows that there exists a (finite) group G whose order is divided by only two primes and such that   { 1 } ≠ C y c ( G ) < Z ( G )  .



Let   A = 〈 a 〉   be a cyclic group of order 4, let B be a group of type   2 ∞   and let b be an element of order 4 of B. Consider the semidirect product   H = A ⋉ B   where a acts as the inversion on B. Take   K = 〈  a 2   b 2  〉   and put   G = H / K  . Clearly, every finite non-abelian subgroup of G is a generalized quaternion group. Therefore, in analogy with the locally dihedral 2-group   D  2 ∞   , we call G a locally generalized quaternion group and we denote it with   Q  2 ∞   .



Here we give a first extension of Theorem 8 in [5].



Lemma 3.

Let G be a locally finite p-group for some prime p. Then, the cyclicizer of G is not trivial if and only if




	(1)

	
G is locally cyclic or




	(2)

	
G is isomorphic with a subgroup of   Q  2 ∞   .









In particular, if G is finite and non-abelian, then G is a generalized quaternion group.





Proof. 

Assume that the cyclicizer C of G contains a non-trivial element c of order p. If G is abelian, then Lemma 2 yields that G coincides with its cyclicizer and then G is locally cyclic. Assume thus that there exists a finite non-abelian subgroup H of G and let x be an element of   〈 H , c 〉   of order p. As   〈 x , c 〉   is cyclic, one has that x is a power of c, namely   〈 H , c 〉   contains a unique subgroup of order p. By a well-known characterization (see, for instance, [9], 5.3.6) we have that   〈 H , c 〉   is a generalized quaternion group. As this property holds for every finite subgroup of G containing   〈 H , c 〉   and the set of finite subgroups of G containing   〈 H , c 〉   is a direct system of G, we can clearly assume that G is infinite. Therefore, it is possible to find in G a subgroup Q which is isomorphic with   Q  2 ∞   . Let g be any element of G, let P be the Prüfer 2-subgroup of Q and let y be an element of order   n > 4   of P. As   〈 g , y 〉 = 〈 g , y , c 〉   is either a cyclic or a generalized quaternion group, we have in any case that   〈 y 〉   is normalized by g and hence the whole P is normalized by g. Moreover,   〈 g 〉   has non-trivial intersection with P, as both must contain c. Then, g has to be contained in Q, otherwise   〈 g , Q 〉   would contain a direct product of two cyclic subgroups of order 2. From this it immediately follows that G is isomorphic with   Q  2 ∞   .



Let us prove the converse. If G is locally cyclic the result is clear. On the other hand, take G to be a subgroup of   Q  2 ∞    which is not locally cyclic. Then, G is not abelian, so that it is either the whole   Q  2 ∞    or a generalized quaternion group. In both cases   Z ( G )   is the only subgroup of G of order 2 and therefore it coincides with the cyclicizer of G, which is then non-trivial. □





This result gives a generalization to the locally finite case of the already quoted result about finite p-groups [9], 5.3.6.



Corollary 4.

Let p be a prime. A locally finite p-group G contains exactly one subgroup of order p if and only if it satisfies one of the following conditions:




	(1)

	
G is locally cyclic;




	(2)

	
G is isomorphic with a generalized quaternion group;




	(3)

	
G is isomorphic with   Q  2 ∞   .











In [7], it is proved that if G is a torsion-free group such that cyclicizer   C y c ( G )   is not trivial, then   C y c ( G ) = Z ( G )   and if   Z ( G )   is divisible, then G is locally cyclic. One may ask whether a torsion-free or a p-group with non-trivial cyclicizer is locally cyclic. In general, these questions can be answered in the negative because of two results by Olšanskiĭ (see in [14], Theorem 31.4 and Theorem 31.5). On the other hand, our next result shows that for a wide class of generalized soluble groups the statement is true.



A group G is said to be weakly radical if it contains an ascending (normal) series all of whose factors are either locally soluble or locally finite.



Theorem 2.

Let G be a locally weakly radical group such that   | π ( G ) | ≤ 1  . Then, G has non-trivial cyclicizer if and only if




	(1)

	
G is locally cyclic or




	(2)

	
G is isomorphic with a subgroup of   Q  2 ∞   .











Proof. 

Let C be the cyclicizer of G. If   C ≠ { 1 }  , it follows from Lemma 2 that   C = Z ( G )  . Moreover, as already pointed out, G is either torsion-free or periodic. By Lemma 3, we may also suppose that G is torsion-free. Let c be a non-trivial element of C. If x is an element of G, then the subgroup   E = 〈 x , c 〉   of G is cyclic and hence there exists a positive integer n such that   x n   belongs to   〈 c 〉  . Thus the factor group   G / C   is periodic and so even locally finite since G is locally weakly radical. Now an easy application of a famous theorem by Schur (see, for instance, Corollary to Theorem 4.12 in [10]) shows that the commutator subgroup of G is locally finite and hence G is abelian. In particular, G is locally cyclic.



The converse is an immediate consequence of Lemma 3. □





Corollary 5.

Let G be a locally weakly radical group such that   | π ( G ) | ≤ 1  . If G has non-trivial cyclicizer, then it is an   F W  -group.





A straightforward application of Theorem 2 and of [9], 12.1.1 is the following.



Corollary 6.

Let G be a locally nilpotent group. Then G has non-trivial cyclicizer if and only if either it is locally cyclic or G is periodic and there is a prime number p such that the p-component   G p   of G either is locally cyclic or is isomorphic with a subgroup of   Q  2 ∞   .





A well-known result of Baer (see, for instance, in [10], Theorem 4.16) states that a group is central-by-finite if and only if it has a finite covering consisting of abelian subgroups. Furthermore, we have already quoted the theorem by Schur that ensures that a central-by-finite group is finite-by-abelian. In the following we rephrase these results replacing the centre   Z ( G )   of G by the cyclicizer   C y c ( G )  . Recall that a collection  Σ  of subgroups of a group G is said to be a covering of G if each element of G belongs to at least one subset in  Σ .



Theorem 3.

Let G be a group and let C be the cyclicizer of G. Then, the following hold:




	(1)

	
If C has finite index in G, then G is finite-by-(locally cyclic);




	(2)

	
The factor group   G / C   is finite if and only if G has a finite covering consisting of locally cyclic subgroups.











Proof. 

(1) As   C ≤ Z ( G )  , then G is central-by-finite and hence the commutator subgroup   G ′   of G is finite. Clearly, we may assume that G is infinite, so that C too is infinite and, by replacing G with   G /  G ′   , we may suppose that G is abelian. Moreover, as C is non-trivial, then G is either torsion-free or periodic. In the former case, G is locally cyclic by Proposition 2. Assume hence that G is periodic. In this case, as we aim to show that G is locally cyclic, we may also suppose that G is a p-group for a prime p. However, C is locally cyclic and hence of type   p ∞  . It follows that G can be decomposed as   G = C × H   where H is a subgroup of G. If c and h are elements of order p of C and H, respectively, then the subgroup   〈 c , h 〉   is not cyclic. This contradiction shows that H is trivial and hence   G = C   is locally cyclic.



(2) First assume that the factor group   G / C   is finite. Choose a (left) transversal to C in G, say   {  x 1  , … ,  x n  }  . Then, for any element g of G, we can write   g =  x i  c   where c is an element of C. Therefore, g belongs to   〈  x i  , C 〉  , which is locally cyclic, and G is covered by the subgroups   〈  x i  , C 〉   with   i = 1 , … , n  .



Conversely, assume that G is covered by finitely many locally cyclic subgroups. Then by a result of Neumann (see in [10], Lemma 4.17) G is covered by finitely many locally cyclic subgroups of finite index. Let L be their intersection. Clearly, L is contained in C and   | G : L |   is finite. It follows that   G / C   is finite. □





We remark that the cyclicizer of the direct product of    Z 2  × Q   is trivial, so that the converse of point (1) of Theorem 3 is not true.
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