

 mathematics-10-00259

mathematics-10-00259

Mathematics 2022, 10(2), 259; doi:10.3390/math10020259

Article

An Improved Modification of Accelerated Double Direction and Double Step-Size Optimization Schemes

Milena J. Petrović 1,*[image: Orcid], Dragana Valjarević 1[image: Orcid], Dejan Ilić 2, Aleksandar Valjarević 3 and Julija Mladenović 4

1

Faculty of Sciences and Mathematics, University of Pristina in Kosovska Mitrovica, Lole Ribara 29, 38220 Kosovska Mitrovica, Serbia

2

Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18106 Niš, Serbia

3

Faculty of Geography, University of Belgrade, Studentski Trg 3/III, 11000 Belgrade, Serbia

4

Faculty of Mathematics, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia

*

Correspondence: milena.petrovic@pr.ac.rs; Tel.: +381-28-425-396

Academic Editor: Armin Fügenschuh

Received: 20 November 2021 / Accepted: 13 January 2022 / Published: 15 January 2022

Abstract

:

We propose an improved variant of the accelerated gradient optimization models for solving unconstrained minimization problems. Merging the positive features of either double direction, as well as double step size accelerated gradient models, we define an iterative method of a simpler form which is generally more effective. Performed convergence analysis shows that the defined iterative method is at least linearly convergent for uniformly convex and strictly convex functions. Numerical test results confirm the efficiency of the developed model regarding the CPU time, the number of iterations and the number of function evaluations metrics.

Keywords:

gradient descent; line search; gradient descent methods; quasi-Newton method; convergence rate

1. Accelerated Double Direction and Double Step Size Methods Overview

In order to define an efficient optimization model for solving unconstrained nonlinear tasks, we approach the matter on multiple fronts. One of the primers is insuring a fast convergence, desirably close enough to the Newton method’s convergence rate. On the other hand, we would like to avoid eventual complicated calculations that can arise from deriving Hessians’ second order partial derivatives. That is why the quasi-Newton method is a good starting point in developing an optimization method with good performance profiles. The benefits of the quasi-Newton methods are well known. One of the main characteristics of these iterations is the conservation of good convergence features, although the Hessian, i.e., the Hessian’s inverse, is not explicitly used. Instead, the appropriately defined Hessian’s approximation, or the approximation of its inverse is used in these methods. This way, the quasi-Newton methods preserve a good convergence rate and, at same time, avoid the possible difficulties of Hessians’ calculations. In this paper, we are using a quasi-Newton concept to define an efficient minimization scheme for solving unconstrained minimization problems, assigned as:

 min f (x) , x ∈ R n ,

(1)

where f (x) is an objective function.

When defining an optimization iterative models based on the quasi-Newton form, we can start with the following general iteration:

 x k + 1 = x k + t k d k ,

(2)

where x k stands for a current iterative point, x k + 1 is the next one, t k is the iterative step length and d k is the search direction of the k − th iteration. For iterations of the quasi-Newton type, the search direction is defined trough the gradient features. Therewith, an iterative direction vector has to fulfill the descent condition, i.e.,

 g k T d k ≤ 0 .

(3)

In condition (3), by g k , we denote the gradient of the objective function at x k . Furthermore, we adopt the usual notations:

 g (x) = ▽ f (x) ,   G (x) = ▽ 2 f (x) ,   g k = ▽ f (x k) ,   G k = ▽ 2 f (x k) ,

(4)

where ▽ f (x) and ▽ 2 f (x) are the standard notations for the gradient and the Hessian of the goal function, respectively.

The way of defining the iterative step length t k and the iterative search direction vector d k directly influences the methods’ efficiency. With that, some authors [1,2,3,4,5] segregated one parameter more, equally important as the other two, that contributes to the method’s performance characteristics. That is an iterative accelerated parameter, often marked out as γ k . In [1], the author marked this parameter as θ k , and its iterative value is expressed by the relation (5). Researchers on this topic justifiably extricated a class of accelerated gradient schemes. In [3], for example, authors numerically confirmed more than evident performance progress in favor of the accelerated method when compared to its non-accelerated version. Here are some expressions of the accelerated factors defined in the accelerated gradient models mentioned above. These accelerated parameters are also listed in [6]:

 θ k A G D = − t k g k T g k t k y k T g k ,

(5)

 γ k + 1 S M = 2 γ k γ k f (x k + 1) − f (x k) + t k ∥ g k ∥ 2 t k 2 ∥ g k ∥ 2 ,

(6)

 γ k + 1 A D D = 2 f (x k + 1) − f (x k) − α k g k T α k d k − γ k − 1 g k α k d k − γ k − 1 g k T t k d k − γ k − 1 g k ,

(7)

 γ k + 1 A D S S = 2 f (x k + 1) − f (x k) + α k γ k − 1 + β k ∥ g k ∥ 2 α k γ k − 1 + β k 2 ∥ g k ∥ 2 ,

(8)

 γ k + 1 T A D S S = 2 f (x k + 1) − f (x k) + ψ k ∥ g k ∥ 2 ψ k 2 ∥ g k ∥ 2 ,   ψ k = [α k γ k − 1 − α k 2) + 1] .

(9)

Interesting ideas of the double step length and the double direction approach in defining an efficient minimization iteration are presented in [2,3]. In both of these studies, the authors used properly determined accelerating characteristics. In this paper, we use the proven good properties of each of these models, i.e., of the accelerated double direction, or shortly, the ADD method, as well as of the accelerated double step size-ADSS method.

The ADD iteration is defined by the following expression:

 x k + 1 = x k + α k 2 d k − α k γ k − 1 g k ,

(10)

where γ k = γ k A D D > 0 is the acceleration parameter. The iterative step length α k is derived using the Armijos’ Backtracking inexact lines search algorithm. Variable d k stands for the second vector direction, and it is calculated by the next rule:

 d k (t) = d k * , k ≤ m − 1 ∑ i = 2 m t i − 1 d k − i + 1 * , k ≥ m

(11)

where d k * is the solution of the problem min x ∈ R Φ k (d) ,

 Φ k (d) = ▽ f (x k) T d + 1 2 γ k + 1 I = g (x k) T d + 1 2 γ k + 1 I .

The two search directions in the ADD method are d k , defined by the previous rule and − γ k − 1 g k . One of the main results in [3] is that the ADD algorithm provides a lower number of iterations than the accelerated gradient descent method, marked as the SM method, which is presented in [2]. The iterative form of the SM method is given by the expression:

 x k + 1 = x k − t k γ k − 1 g k ,

where t k is the iterative step length value, and γ k ≡ γ k S M is the acceleration parameter of the SM iteration expressed by the relation (6).

The accelerated double step size model, i.e., the ADSS, is defined as

 x k + 1 = x k − α k γ k − 1 g k − β k g k = x k − α k γ k − 1 + β k g k .

(12)

Parameters α k > 0 and β k > 0 are two iterative step lengths, calculated by two different Backtracking procedures, and γ k = γ k A D S S > 0 is the ADSS iterative accelerated parameter. In the ADSS iteration, we can identify the vector direction as:

 − α k γ k − 1 + β k g k .

(13)

Transformed ADSS method, or in short, the TADSS, came from the ADSS scheme under the following condition: α k + β k = 1 . The TADSS iteration is defined as:

 x k + 1 = x k − [α k (γ k − 1 − 1) + 1] g k .

(14)

From expression (13), we conclude that the defined vector direction has the form of a negative gradient direction. Having that in mind, it depends on the step length parameters as well as on the accelerated parameter iterative value. Numerical experiments from [4] show that the ADSS iteration outperforms the ADD [3] and the SM [2] schemes regarding all three of the analyzed metrics: the number of iterations, CPU time and the number of function evaluations.

We are motivated to define the method as an improved merged version of the accelerated double direction and double step size methods. At the same time, the proposed model should be of the simpler form than the ADD and the ADSS schemes are. We define this simpler form by ejecting one of the Backtracking algorithms from the ADSS iteration and by replacing the algorithm (11) in the ADD scheme with the gradient descent rule. Taking all these assumptions, we expect the proposed iterative method to be convergent at least at the same rate as the ADD and the ADSS methods are. That modified iteration, based on the mentioned accelerated gradient descent algorithms, should conserve the positive sides of its predecessors but also exceed them regarding the performance profiles of all tested metrics.

The paper is organized in the following way: In Section 2, we define the improved version of the ADD and the ADSS schemes. The convergence analysis of the defined model is carried out in Section 3. Numerical test results are compared, analyzed and displayed in Section 4.

2. Modified Accelerated Double Direction and Double Step Size Method

Taking into account the iterative form of the accelerated ADD method as well as good performance features of the accelerated double step size ADSS scheme, considering all three tested metrics, we propose the following iterative model for solving a large scale of unconstrained minimization problems:

 x k + 1 = x k − α k γ k − 1 + α k 2 g k ≡ x k − α k γ k − 1 g k − α k 2 g k .

(15)

Iterative scheme (15) presents the merged variant of the ADD and the ADSS methods, keeping the favorable aspects of each included gradient scheme. We denoted the iterative rule (15) as the modified accelerated double direction and double step size method, or in short, modADS. In the modADS scheme, one iterative search direction is γ k − 1 g k , and the other is simply a negative gradient direction. Two step lengths, α k and α k 2 , are obtained using one Backtracking procedure. Basically, our main goal in generating the modADS method is to define an improved merged version of the accelerated double direction and double step size methods. Having that in mind, we want to conserve the positive aspects of each of these two baseline models. The form of the ADD iteration contains only one iterative step length value, i.e., one Backtracking procedure is applied. That was the main motivation to substitute the second iterative value β k from the ADSS iteration with the α k 2 . In this way, we conserve the form of the ADD iteration in the new modADS scheme.

On the other hand, from the results presented in [4], we know that the second search direction d k defined in the ADD iteration by (11) causes an increase in the number of function evaluations. Therefore, instead of it, just like in the ADSS iteration, in the new modADS process we simply use the gradient descent direction for the second search direction, as well.

There are certainly many different options for defining the second iterative step length in the double-direction and double step size models that differ from our choice: α k 2 . That question is still open. Since the modADS belongs to the class of accelerated double direction and double step size methods and presents a merged form of the ADD and the ADSS iteration, the choice to keep α k 2 as the second step length value was a natural one. Additionally, according to the TADSS iteration (14), it could be said that the TADSS corresponds to a different choice of second step size β k of the ADSS iteration. Therefore, this is also a motivation to define the modADS in a presented way and to compare the performance features of these two similar approaches.

So, the common elements of the ADD, the ADSS and the proposed modADSS iterative form represent the iterative step length value, α k , and the search direction vector γ k − 1 g k . The other search direction in the modADS is − g k , just like in the ADSS scheme. Still, as previously explained, the second step-size value of the new method differs from the one, β k , applied in the ADSS model. Instead of using an additional inexact line search technique to calculate the second iterative step length value, in the modADS, we use only one Backtracking procedure and define the second step length parameter as the quadratic value of the Backtracking outcome α k . This way, we evidently provide a decrease in the computational time, number of needed iterations and function evaluations. We confirm this statement in Section 4 by comparative analysis of the performance profiles of each of the tested models.

The algorithm of the Backtracking procedure upon which we calculate the iterative step length value is given by the following steps:

	
Objective function f (x) , the direction d k of the search at the point x k and numbers 0 < σ < 0.5 and β ∈ (0 , 1) are required;

	
 α = 1 ;

	
 f (x k + α d k) > f (x k) + σ α g k T d k , take α : = α β ;

	
Return α k = α .

We now derive the iterative value of the acceleration parameter using the second order Taylors’ expansion of the modADS iteration (15). To avoid huge expressions in that process, we simplified the relation (15) using the next substitution:

 x k + 1 = x k − s k g k ,

(16)

where s k = α k γ k − 1 + α k 2 = α k γ k − 1 + α k . Second order Taylor polynomial of (16) is then:

 f (x k + 1) ≈ f (x k) − g k T s k g k + 1 2 s k g k T ∇ 2 f (ξ) g k .

(17)

In relation (17), ∇ 2 f (ξ) stands for the Hessian of the objective function, and variable ξ fulfills the following conditions:

 ξ ∈ [x k , x k + 1] ,   ξ = x k + δ (x k + 1 − x k) = x k − δ s k g k ,   0 ≤ δ ≤ 1 .

We replace Hessian ∇ 2 f (ξ) with a properly defined scalar diagonal matrix

 γ k I ,

where variable γ k + 1 is the acceleration parameter we are searching for:

 f (x k + 1) ≈ f (x k) − s k ∥ g k ∥ 2 + 1 2 s k γ k + 1 ∥ g k ∥ 2 .

(18)

From the previous expression, we can easily compute the iterative value of the acceleration factor:

 γ k + 1 = 2 f (x k + 1) − f (x k) + s k ∥ g k ∥ 2 s k 2 ∥ g k ∥ 2 = 2 f (x k + 1) − f (x k) + α k γ k − 1 + α k ∥ g k ∥ 2 α k 2 γ k − 1 + α k 2 ∥ g k ∥ 2 .

(19)

We are only interested in the positive γ k + 1 values because, in that case, both of the second order necessary and the second order sufficient conditions are fulfilled. However, if in some iterative steps we calculate a negative value for the acceleration parameter, then we simply set γ k + 1 = 1 . This choice of γ k + 1 transforms our modADS iteration into the standard gradient descent iterative method, i.e.,

 x k + 2 = x k + 1 − α k + 1 (1 + α k + 1) g k + 1 ≡ x k + 1 − t k + 1 g k + 1 ,

for some t k + 1 = α k + 1 (1 + α k + 1) .

For initial values 0 < ρ < 1 , 0 < τ < 1 , x 0 , γ 0 = 1 , we now present the modADS algorithm:

	
Set k = 0 , compute f (x 0) , g 0 and take γ 0 = 1 ;

	
If ∥ g k ∥ < ϵ , then go to Step 8, else continue by the step 3;

	
Apply Backtracking algorithm to calculate the iterative step length α k ;

	
Compute x k + 1 using (15);

	
Determine the acceleration parameter γ k + 1 using (19);

	
If γ k + 1 < 0 , then take γ k + 1 = 1 ;

	
Set k : = k + 1 , go to Step 2;

	
Return x k + 1 and f (x k + 1) .

3. Convergence Analysis

In this section, we prove that the modADS iteration linearly converges on the sets of uniformly convex functions and strictly convex quadratic functions. We analyze these two function sets separately.

3.1. Set of Uniformly Convex Functions

To prove the linear convergence properties, we are using the following two statements from [7,8]:

Proposition 1.

If the function f : R n → R is twice continuously differentiable and uniformly convex on R n then:

	(1)

	
the function f has a lower bound on L 0 = { x ∈ R n ∣ f (x) ≤ f (x 0) } , where x 0 ∈ R n is available;

	(2)

	
the gradient g is the Lipschitz continuous in an open convex set B which contains L 0 , i.e., there exists L > 0 such that:

 ∥ g (x) − g (y) ∥ ≤ L ∥ x − y ∥ ,   ∀ x , y ∈ B .

Lemma 1.

Under the assumptions of Proposition 1, there exist real numbers m and M satisfying:

 0 < m ≤ 1 ≤ M ,

(20)

such that f (x) has an unique minimizer x * and

 m ∥ y ∥ 2 ≤ y T ∇ 2 f (x) y ≤ M ∥ y ∥ 2 ,   ∀ x , y ∈ R n ;

(21)

 1 2 m ∥ x − x * ∥ 2 ≤ f (x) − f (x *) ≤ 1 2 M ∥ x − x * ∥ 2 ,   ∀ x ∈ R n ;

(22)

 m ∥ x − y ∥ 2 ≤ (g (x) − g (y)) T (x − y) ≤ M ∥ x − y ∥ 2 ,   ∀ x , y ∈ R n .

(23)

In the following Lemma, we show that the objective function, on which the modADS iteration is applied, is bounded below. We also estimate the measure of the iterative function decreasing. The proof is analogous as in [2].

Lemma 2.

Let the sequence { x k } be defined by the (15), and let f be uniformly convex function. Then:

 f (x k) − f (x k + 1) ≥ μ ∥ g k ∥ 2 ,

(24)

for

 μ = min σ M , σ (1 − σ) L β ,

(25)

where L > 0 is the Lipschitz constant from Proposition 1, and M ∈ R is defined in Lemma 1.

The fact that the modADS model converges at least linearly is proved in the next Theorem 1.

Theorem 1.

The sequence { x k } , defined by the (15) and applied on uniformly convex and twice differentiable objective function f, converges linearly to its solution x * and

 lim k → ∞ ∥ g k ∥ = 0 .

(26)

Proof.

From Lemma 2, we know that the objective function f, when applied on the modADS process, is bounded below and decreases, so it is evident that:

 lim k → ∞ (f (x k) − f (x k + 1)) = 0 .

(27)

This equality, merged with the result of Lemma 2, i.e., the relation (24), lead us to the following conclusion:

 lim k → ∞ ∥ g k ∥ = 0 .

(28)

Let us prove now that the sequence { x k } , generated by the (15), converges to its solution x * , i.e.,

 lim k → ∞ ∥ x k − x * ∥ = 0 .

(29)

To prove (29), we put x * ≡ y in (23):

 m ∥ x − x * ∥ 2 ≤ (g (x) − g (x *)) T (x − x *) ≤ M ∥ x − x * ∥ 2 .

Regarding the Mean Value Theorem and the Cauchy–Schwartz inequality, further on we obtain:

 m ∥ x − x * ∥ 2 ≤ ∥ g (x) ∥ ≤ M ∥ x − x * ∥ 2 .

(30)

From (24) and (30), we have the following estimations:

 μ ∥ g k ∥ 2 ≥ μ m 2 ∥ x − x * ∥ 2   ≥ 2 · μ m 2 M f (x k) − f (x *) → k → ∞ 0 ,

which confirms (29).

To complete this proof, at the end, we show that the modADS process is linearly convergent. To do this, we practically need to prove that

 ρ ≡ 2 · μ m 2 M < 1 .

We know from Lemma 2 that there are two values of the variable μ :   μ = σ M and μ = σ (1 − σ) β L :

	
 μ = σ M : In this case, we have:

 ρ 2 = 2 μ m 2 M = 2 · σ M m 2 M = 2 σ M m 2 M ≤ 2 σ m 2 M ≤ 2 σ < 1 ,

since σ ∈ (0 , 1 2) and m < M .

	
 μ = σ (1 − σ) β L : For this μ − value, using the inequality m ≤ L , we show the same

 ρ 2 = 2 μ m 2 M = 2 · β σ (1 − σ) L m 2 M < 2 · 1 2 · 1 · m 2 L · M = m 2 L · M ≤ L · m L · M = m M < 1 ,

which completes this proof. □

3.2. Set of Strictly Convex Quadratics

Now, let us suppose that the objective function is a strictly convex quadratic function, expressed as:

 f (x) = 1 2 x T A x − b T x ,

(31)

where A is a real n × n matrix, which is symmetric and positive definite, and b ∈ R n is a given vector. Lets denote and sort the eigenvalues of the matrix A as

 λ 1 ≤ λ 2 ≤ ⋯ ≤ λ n .

Our goal now is to prove the convergence of the modADS iteration when applied on strictly convex quadratic. However, before we reveal the main theorem of this subsection, we show one auxiliary lemma which estimates the iterative variable s k ≡ α k (γ k − 1 + α k) with respect to the smallest and the largest eigenvalues of matrix A.

Lemma 3.

The smallest and the largest eigenvalues of the matrix A satisfy inequalities:

 σ 2 λ n ≤ α k + 1 (γ k + 1 − 1 + α k + 1) ≤ 1 λ 1 + 1 ,

(32)

where γ k + 1 and α k + 1 are the iterative acceleration parameter and step length value of the modADS iteration, respectively.

Proof.

For the strictly convex quadratic function (31), the difference of its values in two successive points is:

 f (x k + 1) − f (x k) = 1 2 x k + 1 T A x k + 1 − b T x k + 1 − 1 2 x k T A x k + b T x k   = 1 2 x k − s k g k T A x k − s k g k − b T x k − s k g k − 1 2 x k T A x k + b T x k   = 1 2 x k T A x k − 1 2 s k x k T A g k − 1 2 s k g k T A x k     + 1 2 s k 2 g k T A g k − b T x k + s k b T g k − 1 2 x k T A x k + b T x k   = − 1 2 s k x k T A g k − 1 2 s k g k T A x k + 1 2 s k 2 g k T A g k + s k b T g k ,

i.e.,

 f (x k + 1) − f (x k) = − 1 2 s k x k T A g k − 1 2 s k g k T A x k + 1 2 s k 2 g k T A g k + s k b T g k .

(33)

Matrix A is symmetric and positive definite, so we can apply the symmetry condition: b T g k = g T b k . We can also use the fact that the gradient of the function (31) is g k = A x k − b and transform (33) into:

 f (x k + 1) − f (x k) = − 1 2 s k g k T A x k + x k T A g k − s k g k T A g k − b T g k − b T g k   = − 1 2 s k g k T (A x k − b T) + g k T (A x k − b T) − s k g k T A g k   = − 1 2 s k g k T g k + g k T g k − s k g k T A g k   = − s k g k T g k + 1 2 s k 2 g k T A g k .

If we replace the derived expression of the difference between function values in two successive iterations into the (19), we obtain:

 γ k + 1 = 2 − s k g k T g k + 1 2 s k 2 g k T A g k + s k g k T g k s k 2 g k T g k ≡ g k T A g k g k T g k .

(34)

From (34), we conclude that γ k + 1 is the Rayleigh quotient of the real symmetric matrix at the gradient vector g k , so the next is true:

 λ 1 ≤ γ k + 1 ≤ λ n ,   k ∈ N .

(35)

Since 0 ≤ α k + 1 ≤ 1 , the following estimations are valid:

 s k + 1 = α k + 1 (γ k + 1 − 1 + α k + 1) = α k + 1 γ k + 1 − 1 + α k + 1 2   ≤ 1 γ k + 1 + α k + 1 ≤ 1 λ 1 + α k + 1 ≤ 1 λ 1 + 1

To prove the right side of (32), we will take the relation t k > η 1 − σ γ k L , proved in [2]. With proper notation used in this scheme, the previous inequality becomes:

 α k > β 1 − σ γ k L .

(36)

We take into account the parameter limitations, i.e., σ ∈ (0 , 1 2) ,   β ∈ (σ , 1) and 0 ≤ α k + 1 ≤ 1 , and that leads us to:

 s k + 1 = α k + 1 (γ k + 1 − 1 + α k + 1) = α k + 1 γ k + 1 − 1 + α k + 1 2   > α k + 1 γ k + 1 ≥ β 1 − σ γ k + 1 L · 1 γ k + 1   ≥ β 1 − σ L ≥ σ 1 − 1 2 L   = σ 2 L ≥ σ 2 λ n .

The last inequality arises from the fact that the largest eigenvalue λ n has the property of the Lipschity constant L:

 ∥ g (x) − g (y) ∥ = ∥ A x − A y ∥ = ∥ A (x − y) ∥ ≤ ∥ A ∥ ∥ x − y ∥ = λ n ∥ x − y ∥ .

This analysis confirms that (32) is truly assured. □

Theorem 2.

Suppose the relation λ n < 2 2 λ 1 1 + λ 1 holds for the smallest and the largest eigenvalues of the strictly convex quadratic function (31). Then, considering the modADS iteration applied on (31), the following holds:

 g k = ∑ i = 1 n d i k v i ,

(37)

where

 (d i k + 1) 2 ≤ δ 2 (d i k) 2 ,   δ = max 1 − λ 1 2 λ n , λ n (1 λ 1 + 1) − 1 ,

(38)

for some real parameters d 1 k , d 2 k , … , d n k . With that:

 lim k → ∞ ∥ g k ∥ = 0 .

(39)

Proof.

Let { v 1 , v 2 , … , v n } be the set of orthonormal eigenvalues of matrix A in expression (31). Assume that the sequence { x k } is generated by iterative rule (15). Then, the gradient of the function (31) in k + 1 − th iterative point is:

 g k + 1 = A (x k − s k g k) − b = A x k − b − s k A g k = g k − s k A g k = (I − s k A) g k ,

(40)

since g k = A x k − b . Applying (37), we obtain:

 g k + 1 = ∑ i = 1 n d i k + 1 v i = ∑ i = 1 n (1 − s k λ i) d i k v i .

To prove (37), it is enough to show that ∣ 1 − s k λ i ∣ ≤ δ .

 ∣ 1 − s k λ i ∣ ≤ δ ⇔ { 1 − s k λ i s k λ i ≤ 1 s k λ i − 1 s k λ i > 1 ,

(41)

so, we analyze two cases:

	
 1 ≥ s k λ i ≥ λ 1 2 λ n ⇒ 1 − s k λ i ≤ 1 − λ 1 2 λ n ≤ δ ;

	
 1 < s k λ i ≤ λ n 1 λ 1 + 1 ⇒ λ n 1 λ 1 + 1 − 1 < δ .

From (37), we have that the measure of the gradient norm square is:

 ∥ g k ∥ 2 = ∑ i = 1 n (d i k) 2 ,

(42)

and since parameter δ ∈ (0 , 1) , we derive the final conclusion (39). □

4. Numerical Outcomes and Comparative Analysis

In this section, we display the numerical results, using which we compare the relevant methods. For comparative models, in addition to the objective modADSS method presented in this paper, we primarily chose the accelerated double direction (ADD) method introduced in [3] and the accelerated double step-size (ADSS) iteration from [4]. This is a natural choice of comparative optimization processes since the derived modADS algorithm originates from these two gradient accelerated schemes and our basic goal is the improvement of this class of methods. Then, we investigate the impact of Backtracking parameter β by testing two more values for this parameter. The TADSS method, presented in [5], and the modADS introduced in this paper present two different ways of reducing the double step-size ADSS scheme into a single step length iteration. Due to this fact, we compare these two methods as well. Finally, we complete the numerical comparative analysis by comparing the defined modADS model with two more general gradient descent methods: Cauchy’s gradient method (GD) and Andrei’s accelerated gradient method (AGD) from [1].

The ADD scheme brought benefits regarding the reduction in the needed number of iterations towards its non-linear version and the SM method from [2]. Furthermore, in [4], the ADSS shown undisputed advances with respect to all three of the tested metrics: the number of iterations, the CPU time and the number of function evaluations. It has been compared with the SM and the ADD schemes.

All codes are written in the visual C++ programming language and run on a Workstation Intel(R) Core(TM) 2.3 GHz. The following values of the Backtracking parameters are taken: σ = 0.0001 and β = 0.8 .

The stopping criteria are:

 ∥ g k ∥ ≤ 10 − 6   and   | f (x k + 1) − f (x k) | 1 + | f (x k) | ≤ 10 − 16 .

We chose 10 values for the number of parameters for each test function: 100; 500; 1000; 3000; 5000; 10,000; 15,000; 20,000; 25,000 and 30,000. As a final result for 1 test function, we sum all 10 outcomes. We measured all three performance characteristics: the number of iterations, CPU and the number of evaluations. If for a certain number of iterations and for some test functions the applied model does not finish the test process in some defined time, we put the constant t e , the time-limiter parameter, in Table 1 and Table 2.

Remark 1.

Time-limiter parameter is introduced in [3]. It is posed as an indicator for stopping the code execution, after some defined time, t e ≈ 120 s.

In the next Listing 1, we list the set of test functions examined in this research. We applied all three compared methods to each of these functions. The proposed functions are taken from a collection of unconstrained optimization test functions introduced in [9].

	Listing 1. Test functions.

	1. Extended Penalty

	2. Perturbed Quadratic

	3. Raydan-1

	4. Diagonal 1

	5. Diagonal 3

	6. Generalized Tridiagonal-1

	7. Extended Tridiagonal-1

	8. Extended Three Expon. Terms

	9. Diagonal 4

	10. Extended Himmelblau

	11. Quadr. Diag. Perturbed

	12. Quadratic QF1

	13. Exten. Quadr. Penalty QP1

	14. Exten. Quadr. Penalty QP2

	15. Quadratic QF2

	16. Extended EP1

	17. Extended Tridiagonal-2

	18. Arwhead

	19. Almost Perturbed Quadratic

	20. Engval1

	21. Quartc

	22. Generalized Quartic

	23. Diagonal 7

	24. Diagonal 8

	25. Diagonal 9

	26. DIXON3DQ

	27. NONSCOMP

	28. HIMMELH

	29. Power (Cute)

	30. Sine

In Table 1, we display the results concerning the number of iterations metric. All three of the models provide very good numerical outcomes regarding the number of needed iterations. As expected, modADS and ADSS have an equal number of iterations for many test functions, precisely, 21 out of 30. This is due to the modADS iterative form having similar characteristics to those of the ADSS iteration. All three models give the same number of iterations for three cases. With that, each of the modADS and ADD give the lowest number of iterations in 6 out of 30 cases while ADSS does so in only 1 of 30 cases. A general view shows that modADS gives the final outcomes for all 30 test functions, ADD for 26 and ADSS for 29. ADD broke the time-limiter constant for the Diagonal 7, Diagonal 8, Power (Cute) and Sine functions. Execution time is exceeded only for the Sine function when the ADSS model is applied.

Regarding the speed of execution of each comparative model, from the obtained numerical outcomes, we can see that the modADS and ADSS models perform almost equally, and that is why we did not display the results obtained on this metric. Both models give zeros for CPU time in 29 out of 30 cases, and only modADS was successfully applied on the test function (Sine), while the ADSS iteration broke the execution time in this case. The ADD model has the worst outcomes in testing this characteristic with four t e breaks.

The contents of the Table 2 show the number of function evaluations for all three of the tested models. It is obvious that the modADS achieved the greatest improvement regarding this performance characteristic, when compared to the other two test processes. This method convincingly gives the lowest number of function evaluations in 29 out of 30 cases. The ADSS has the best outcome in 1 case only, while the ADD has very high numbers as results regarding this metric for almost all 30 test functions.

The average values concerning the three analyzed criteria for all comparative models are displayed in Table 3. We included the results of these computations achieved on 26 out of 30 test functions, on which we could apply all methods without breaking the execution time. From this Table, we can obtain a general impression about the performance features of the generated modADS process in comparison to its forerunners. We see that this new accelerated variant is equally fast as the ADSS scheme, it slightly goes beyond the ADSS regarding the number of iterations metric and evidently gives a significant shift in the number of evaluations. When compared with the ADD iteration, the modADS iteration upgrades it multiple times regarding all three performance profiles. More precisely, the modADS gives a 4 times lower average number of iterations, more than a 142 times lower number of function evaluations and it is multiple times faster than the ADD process.

We now analyze the dependency of the approaches regarding the Backtracking parameter beta. As mentioned before in this Section, in all previously displayed results, in the algorithms of all three comparative models, the value of this parameter was set to β = 0.8 . We conducted 600 additional tests over the modADS, the ADD and the AGD algorithms for 2 more values of this parameter: β = 0.3 and β = 0.6 . For that purpose, we chose the first 10 test functions from the Listing 1. In the following Table 4 and Table 5, we display the sums of the obtained results regarding the number of iterations and the number of evaluations for these three comparative models. As expected, the modADS demonstrates similar performance regarding the analyzed metrics when compared to the ADD and the ADSS methods, just as in the case of β = 0.8 . Concerning the number of iterations, for both beta values, the modADS acts similar to the ADSS method. Regarding the number of evaluations, again for each of the 2 additional beta values, it gives the best results in 7 out of 10 cases when compared to the ADSS and in all 10 cases in comparison to the ADD scheme.

Furthermore, we compare performance metrics between the modADS and the transformed ADSS, i.e., the TADSS. In [5], the authors confirmed that the TADSS provides better numerical outcomes regarding the number of iterations, CPU time and number of function evaluations in comparison with the ADSS scheme on 22 chosen test functions. From the results presented in the previous Table 1, Table 2, Table 3, Table 4 and Table 5, we concluded that the modADSS behaves similarly to the ADSS regarding the number of iterations and the CPU time, but it provides a lower number of evaluations. Due to results from [5], we may expect that the TADSS has better performance results than the modADSS with respect to the number of iterations. In Table 6, we present the achieved test results not only for the 22 test functions from [5] but for all 30 test functions from Listing 1. With that, we show in Table 7 a more general overview of the average results regarding all analyzed metrics.

Although the results from Table 6 illustrate that the TADSS provides a lower number of iterations in even 17 out of 30 test functions, still the general average outcomes confirm that the modADS provides more than 3 times better outcomes with respect to this metric than the TADSS process. According to the Table 6 results, when we analyze the number of function evaluations, the modADS and the TADSS obtain an equal number of the best outcomes. Yet, from the results presented in Table 7, we are assured that the modADS is almost three times more effective on this matter when compared to the TADSS iteration. From Table 6, we can also notice that for the Sine function, the TADSS process exceeds the execution time.

To achieve more general view of the performance features of the modADS method, we conducted additional comparisons with a classical gradient method, defined by Cauchy, and with the accelerated gradient method from [1]. We further denote these comparative methods by GD and AGD, respectively. The execution times were very long for the previously chosen number of variables. Due to that reason, we changed this set into the set of the next 10 decreased values: 10, 100, 200, 300, 500, 700, 800, 1000, 2000 and 3000. We tested the first 15 test functions from the Listing 1 by applying the modADS, the GD and the AGD iterative rules. The sums of 450 additional tests outcomes are displayed in the following Table 8, Table 9 and Table 10.

From Table 8, we can see that it is undoubtedly evident that the modADS gives the lowest number of iterations compared to the GD and the AGD methods in all 15 test functions.

The CPU execution time needed when 3 comparative models are applied on first 15 test functions is listed in the Table 9. We see that, except in four cases when all three methods have the same (zero) outcomes, the modADSS is again a dominant model regarding this aspect, as well.

The number of objective function evaluations achieved by the modADS, the GD and the AGD are illustrated in the Table 10. General conclusions over this performance metric are the same as regarding the number of iterations (Table 8), i.e., the modADS has the best outcomes for all 15 test functions.

As a summary, we display in Table 11 the comparisons of the average results obtained by three comparative methods (modADS, GD and AGD) regarding all three performance characteristics. The results displayed in this table confirm that the modADSS requires an approximately 417 times lower number of iterations compared to the GD method and an about 263 times lower number of iterations compared to the AGD method. Regarding the needed number of evaluations, the modADS outperforms the GD and the AGD methods over the 1420 times.

5. Discussion

We defined an optimization model for solving a large scale of unconstrained minimization problems. This method belongs to the class of accelerated gradient iterations with quasi-Newton features. The presented modADS method could be classified in this manner since it contains the scalar matrix approximation of the Hessian, instead of the Hessian itself, with a guiding scalar, the so-called approximation parameter. Previous research on accelerated gradient optimization models confirms that the existence of this parameter directly improves the performance profiles vice versa to the relevant non-accelerated version [3]. In this paper, we chose to develop this acceleration parameter based on the second order Taylor expansion of the posed iteration.

The modADS originates from the accelerated double direction and double step size methods, and the so conducted convergence analysis is similar to those taken in [4]. It confirmed that the developed model is linearly convergent on the sets of uniformly convex and strictly convex functions.

The outcomes of the numerical experiments conducted on the modADS, the ADD and the ADSS methods for three values of the Backtracking parameter β , show the convincing improvement in reducing the number of function evaluations in favor of the developed model. The ADSS method has one execution break, while the ADD has even four. The modADS highly outperforms the ADD method regarding all analyzed metrics.

When compared with the Cauchy’s gradient method and the Andrei’s accelerated gradient descent method from [1], the modADS outperforms these models multiple times concerning all performance metrics.

6. Conclusions

The proposed iterative rule has the elements of the accelerated double step size-ADSS method [4] and accelerated double direction-ADD method. [3]. In defining modADS, as in previously mentioned methods, we kept the inexact line search Backtracking technique [10] to define an iterative step length value.

We conducted the convergence analysis and proved that the proposed modADS process is at least linearly convergent for the uniformly convex and strictly convex quadratic functions.

Through numerical experiments, we generally conclude that, when compared with the baseline methods, the modADS algorithms has more similarities with the ADSS scheme than with the ADD method. With that, it upgrades both comparative models, primarily because only the modADS method provides numerical outcomes for all 30 test functions, without exception, which confirms the stability of the defined model. In comparison to the classical gradient descent method and accelerated gradient descent method from [1], the defined modADS shows a convincing progress regarding all monitored features.

From all exposed, we conclude that the proposed accelerated gradient minimization model is an effective and efficient algorithm which can be applied for solving many unconstrained optimization tasks.

Author Contributions

Conceptualization, M.J.P.; methodology, M.J.P. and D.V.; software, M.J.P.; validation, M.J.P., D.V., D.I. and A.V.; formal analysis, M.J.P., D.V. and D.I.; investigation, M.J.P., A.V. and J.M.; resources, M.J.P. and D.V.; data curation, M.J.P., D.V., A.V. and J.M.; writing—original draft preparation, M.J.P.; writing—review and editing, D.V., D.I. and A.V.; visualization, A.V. and J.M.; supervision, M.J.P., D.V. and D.I.; project administration, A.V. and J.M.; funding acquisition, A.V. All authors have read and agreed to the published version of the manuscript.

Funding

This research was financially supported by internal-junior project IJ-0202, Faculty of Sciences and Mathematics, University of Priština in Kosovska Mitrovica.

Data Availability Statement

Data results are available on readers request.

Acknowledgments

The first author gratefully acknowledges support from the project Grant No. 174025 by Ministry of Education and Science of Republic of Serbia.

Conflicts of Interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

	MDPI
	Multidisciplinary Digital Publishing Institute

	DOAJ
	Directory of open access journals

	TLA
	Three letter acronym

	LD
	Linear dichroism

References

	

Andrei, N. An acceleration of gradient descent algoritham with backtracing for unconstrained optimization. Numer. Algor. 2006, 42, 63–173. [Google Scholar] [CrossRef]

	

Stanimirovic, P.S.; Miladinović, M.B. Accelerated gradient descent methods with line search. Numer. Algor. 2010, 54, 503–520. [Google Scholar] [CrossRef]

	

Petrović, M.J.; Stanimirovic, P.S. Accelerated Double Direction Method For Solving Unconstrained Optimization Problems. Math. Probl. Eng. 2014, 2014, 965104. [Google Scholar] [CrossRef]

	

Petrović, M.J. An accelerated Double Step Size method in unconstrained optimization. Appl. Math. Comput. 2015, 250, 309–319. [Google Scholar] [CrossRef]

	

Stanimirovic, P.S.; Petrović, M.J.; Milovanović, G.V. A Transformation of Accelerated Double Step Size Method for Unconstrained Optimization. Math. Probl. Eng. 2015, 2015, 283679. [Google Scholar] [CrossRef]

	

Petrović, M.J.; Ivanović, M.; Djordjević, M. Comparative performance analysis of some accelerated and hybrid accelerated gradient models. Univ. Thought Publ. Nat. Sci. 2019, 9, 57–61. [Google Scholar] [CrossRef]

	

Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equation in Several Variables. In Iterative Solution of Nonlinear Equation in Several Variables; Academic Press: London, UK, 1970. [Google Scholar]

	

Rockafellar, R.T. Convex Analysis. In Convex Analysis; Princeton University Press: Princeton, NJ, USA, 1970. [Google Scholar]

	

Andrei, N. An Unconstrained Optimization Test Functions Collection. Adv. Model. Optim. 2008, 10, 1–15. Available online: http://www.apmath.spbu.ru/cnsa/pdf/obzor/An%20Unconstrained%20Optimization%20Test%20Functions%20Collection.pdf (accessed on 6 January 2022).

	

Armijo, L. Minimization of functions having Lipschitz continuous first partial derivatives. Pac. J. Math. 2008, 16, 1–3. [Google Scholar] [CrossRef]

[image: Table]

Table 1. Number of iterations, modADS, ADD and ADSS.

Table 1. Number of iterations, modADS, ADD and ADSS.

	Function Number
	modADS
	ADD
	ADSS

	1.
	50
	73
	50

	2.
	432
	82
	432

	3.
	31
	88
	31

	4.
	60
	83
	135

	5.
	41
	82
	44

	6.
	80
	110
	76

	7.
	70
	120
	70

	8.
	40
	100
	40

	9.
	783
	100
	781

	10.
	70
	100
	70

	11.
	428
	91
	428

	12.
	470
	84
	470

	13.
	60
	91
	60

	14.
	61
	81
	61

	15.
	60
	85
	60

	16.
	40
	100
	40

	17.
	80
	111
	80

	18.
	60
	89
	60

	19.
	432
	82
	432

	20.
	70
	100
	70

	21.
	10
	10
	10

	22.
	76
	102
	70

	23.
	2202
	 t e > l
	2203

	24.
	2215
	 t e > l
	2215

	25.
	32
	80
	34

	26.
	235
	131
	235

	27.
	10
	10
	10

	28.
	10
	10
	10

	29.
	3870
	 t e > l
	5083

	30.
	2061
	 t e > l
	 t e > l

[image: Table]

Table 2. Number of function evaluations, modADSS, ADD and ADSS.

Table 2. Number of function evaluations, modADSS, ADD and ADSS.

	Function Number
	modADS
	ADD
	ADSS

	1.
	1242
	228,132
	1703

	2.
	1240
	154,355
	1793

	3.
	837
	131,637
	4804

	4.
	3484
	140,862
	16,997

	5.
	5384
	127,188
	876

	6.
	410
	176,018
	690

	7.
	250
	186,657
	420

	8.
	220
	104,690
	350

	9.
	1756
	223,240
	2593

	10.
	320
	206,110
	480

	11.
	1245
	249,238
	1797

	12.
	1283
	159,256
	1861

	13.
	570
	254,480
	824

	14.
	573
	154,821
	827

	15.
	582
	189,159
	809

	16.
	350
	278,890
	490

	17.
	300
	71,354
	420

	18.
	602
	254,487
	854

	19.
	1239
	154,050
	1792

	20.
	300
	130,390
	460

	21.
	30
	40
	40

	22.
	7023
	123,052
	617

	23.
	4424
	 > t e
	6639

	24.
	4480
	 > t e
	6715

	25.
	457
	143,701
	714

	26.
	1218
	251,955
	1692

	27.
	30
	40
	40

	28.
	30
	40
	40

	29.
	7760
	 > t e
	15,279

	30.
	126,094
	 > t e
	 > t e

[image: Table]

Table 3. ModADS, ADD and ADSS average outcomes of all 3 analyzed metrics obtained on 26 test functions from Listing 1.

Table 3. ModADS, ADD and ADSS average outcomes of all 3 analyzed metrics obtained on 26 test functions from Listing 1.

	Average Metrics
	modADS
	ADD
	ADSS

	Number of iterations
	145.81
	583.23
	148.42

	CPU time (s)
	0
	135.85
	0

	Number of function evaluations
	1191.35
	157,455.46
	1691.65

[image: Table]

Table 4. Number of iterations for β = 0.3 and β = 0.6 .

Table 4. Number of iterations for β = 0.3 and β = 0.6 .

	Function

Number
	modADS 0.3
	ADD 0.3
	ADSS 0.3
	modADS 0.6
	ADD 0.6
	ADSS 0.6

	1.
	50
	72
	50
	50
	72
	50

	2.
	432
	81
	432
	432
	82
	432

	3.
	725
	86
	35
	49
	76
	31

	4.
	33
	78
	76
	40
	83
	102

	5.
	40
	81
	46
	43
	82
	44

	6.
	83
	100
	78
	80
	110
	76

	7.
	340
	100
	70
	70
	110
	70

	8.
	40
	100
	40
	40
	100
	40

	9.
	788
	100
	781
	783
	100
	781

	10.
	70
	90
	70
	70
	100
	70

[image: Table]

Table 5. Number of evaluations for β = 0.3 and β = 0.6 .

Table 5. Number of evaluations for β = 0.3 and β = 0.6 .

	Function

Number
	modADS 0.3
	ADD 0.3
	ADSS 0.3
	modADS 0.6
	ADD 0.6
	ADSS 0.6

	1.
	342
	165,094
	778
	620
	184,537
	1068

	2.
	945
	117,659
	1498
	1037
	128,657
	1587

	3.
	4078
	101,862
	273
	743
	103,993
	338

	4.
	195
	96,897
	944
	665
	121,558
	13,181

	5.
	436
	109,838
	450
	3642
	116,573
	594

	6.
	250
	142,482
	2137
	296
	148,475
	532

	7.
	896
	84,460
	360
	220
	83,040
	380

	8.
	220
	116,101
	220
	280
	90,350
	270

	9.
	1626
	182,688
	2453
	1656
	189,410
	2493

	10.
	210
	126,380
	400
	250
	183,600
	266

[image: Table]

Table 6. Number of iterations and number of function evaluations, modADS and TADSS.

Table 6. Number of iterations and number of function evaluations, modADS and TADSS.

	Function Number
	modADS

num.it.
	TADSS

num.it.
	modADS

num.eval.
	TADSS

num.eval.

	1.
	50
	40
	1242
	1082

	2.
	432
	10,973
	1240
	29,624

	3.
	31
	1183
	837
	9355

	4.
	60
	22
	3484
	349

	5.
	41
	23
	5384
	439

	6.
	80
	60
	410
	412

	7.
	70
	60
	250
	250

	8.
	40
	40
	220
	400

	9.
	783
	40
	1756
	270

	10.
	70
	60
	320
	300

	11.
	428
	6915
	1245
	34,053

	12.
	470
	5314
	1283
	14,650

	13.
	60
	50
	570
	570

	14.
	61
	86
	573
	672

	15.
	60
	50
	582
	563

	16.
	40
	167
	350
	776

	17.
	80
	620
	300
	1993

	18.
	60
	50
	602
	582

	19.
	432
	10,715
	1239
	29,150

	20.
	70
	60
	300
	290

	21.
	10
	10
	30
	30

	22.
	76
	60
	7023
	256

	23.
	2202
	199
	4424
	572

	24.
	2215
	174
	4480
	696

	25.
	32
	24
	457
	448

	26.
	235
	10
	1218
	30

	27.
	10
	10
	30
	30

	28.
	10
	10
	30
	40

	29.
	3870
	1752
	7760
	8644

	30.
	2061
	 t e > l
	126,094
	 t e > l

[image: Table]

Table 7. ModADS and TADSS average outcomes of all 3 analyzed metrics obtained on 29 test functions from Listing 1.

Table 7. ModADS and TADSS average outcomes of all 3 analyzed metrics obtained on 29 test functions from Listing 1.

	Average Metrics
	modADS
	TADSS

	Number of iterations
	416.48
	1337.14

	CPU time (s)
	0.07
	2.97

	Number of function evaluations
	47,639
	136,506

[image: Table]

Table 8. The number of iterations for first 15 test functions obtained by modADS, GD and AGD methods.

Table 8. The number of iterations for first 15 test functions obtained by modADS, GD and AGD methods.

	Function Number
	modADS
	GD
	AGD

	1.
	52
	2058
	271

	2.
	599
	50,863
	61,678

	3.
	44
	20,823
	15,344

	4.
	58
	11,650
	11,563

	5.
	59
	19,178
	29,673

	6.
	80
	888
	583

	7.
	70
	678,648
	1768

	8.
	40
	1784
	396

	9.
	788
	8484
	100

	10.
	70
	1295
	321

	11.
	595
	354,364
	549,164

	12.
	608
	53,103
	62,996

	13.
	61
	579
	182

	14.
	61
	86,323
	109,632

	15.
	61
	63,745
	11,797

[image: Table]

Table 9. CPU for first 15 test functions obtained by modADS, GD and AGD methods.

Table 9. CPU for first 15 test functions obtained by modADS, GD and AGD methods.

	Function Number
	modADS
	GD
	AGD

	1.
	0
	1
	0

	2.
	0
	116
	150

	3.
	0
	11
	6

	4.
	0
	7
	8

	5.
	0
	22
	37

	6.
	0
	0
	0

	7.
	0
	198
	0

	8.
	0
	0
	0

	9.
	0
	0
	0

	10.
	0
	0
	0

	11.
	0
	1414
	3000

	12.
	0
	1445
	192

	13.
	0
	0
	0

	14.
	0
	673
	785

	15.
	0
	767
	20

[image: Table]

Table 10. The number of evaluations for first 15 test functions obtained by modADS, GD and AGD methods.

Table 10. The number of evaluations for first 15 test functions obtained by modADS, GD and AGD methods.

	Function Number
	modADS
	GD
	AGD

	1.
	929
	42549
	5822

	2.
	1469
	1,747,145
	1,971,495

	3.
	1260
	416,274
	240,666

	4.
	3137
	355,313
	316,838

	5.
	3126
	577,545
	838,896

	6.
	414
	14,456
	8321

	7.
	250
	3457,777
	7102

	8.
	220
	17,968
	3413

	9.
	1766
	165,938
	1110

	10.
	320
	24,565
	5591

	11.
	1472
	11,880,543
	16,276,884

	12.
	1466
	1,656,738
	1,823,829

	13.
	466
	9679
	2163

	14.
	467
	2,489,732
	2,719,409

	15.
	477
	2,390,405
	356,569

[image: Table]

Table 11. The average number of all 3 analyzed metrics obtained on first 15 test functions from Listing 1.

Table 11. The average number of all 3 analyzed metrics obtained on first 15 test functions from Listing 1.

	Average Metrics
	modADS
	GD
	AGD

	Number of iterations
	216.4
	90,252.33
	57,031.2

	CPU time (s)
	0
	310.27
	279.87

	Number of function evaluations
	1149.27
	1,683,108.47
	1,638,540.53

	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

nav.xhtml

 mathematics-10-00259

 		
 mathematics-10-00259

media/file0.png

