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Abstract: The weighted gradient reproducing kernel collocation method is introduced to recover the
heat source described by Poisson’s equation. As it is commonly known that there is no unique solution
to the inverse heat source problem, the weak solution based on a priori assumptions is considered
herein. In view of the fourth-order partial differential equation (PDE) in the mathematical model,
the high-order gradient reproducing kernel approximation is introduced to efficiently untangle the
problem without calculating the high-order derivatives of reproducing kernel shape functions. The
weights of the weighted collocation method for high-order inverse analysis are first determined. In the
benchmark analysis, the unclear illustration in the literature is clarified, and the correct interpretation
of numerical results is given particularly. Two mathematical formulations with four examples are
provided to demonstrate the viability of the method, including the extreme cases of the limited
accessible boundary.

Keywords: inverse problems; heat source; fourth-order PDE; weighted collocation method; repro-
ducing kernel approximation; gradient approximation

1. Introduction

Among the inverse heat source problems are the cylindrical source problems, point
source problems, and problems with specified source functions. In the inverse analyses of
the aforementioned problems, it is commonly known that there is strong non-uniqueness
of the solutions [1]. In other words, it is hard to determine the heat source uniquely via
measured data on the boundary. From a practical point of view, seeking weak solutions
might be an option. To this end, some weak assumptions have been proposed accordingly
in order to find the so-called weak solutions to inverse source problems. This turns out
to be a priori knowledge, which makes the inverse source problems solvable [2]. For
example, if one variable of the product is known when using the separation of variables,
the bottom area is known for the source to be sought in a cylinder, while the source to be
sought is described by a characteristic function. According to the principle of parsimony [3],
a minimum-norm solution to the inverse problem can be regarded as the approximate
solution to this problem, provided that the minimum-norm solution is the simple one
revealing the minimum detail. By relating the inverse source problem to Poisson’s equation,
it was shown that the minimum-norm solution satisfies Laplace’s equation [1]. On the other
hand, there are limited numerical methods proposed to solve inverse heat source problems
effectively so far [4]. Farcas et al. used the Tikhonov regularization method to recover the
minimum-norm solution [1]. Gu et al. introduced the generalized finite difference method
to solve the inverse heat source problems [4]. The weighted collocation method with
reproducing kernel approximation and/or gradient reproducing kernel approximation has
been applied to inverse analysis with great success to, for example, elasticity problems [5],
Cauchy problems with complex geometry such as singularity [6], and multiply connected
problems [7]. Nevertheless, the aforementioned problems are of second order while the
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inverse source problems are analyzed by solving the fourth-order PDEs in strong form,
which indicates that the computation of the fourth-order derivatives of reproducing kernel
shape functions is required. Due to the complicated composition of reproducing kernel
shape functions, constructing the direct derivatives of reproducing kernel shape functions
involves the calculation of derivatives of inverse matrix and other functions. In view of
this, the present study further introduces the weighted high-order gradient reproducing
kernel collocation method (G-RKCM) to compute derivatives implicitly and solve inverse
heat source problems efficiently and effectively. Other advanced versions of smooth or
gradient reproducing kernel collocation methods have shown the efficacy of solving both
the second-order and fourth-order partial differential equations with superconvergent rates
recently [8–10]. With the aid of high-order gradient approximation [11], the direct differ-
entiation of reproducing kernel (RK) shape functions is avoided. It should be noted that
the weighted collocation method is established on the basis of the least-squares minimiza-
tion [12,13]. The weights imposed on the boundary collocation equations can be treated as
one kind of regularization techniques of the system equations. Under the framework of
a weighted least-squares functional, the weights on the boundary conditions act to keep
balance of errors arising from the domain and boundary. As such, the minimum-norm
solution to the inverse source problem can be obtained numerically.

It should be particularly noticed that the weights are different for direct problems
and inverse problems in general. Hence, the proper weights are determined uniquely on
the basis of theoretical error estimates derived from the inverse analysis. Then, several
benchmark problems are provided to demonstrate the viability of the proposed weighted
high-order G-RKCM in solving the fourth-order partial differential equations. Especially,
a conscientious comparison is made, and the unlikely results in the literature are pointed
out with correct presentation instead. The present study is arranged in the following way:
The two mathematical formulations of inverse source problems are given in Section 2. The
weighted high-order G-RKCM for solving the fourth-order partial differential equations
is introduced in Section 3. The numerical examples are provided in Section 4. Section 5
concludes this paper.

2. Mathematical Formulation

Assuming that the medium of a heat conduction problem is isotropic and in the steady-
state condition, the corresponding governing equation can be described by the following
Poisson’s equation [2]:

∇2u(x, y) = f (x, y) in Ω (1)

where u(x, y) is the potential field and f (x, y) is the heat source in the domain Ω. The
domain is enclosed by the boundary ∂Ω, where the heat flux q(x, y) flowing across the
boundary is expressed as:

q(x, y) = un on ∂Ω (2)

where un = ∇u · n and n denotes the unit outward normal on the boundary.
The heat source is assumed to be unknown. Let ∂Ω1 ∈ ∂Ω denote the accessible

boundary with measured data, and ∂Ω2 ∈ ∂Ω denote the inaccessible part of the boundary,
i.e., ∂Ω = ∂Ω1 ∪ ∂Ω2. The governing equation is as follows:

∇2u(x, y) = f (x, y) in Ω ∪ ∂Ω2 (3)

The boundary conditions are as follows:

u(x, y) = u(x, y) on ∂Ω1 (4)

q(x, y) = q(x, y) on ∂Ω1 (5)

From Equations (1), (4), and (5), it is obvious that this problem is mathematically
under-determined due to the unknown heat source and inaccessible boundary. For the
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current purpose of numerical investigation on the methodology, two mathematical for-
mulations including Laplace’s and modified Helmholtz equations as a priori assumptions
will be provided in Sections 2.1 and 2.2 in order to seek the weak solutions to the fourth-
order inverse problems, while it is assumed that the heat source satisfies the second-order
PDE. Nevertheless, other formulations might be possible for this problem. As it is out-
side the scope of the present study, only the heat conduction described by Poisson’s
equation is considered in this regard. Once u(x, y) is found by solving the fourth-order
inverse problems, the heat source can be inversely computed by using Equation (3) as
f (x, y) = ∂2u/∂x2 + ∂2u/∂y2.

2.1. Mathematical Formulation I

The heat source f (x, y) is assumed to be a harmonic function varying in the domain,
which satisfies the following Laplace’s equation:

∇2 f (x, y) = 0 in Ω ∪ ∂Ω2 (6)

Applying the Laplace operator ∇2 to both sides of Equation (1) leads to:

∇2
(
∇2u

)
= ∇2 f = 0 in Ω ∪ ∂Ω2 (7)

Combining the boundary conditions yields the following fourth-order inverse
source problem:

∂4u
∂x4 +2

∂4u
∂x2∂y2 +

∂4u
∂y4 = 0 in Ω ∪ ∂Ω2 (8)

q(x, y) = q(x, y) on ∂Ω1 (9)

u(x, y) = u(x, y) on ∂Ω1 (10)

2.2. Mathematical Formulation II

The heat source f (x, y) is assumed to satisfy the following homogeneous modified
Helmholtz equation: (

∇2 − λ2
)

f (x, y) = 0 in Ω ∪ ∂Ω2 (11)

where λ is the wave number of a known value. Applying the operator
(
∇2 − λ2) to both

sides of Equation (1) leads to:

∇4u− λ2∇2u = 0 in Ω ∪ ∂Ω2 (12)

Similarly, combining the boundary conditions yields the following fourth-order in-
verse source problem:

∂4u
∂x4 +2

∂4u
∂x2∂y2 +

∂4u
∂y4 − λ2 ∂2u

∂x2 − λ2 ∂2u
∂y2 = 0 in Ω ∪ ∂Ω2 (13)

q(x, y) = q(x, y) on ∂Ω1 (14)

u(x, y) = u(x, y) on ∂Ω1 (15)

3. Weighted High-Order Gradient Reproducing Kernel Collocation Method
3.1. Review of High-Order Gradient Reproducing Kernel Approximation

In the collocation method, the unknown u can be approximated by reproducing kernel
(RK) shape function through Ns source points as follows:

u(x) ≈ v(x) =
Ns

∑
I=1

ΨI(x) aI (16)
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where aI is the generalized coefficient. The RK shape function ΨI(x), consisting of a
monomial basis H(x− xI), coefficient vector b(x), and kernel function ϕa(x− xI), takes
the following form:

ΨI(x) = HT(x− xI)b(x)ϕa(x− xI) (17)

where b(x) is found by the reproducing conditions listed below:

Ns

∑
I=1

ΨI(x)xα
I = xα, 0 ≤ |α| ≤ p (18)

where α is the multi-index defined as |α| = α1 + α2 in two dimensions and p is the order of
H(x− xI). The details of deriving RK shape functions are described in a previous study [13].
The explicit form of RK shape functions is as follows:

ΨI(x) = HT(0)M−1(x)H(x− xI)ϕa(x− xI) (19)

with the moment matrix M(x) defined as:

M(x) =
Ns

∑
I=1

H(x− xI)HT(x− xI)ϕa(x− xI) (20)

For the fourth-order differential equations considered in this paper, the high-order
gradient reproducing kernel approximation is introduced to reduce the complexity of
constructing the derivatives of RK shape functions directly. The mathematical proof of
reduced complexity in comparison with reproducing kernel approximation is described in
a previous study [13]. For direct problems solved by using high-order implicit gradient
reproducing kernel approximation, the details are described in a recent study [11]. In the
present study, the fourth-order gradient reproducing kernel approximation is adopted, and
the corresponding implicit RK shape functions to the first-, second-, third-, and fourth-order
are expressed explicitly as follows:

Ψx
I (x) = −HT

,x(0)M
−1(x)H(x− xI)ϕa(x− xI)

Ψy
I (x) = −HT

,y(0)M
−1(x)H(x− xI)ϕa(x− xI)

(21)

Ψxx
I (x) = HT

,xx(0)M
−1(x)H(x− xI)ϕa(x− xI)

Ψyy
I (x) = HT

,yy(0)M
−1(x)H(x− xI)ϕa(x− xI)

(22)

Ψxxx
I (x) = −HT

,xxx(0)M
−1(x)H(x− xI)ϕa(x− xI)

Ψyyy
I (x) = −HT

,yyy(0)M
−1(x)H(x− xI)ϕa(x− xI)

(23)

Ψxxxx
I (x) = HT

,xxxx(0)M
−1(x)H(x− xI)ϕa(x− xI)

Ψyyyy
I (x) = HT

,yyyy(0)M
−1(x)H(x− xI)ϕa(x− xI)

(24)

From Equations (21)–(24), it is obvious that the major difference lies in the derivatives
of monomial basis H(x− xI) and the sign. To ensure continuity, higher order B-spline
kernel function is particularly needed in strong form collocation methods. The common
B-spline kernel functions such as quintic and sextic B-spline kernel functions are given by:
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ϕa(s) =



11
20 −

9s2

2 + 81s4

4 −
81s5

4 , 0 ≤ s < 1
3

17
40 + 15s

8 −
63s2

4 + 135s3

4 − 243s4

8 + 81s5

8 , 1
3 ≤ s < 2

3

81
40 −

81s
8 + 81s2

4 −
81s3

4 + 81s4

8 −
81s5

40 , 2
3 ≤ s < 1

0, s ≥ 1

(25)

and

ϕa(s) =



5887
1920 −

3773s2

128 + 16,807s4

128 − 117,649s6

384 , 0 ≤ s < 1
7

7861
2560 −

49s
256 −

13,377s2

512 − 12,005s3

384 + 151,263s4

512 − 117,649s5

256 + 117,649s6

512 , 1
7 ≤ s < 3

7

1379
1280 + 8869s

320 −
48,363s2

256 + 45,619s3

96 − 151,263s4

256 + 117,649s5

320 − 117,649s6

1280 , 3
7 ≤ s < 5

7

117,649
7680 −

117,649s
1280 + 117,649s2

512 − 117,649s3

384 + 117,649s4

512 − 117,649s5

1280 + 117,649s6

7680 , 5
7 ≤ s < 1

0, s ≥ 1

(26)

where the nodal distance is normalized by RK support size a, namely s = ‖x− xI‖/a. For
the pth order monomial basis, the RK support size is chosen as a = (p + δ)h with δ > 0
and h the average nodal distance.

3.2. Weighted Collocation Method with High-Order Gradient Approximation

According to Section 2, the general strong form of the fourth-order PDEs can be
written as:

Lau,xxxx + Lbu,xxyy + Lcu,yyyy + Ldu,xx + Leu,yy = m in Ω ∪ ∂Ω2 (27)

Bhu,n = q on ∂Ω1 (28)

Bgu = u on ∂Ω1 (29)

where La, Lb, Lc, Ld, and Le are the differential operators in the domain, Bh is the Neumann
boundary operator, Bg is the Dirichlet boundary operator, and m = m(x) is a given function.
For illustration purposes, take the problem described in Section 2.2 as an example; the
operators are explicitly derived by using the implicit approximation: La = Lc = 1, Lb = 2,
Ld = Le = −λ2, Bh = n, Bg = 1, and m = 0. As ∂Ω2 denotes the inaccessible boundary,
it is numerically enforced to satisfy the governing equation, which is commonly done
in solving inverse problems [5]. Without loss of generality, the same discretization of
collocation points Nc and source points Ns is adopted in this study. In other words,
an over-determined system of collocation equations is established. Thus, according to
Equations (27)–(29) and introducing the approximation, a weighted version of least-squares
functional is constructed as follows:

E(v) = 1
2

∫
Ω∪∂Ω2

(
Lavxxxx + Lbvxxyy + Lcvyyyy + Ldvxx + Levyy −m

)T

(
Lavxxxx + Lbvxxyy + Lcvyyyy + Ldvxx + Levyy −m

)
dΩ

+
w2

h
2

∫
∂Ω1

(Bhvn − q)T(Bhvn − q)dΩ1 +
w2

g
2

∫
∂Ω1

(
Bgv− u

)T(Bgv− u
)
dΩ1

(30)

where w2
h and w2

g are the weights introduced in order to balance the errors in the domain
and on the boundary.
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With reference to our previous study [5], the discrete weighted collocation system
can be derived by using the equivalent quadrature rule, i.e., performing the integration at
collocation points, and by minimizing the functional, i.e., utilizing the stationary condition.
As such, the following collocation equation can be reached: A

whAh
wgAg

a =

 b
whbh
wgbg

 (31)

where a contains the generalized coefficients aI(I = 1, 2, . . . , Ns) as introduced in Equation (16).
Three sets, xp, xq, and xr, containing Np, Nq, and Nr collocation points, are defined as fol-
lows:

xp =
[
xp1, xp2, · · · , xpNp

]
⊆ Ω ∪ ∂Ω2

xq =
[
xq1, xq2, · · · , xqNq

]
⊆ ∂Ω1

xr = [xr1, xr2, · · · , xrNr ] ⊆ ∂Ω1

(32)

where the domain Ω is partially enclosed by ∂Ω1 in a simply connected domain with the
inaccessible boundary denoted by ∂Ω2. It should be noticed that xq may not be the same
as xr in a multiply connected domain. Then, the submatrices in Equation (31) are given
explicitly as:

A =



La
(

ΨxxxxT(
xp1
))

+ Lb
(

ΨxxyyT(
xp1
))

+ Lc
(

ΨyyyyT(
xp1
))

+ Ld
(

ΨxxT(
xp1
))

+ Le
(

ΨyyT(
xp1
))

La
(

ΨxxxxT(
xp2
))

+ Lb
(

ΨxxyyT(
xp2
))

+ Lc
(

ΨyyyyT(
xp2
))

+ Ld
(

ΨxxT(
xp2
))

+ Le
(

ΨyyT(
xp2
))

...
La
(

ΨxxxxT
(

xpNp

))
+ Lb

(
ΨxxyyT

(
xpNp

))
+ Lc

(
ΨyyyyT

(
xpNp

))
+ Ld

(
ΨxxT

(
xpNp

))
+ Le

(
ΨyyT

(
xpNp

))


(33)

Ah =


Bh

(
ΨnT(

xq1
))

Bh

(
ΨnT(

xq2
))

...
Bh

(
ΨnT

(
xqNq

))

 (34)

Ag =


Bg
(
ΨT(xr1)

)
Bg
(
ΨT(xr2)

)
...

Bg
(
ΨT(xrNr )

)
 (35)

b =


m
(
xp1
)

m
(
xp2
)

...
m
(

xpNp

)
, bh =


q
(
xq1
)

q
(
xq2
)

...
q
(

xqNq

)
, bg =


u(xr1)
u(xr2)

...
u(xrNr )

 (36)

For the problem described in Section 2.2, the components in the submatrices A, Ah,
and Ag and the sub-vectors b, bh, and bg are derived as:
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AI J =
[
Ψxxxx

J
(
xpI
)
+ 2Ψxxyy

J
(
xpI
)
+ Ψyyyy

J
(
xpI
)
− λ2Ψxx

J
(
xpI
)
− λ2Ψyy

J
(
xpI
)]

AhI J =
[
nΨn

J
(
xqI
)]

AgI J =
[
ΨJ(xrI)

]
(37)

bI J = 0 ∀ xpI

bhI J = q ∀ xqI

bgI J = u ∀ xrI

(38)

As for the values of weights wh and wg, they are determined both theoretically and
numerically according to the error estimate and computational results. Referring to a
previous study [13], it was shown that the weights in the gradient reproducing kernel
collocation method for solving second-order direct Cauchy problems are given by:

wh ≈ O(1), wg ≈ O
(

aq−p−1
)
≈ O

(
1
a

)
(39)

where p and q denote the order of basis for RK shape functions and gradient RK shape
functions, respectively, and a denotes the support size of RK and gradient RK shape
functions. It was reported that the equal-order basis p = q = 2 can reach synchronized
convergence rates of u and its derivatives. For the fourth-order PDEs in consideration,
p = q = 4 is adopted herein. On the other hand, referring to another previous study [11],
the weights in the high-order gradient RKCM for solving fourth-order Kirchhoff plate
problems are given by:

wh ≈ O
(

G
a2

)
, wg ≈ O

(
G
a3

)
(40)

where G is the constant related to Young’s modulus, Poisson’s ratio, and the plate’s thick-
ness. As the fourth-order PDEs described in Section 2 do not contain the elasticity problem,
the normalized version of Equation (40) should be used instead, which is given by:

wh ≈ O
(

1
a2

)
, wg ≈ O

(
1
a3

)
(41)

As the fourth-order inverse source problem is of major interest in the present study,
either Equation (39) or Equation (41) might be a good candidate to meet our need. To this
end, the proper weights will be determined numerically in the next section.

4. Numerical Examples

In this section, four examples are provided to demonstrate the viability of the weighted
high-order G-RKCM in solving the fourth-order PDEs with two mathematical formulations.
As mentioned in Section 3, the proper weights will be investigated numerically on the basis
of the theoretical derivation, as described in Equations (39) and (41). Furthermore, the
RK and high-order gradient RK shape functions are constructed by using the equal-order
basis function of quartic order to ensure consistency. Both quintic and sextic B-spline
kernel functions are adopted to assure smoothness in the approximation. Without loss
of generality, the RK support size is a = 5h. To compare the approximate solutions with
reference solutions in the literature, the following error norm is defined [2,4]:

relative error norm =

√
∑Nc

i=1

(
f i
numerical − f i

analytical

)2

√
∑Nc

i=1 f i
analytical

2
(42)
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The presentation of contour plot is expressed in terms of the maximum relative error
defined as:

maximum relative error =

∣∣∣ f i
numerical − f i

analytical

∣∣∣∣∣∣ f i
analytical

∣∣∣ (43)

for i = 1, 2, . . . , Nc.

4.1. Mathematical Formulation I in a Square Domain

The governing equation together with boundary conditions in a square domain are
described as follows:

∂4u
∂x4 +2

∂4u
∂x2∂y2 +

∂4u
∂y4 = 0 in Ω = { (x, y)|0 < x, y < 6} (44)

u = 1
4 y2(1 + s

100 × rand
)

on x = 0

u = 1
4
(
36 + y2)(1 + s

100 × rand
)

on x = 6

u = 1
4 x2(1 + s

100 × rand
)

on y = 0

u = 1
4
(

x2 + 36
)(

1 + s
100 × rand

)
on y = 6

(45)

u,x = s
100 × rand on x = 0

u,x = 3
(
1 + s

100 × rand
)

on x = 6

u,y = s
100 × rand on y = 0

u,y = 3
(
1 + s

100 × rand
)

on y = 6

(46)

where rand denotes the Matlab built-in function of a random number in the interval 0~1.
Referring to Ref. [4], the accessible boundary ∂Ω1 is taken as the ∂Ω. For s = 0, the
analytical solutions to this problem are given by:

u(x, y) =
1
4

(
x2 + y2

)
(47)

f (x, y) = 1 (48)

To determine the weights in the proposed method for solving the fourth-order PDEs
in consideration, two sets of weights introduced in Section 3.2 are investigated through
the L2 norms of u and u,α. The uniform discretization is schematically shown in Figure 1a.
In Figure 2, both sets of weights exhibit similar convergence rates for L2 norms of u and
u,α with respect to the quintic kernel function (a = 4.95h) and sextic kernel function
(a = 5.25h), except the L2 norm of u,α for the quintic kernel function. Furthermore, some
negative slopes are observed as high-order gradient approximation, which might cause
numerical instability for certain discretization. Reaching an acceptable convergence rate
with high accuracy becomes critical for high-order G-RKCM in approximating high order
derivatives by high order basis functions. In general, the sextic kernel function shows
higher convergence and accuracy in the approximation. The reason for similar convergence
rates might be explained as follows: for RK support size a = 6h with Ns = 302, the two sets
of weights are O(1) = 1 and O(1/a) ≈ 1

6h = 1
6×(6/29) = 0.8, and O

(
1/a2) ≈ 1/a2 = 0.64

and O
(
1/a3) ≈ 1/a3 = 0.51, respectively. The ratios of weights in each set are equal to

each other, i.e., O(1)/O(1/a)
O(1/a2)/O(1/a3)

= 1.25. As the set of weights given in Equation (41) can be
more sensitive to the discretization, it is adopted in the following study.
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Figure 1. Discretization of the square domain: (a) uniform; (b) non-uniform.

Figure 2. Convergence rates of a square domain problem: (a) L2 norm of u; (b) L2 norm of u,α.

The results obtained by the weighted high-order G-RKCM are first verified with the re-
sults obtained by the method of fundamental solutions (MFS) [2] and the generalized finite
difference method (GFDM) [4] in the literature. Referring to Table 1, the present method
yields the best results with high accuracy among the three methods, regardless of the RK
support size used in the approximation. The selected contour plots of maximum relative
error of f obtained by a = 5h are depicted in Figure 3; it is confirmed that high accuracy for
recovering source f is assured. Next, the boundary equations in Equations (45) and (46) are
disturbed by some percentage of noise s, and the results obtained by using Ns = Nc = 252

are summarized in Table 2. As the reference result was obtained by adding noise into
the input data as described ambiguously in [4], three possible scenarios with disturbance
adding on various kinds of boundary conditions (BCs) are investigated herein. Still, the
present method yields better accuracy than the reference method in general, although
G-RKCM with the quintic kernel function shows larger errors when Dirichlet boundary
condition or both boundary conditions are disturbed. Nevertheless, the present method
is quite stable up to the noise level s = 3. As shown in Figure 1b, the non-uniform dis-
cretization for Ns = Nc = 252 obtained by 5% disturbance of domain points is considered.
The contour plots of maximum relative error of f are depicted in Figure 4; furthermore,
the corresponding relative error norms of f obtained by various kinds of disturbance of
boundary conditions are summarized in Table 3. From Tables 2 and 3, it is observed that the
disturbance adding on the Neumann boundary condition produces minimal error, while
the other two kinds of boundary disturbances produce a similar amount of error. Even
subjected to double disturbance of discretization and boundary condition, the robustness
of the method is apparently demonstrated.
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Table 1. Comparison of relative error norms of f by different methods and influence of RK support
size in G-RKCM with Ns = 252.

Method Relative Error Norm

MFS with Ns = 40 [2] 2.13× 10−7

GFDM with Ns = 252 [4] 8.26× 10−8

G-RKCM (quintic) a = 4.5h 1.63× 10−10

G-RKCM (sextic) a = 4.5h 7.30× 10−10

G-RKCM (quintic) a = 5h 4.32× 10−11

G-RKCM (sextic) a = 5h 7.89× 10−11

G-RKCM (quintic) a = 5.5h 4.08× 10−11

G-RKCM (sextic) a = 5.5h 5.07× 10−11

G-RKCM (quintic) a = 6h 2.44× 10−11

G-RKCM (sextic) a = 6h 2.90× 10−11

Figure 3. Contour plots of f obtained by maximum relative error: (a) quintic kernel function;
(b) sextic kernel function.

Table 2. Comparison of relative error norms of f by various s on boundary conditions in Section 4.1.

s 1 2 3

GFDM [4] 0.025 - -

G-RKCM (quintic)

Neumann BC 0.0198 0.0480 0.0614

Dirichlet BC 0.0464 0.1062 0.1387

both BCs 0.0432 0.1203 0.1613

G-RKCM (sextic)

Neumann BC 0.0144 0.0295 0.0432

Dirichlet BC 0.0189 0.0388 0.0824

both BCs 0.0184 0.0417 0.0661
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Figure 4. Contour plots of f obtained by maximum relative error with non-uniform discretization:
(a) quintic kernel function; (b) sextic kernel function.

Table 3. Comparison of relative error norms of f obtained by non-uniform discretization with various
s added to the boundary conditions in Section 4.1.

s 1 2 3

G-RKCM (quintic)

Neumann BC 0.0285 0.0578 0.0834

Dirichlet BC 0.1189 0.1531 0.2297

both BCs 0.0940 0.1462 0.2069

G-RKCM (sextic)

Neumann BC 0.0263 0.0562 0.1114

Dirichlet BC 0.0868 0.1411 0.1900

both BCs 0.0926 0.1745 0.1925

4.2. Mathematical Formulation I in an Annular Domain

The governing equation and boundary conditions in an annular domain are described
as follows:

∂4u
∂x4 +2

∂4u
∂x2∂y2 +

∂4u
∂y4 = 0 in Ω =

{
(x, y)|Ri = 1 < r =

√
x2 + y2 < Ro = 2

}
(49)

u(Ro, θ) = −1
6

[
(Ro cos θ − 6)3 + (Ro sin θ − 6)3

]
, 0 ≤ θ ≤ βo (50)

un(Ro, θ) = −1
2

[
(Ro cos θ − 6)2 cos θ + (Ro sin θ − 6)2 sin θ

]
, 0 ≤ θ ≤ βo (51)

with the inner boundary condition:

u(Ri, θ) = −1
6

[
(Ri cos θ − 6)3 + (Ri sin θ − 6)3

]
, 0 ≤ θ ≤ 2π (52)

In Equations (50) and (51), βo denotes the angle along the outer boundary, measured
from positive x axis in the counterclockwise direction, in which the portion of outer bound-
ary is imposed with both Dirichlet and Neumann boundary conditions. The analytical
solutions to this problem are as follows:

u(x, y) = −1
6

[
(x− 6)3 + (y− 6)3

]
(53)

f (x, y) = 12− x− y (54)
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The discretization of the problem using Ns = 386 is depicted in Figure 5, and the
corresponding contour plots of maximum relative error of f obtained by quintic and sextic
kernel functions are shown in Figure 6. The relative error norms obtained by various RK
support size are summarized in Table 4. Obviously, the present method with both kernel
functions exhibits higher accuracy in retrieving the heat source f regardless of the RK
support size in comparison with the reference solution by GFDM given in [4]. Concerning
the disturbance with various s added to the outer boundary, the comparison of relative
error norms of f is made in Table 5. It is observed that the disturbance added to the
Neumann boundary conditions has the smallest error among three scenarios of boundary
conditions. The selected contour plots of maximum relative error of f obtained by adding
s = 1 to the Neumann boundary condition are shown in Figure 7. Still, the present
method is stable under various kinds of boundary disturbance. To further investigate the
limitation of the method in retrieving the heat source, the relative error norms obtained
by accessible outer boundary with different angles βo without considering disturbance
on the outer boundary are shown in Figure 8. It is observed that both kernel functions
yield similar accuracy when βo ≥ π, while the quintic kernel function maintains accuracy
for βo< π. As discussed in [11], reaching acceptable accuracy becomes critical for high-
order G-RKCM in approximating high order derivatives by high-order basis functions
in direct problems. Although a similar situation is observed for the inverse problem in
consideration, the present method is able to retrieve heat source with high accuracy within
limited accessible boundary βo/2π = 0.1, which is much better than βo/2π = 0.4, as
reported in the literature [4].

Figure 5. Discretization of the annular domain.
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Figure 6. Contour plots of maximum relative error of f obtained by: (a) quintic kernel function;
(b) sextic kernel function.

Table 4. Comparison of the relative error norms of f by different methods and influence of RK
support size in G-RKCM with Ns = 386.

Method Relative Error Norm

GFDM with Ns = 386 [4] 8.00× 10−8

G-RKCM (quintic) a = 4.5h 4.34 ×10−10

G-RKCM (sextic) a = 4.5h 3.44 ×10−9

G-RKCM (quintic) a = 5h 2.99 ×10−10

G-RKCM (sextic) a = 5h 1.75 ×10−10

G-RKCM (quintic) a = 5.5h 4.12 ×10−10

G-RKCM (sextic) a = 5.5h 4.57 ×10−10

G-RKCM (quintic) a = 6h 5.23 ×10−10

G-RKCM (sextic) a = 6h 5.02 ×10−10

Table 5. Comparison of the relative error norms of f by various s on boundary conditions in
Section 4.2.

s 1 2 3

GFDM [4] 0.06 - -

G-RKCM (quintic)

Neumann BC 0.0348 0.0701 0.1147

Dirichlet BC 0.1694 0.4567 0.6620

both BCs 0.1815 0.4380 0.7094

G-RKCM (sextic)

Neumann BC 0.0465 0.0942 0.1488

Dirichlet BC 0.3731 0.6007 0.9965

both BCs 0.2897 0.6417 1.2433
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Figure 7. Contour plot of maximum relative error of f obtained by adding s = 1 to the Neumann
boundary conditions: (a) quintic kernel function; (b) sextic kernel function.

Figure 8. Relative error norm obtained by different accessible boundary βo.

4.3. Mathematical Formulation II in a Circular Domain

The governing equation together with boundary conditions in a circular domain are
described as follows:

∂4u
∂x4 +2

∂4u
∂x2∂y2 +

∂4u
∂y4 − λ2 ∂2u

∂x2 − λ2 ∂2u
∂y2 = 0 in Ω =

{
(x, y)|r =

√
x2 + y2 < 1

}
(55)

u(r, θ) =
[
ecos θ sin(sin θ) + ecos θ−sin θ

](
1 +

s
100
× rand

)
, 0 ≤ θ < 2π (56)

un(r, θ) =
{

ecos θ
[
sin(sin θ) + e− sin θ

]
cos θ

+ecos θ
[
cos(sin θ)− e− sin θ

]
sin θ

}(
1 + s

100 × rand
)
, 0 ≤ θ < 2π

(57)
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where the wave number is λ =
√

2. The analytical solutions to this problem are given by:

u(x, y) = ex sin y + ex−y (58)

f (x, y) = 2ex−y (59)

The discretizations of the domain by uniform and non-uniform points Ns = Nc = 468
are shown in Figure 9a,b, respectively. As the reference solution in the literature is given
with disturbed noise, to verify the results obtained by the present method, different levels
of noise s on various kinds of boundary conditions is considered. Table 6 summarizes
the relative error norms of f obtained by the method of fundamental solutions (MFS) [2]
and the present G-RKCM, in which smaller errors can be obtained when a smaller RK
support size a = 4.5h is adopted as compared with reference solution. The flexibility of
reproducing kernel approximation in adjusting the support size is observed. Additionally,
G-RKCM with the sextic kernel function yields higher accuracy than the quintic kernel
function. The contour plots of f obtained by adding s = 2 to the Neumann boundary
condition are depicted in Figure 10; the distribution of magnitude of f agrees well with
the reference solution [2]. Nevertheless, by checking x = y in the analytical solution given
in Equation (59), it is easily found that f (x, y) = 2 along the diagonal direction with 45◦.
Therefore, the trend or orientation of the contour in the reference [2] is not correct, and the
correct contours of f are provided in Figures 10 and 11. Particularly, Figure 11 presents
the corresponding contours obtained by non-uniform discretization (5% noise added to
uniform discretization) with various s added to the Neumann boundary condition. The
relative error norms of f obtained by non-uniform discretization with various s added to
the boundary conditions are summarized in Table 7; again, a = 4.5h yields better accuracy
than a = 5h, and the sextic kernel function is more accurate than the quintic kernel function.
From above results, it is found that the present method is stable no matter what kinds of
disturbance and levels of noise are imposed on.

Figure 9. Discretization of the circular domain: (a) uniform; (b) non-uniform.
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Table 6. Comparison of the relative error norms of f by various s on boundary conditions in
Section 4.3.

s 2 3

MFS [2] 0.0175 -

G-RKCM (quintic)
a = 4.5h

Neumann BC 0.0157 0.0391

Dirichlet BC 0.0343 0.0718

both BCs 0.0468 0.0749

G-RKCM (sextic)
a = 4.5h

Neumann BC 0.0166 0.0392

Dirichlet BC 0.0410 0.0651

both BCs 0.0409 0.0747

G-RKCM (quintic)
a = 5h

Neumann BC 0.0237 0.0427

Dirichlet BC 0.0512 0.0549

both BCs 0.0411 0.0735

G-RKCM (sextic)
a = 5h

Neumann BC 0.0243 0.0399

Dirichlet BC 0.0397 0.0457

both BCs 0.0428 0.0675

Figure 10. Contour plots of f obtained by adding s = 2 to the Neumann boundary condition for
uniform discretization: (a) quintic kernel function; (b) sextic kernel function.
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Figure 11. Contour plots of f obtained by adding various s to the Neumann boundary condition for
non-uniform discretization: (a) quintic kernel function with s = 0; (b) sextic kernel function with
s = 0; (c) quintic kernel function with s = 2; (d) sextic kernel function with s = 2.

Table 7. Comparison of relative error norms of f obtained by non-uniform discretization with various
s added to the boundary conditions in Section 4.3.

s 1 2 3

G-RKCM (quintic)
a = 4.5h

Neumann BC 0.0149 0.0278 0.0413

Dirichlet BC 0.0298 0.0531 0.0850

both BCs 0.0279 0.0528 0.0784

G-RKCM (sextic)
a = 4.5h

Neumann BC 0.0128 0.0263 0.0428

Dirichlet BC 0.0250 0.0526 0.0715

both BCs 0.0284 0.0572 0.0613

G-RKCM (quintic)
a = 5h

Neumann BC 0.0156 0.0287 0.0494

Dirichlet BC 0.0379 0.0425 0.0752

both BCs 0.0273 0.0517 0.0878

G-RKCM (sextic)
a = 5h

Neumann BC 0.0166 0.0314 0.0579

Dirichlet BC 0.0393 0.0488 0.0702

both BCs 0.0320 0.0479 0.0743
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4.4. Mathematical Formulation II in an Annular Domain

The governing equation with boundary conditions in an annular domain are described
as follows:

∂4u
∂x4 +2 ∂4u

∂x2∂y2 +
∂4u
∂y4 − λ2 ∂2u

∂x2 − λ2 ∂2u
∂y2 = 0

in Ω = { (x, y)|Ri = 1 < r =
√

x2 + y2 < Ro = 2
} (60)

u(Ro, θ) = eRo cos θ sin(Ro sin θ) + eRo(cos θ−sin θ), 0 ≤ θ ≤ βo (61)

un(Ro, θ) = eRo cos θ
[
sin(Ro sin θ) + e−Ro sin θ

]
cos θ

+eRo cos θ
[
cos(Ro sin θ)− e−Ro sin θ

]
sin θ, 0 ≤ θ ≤ βo

(62)

with the inner boundary condition:

u(Ri, θ) = eRi cos θ sin(Ri sin θ) + eRi(cos θ−sin θ), 0 ≤ θ ≤ 2π (63)

where the wave number is λ =
√

2. The same analytical solutions are described in
Section 4.3.

The uniform discretization and non-uniform discretization (5% noise added to uniform
discretization) of the annular domain by Ns = Nc = 666 are depicted in Figure 12a,b,
respectively. To reach the desired accuracy, a layer of ghost points is arranged along
the radial direction with a distance of 0.65h from the outer boundary of the domain, i.e.,
total points Nsg = 742. For quintic and sextic kernel functions, the RK support size is
chosen as a = 4.75h and a = 4.35h, respectively. The corresponding contour plots of f
obtained by uniform discretization are shown in Figure 13; both kernel functions generate
consistent contour plots. Next, different levels of noise s are added to various boundary
conditions, and the results are summarized in Table 8. It is observed that more accurate
results are reached by G-RKCM with the sextic kernel function than those by the quintic
kernel function, and the case with noise added to the Neumann boundary condition has
the smallest error for G-RKCM with both kernel functions. For non-uniform discretization
disturbed by various s added to the Neumann boundary condition, the contour plots of
f are given in Figure 14. Especially, Figure 14c,d are the contours obtained by quintic
kernel function with s = 1 and sextic kernel function with s = 2. By observation, the
contours of f obtained by G-RKCM with the sextic kernel function are more stable than
those obtained by quintic kernel function, even under disturbance on both discretization
and boundary condition. The corresponding relative error norms of f obtained by various
s on different boundary conditions are summarized in Table 9. Again, higher accuracy of
G-RKCM with the sextic kernel function is observed. For an accessible outer boundary in
the range 0 ≤ βo ≤ 2π, the relative error norms are depicted in Figure 15. Obviously, both
kernel functions exhibit similar accuracy, and the error increases with reducing accessible
outer boundary while the approximation retains acceptable accuracy for βo ≥ π.
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Figure 12. Discretization of the annular domain: (a) uniform; (b) non-uniform.

Figure 13. Contour plots of f obtained by uniform discretization: (a) quintic kernel function;
(b) sextic kernel function.

Table 8. Comparison of relative error norms of f obtained by uniform discretization with various s
added to the boundary conditions in Section 4.4.

s 0 1 2

G-RKCM (quintic)

Neumann BC 0.0095 0.0219 0.0385

Dirichlet BC 0.0095 0.3180 0.5597

both BCs 0.0095 0.3577 0.6664

G-RKCM (sextic)

Neumann BC 0.0040 0.0135 0.0299

Dirichlet BC 0.0040 0.1553 0.2972

both BCs 0.0040 0.1610 0.2389
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Figure 14. Contour plots of f obtained by adding various s to the Neumann boundary condition for
non-uniform discretization: (a) quintic kernel function with s = 0; (b) sextic kernel function with
s = 0; (c) quintic kernel function with s = 1; (d) sextic kernel function with s = 2.

Table 9. Comparison of relative error norms of f obtained by non-uniform discretization with various
s added to the boundary conditions in Section 4.4.

s 0 1 2

G-RKCM (quintic)

Neumann BC 0.1804 0.2349 0.3903

Dirichlet BC 0.1804 0.4305 1.3475

both BCs 0.1804 0.7970 1.8118

G-RKCM (sextic)

Neumann BC 0.0535 0.0599 0.0606

Dirichlet BC 0.0535 0.2250 0.3218

both BCs 0.0535 0.2971 0.3126
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Figure 15. Relative error norm obtained by different accessible boundary βo.

5. Conclusions

The high-order gradient reproducing kernel approximation is introduced to solve
fourth-order PDEs with weak solutions to inverse source problems. With the aid of gradient
approximation, tedious computation is avoided. For the present study concerning the
fourth-order PDEs, it is efficacious to use equal-order bases of quartic order. The numerical
results have shown that the sextic kernel function exhibits higher accuracy and convergence
rate than the quintic kernel function; nevertheless, to retrieve the heat source with a
reducing accessible boundary, the quintic kernel function might be a better choice.

Theoretically, the convergence rates of unknown variable u and its derivatives are
directly related to the bases adopted in constructing RK and high-order gradient RK shape
functions. As the heat source f is recovered from u by using the second-order gradient
RK approximation, the fluctuation of f is determined by the order of u. From the example
in Section 4.3, it was found that the equal quartic-order bases are able to reproduce the
infinite-order polynomial function with desired accuracy in the inverse analysis, except for
the example in Section 4.4 needing additional ghost points due to more complex geometry.

Concerning the disturbance on discretization and boundary conditions, the present
method has shown the robustness in sight of non-uniform discretization and various
noise levels on boundary conditions. Especially the reproducing kernel approximation
offers flexibility in adjusting the support size if need be. From the investigation of bench-
mark problems, it is demonstrated that the weighted high-order G-RKCM is able to re-
trieve a heat source from the fourth-order PDEs with desired accuracy, even with limited
accessible boundary.
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