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Abstract: The weighted gradient reproducing kernel collocation method is introduced to recover 

the heat source described by Poisson’s equation. As it is commonly known that there is no unique 

solution to the inverse heat source problem, the weak solution based on a priori assumptions is 

considered herein. In view of the fourth-order partial differential equation (PDE) in the 

mathematical model, the high-order gradient reproducing kernel approximation is introduced to 

efficiently untangle the problem without calculating the high-order derivatives of reproducing 

kernel shape functions. The weights of the weighted collocation method for high-order inverse 

analysis are first determined. In the benchmark analysis, the unclear illustration in the literature is 

clarified, and the correct interpretation of numerical results is given particularly. Two mathematical 

formulations with four examples are provided to demonstrate the viability of the method, including 

the extreme cases of the limited accessible boundary. 

Keywords: inverse problems; heat source; fourth-order PDE; weighted collocation method; 

reproducing kernel approximation; gradient approximation 

 

1. Introduction 

Among the inverse heat source problems are the cylindrical source problems, point 

source problems, and problems with specified source functions. In the inverse analyses of 

the aforementioned problems, it is commonly known that there is strong non-uniqueness 

of the solutions [1]. In other words, it is hard to determine the heat source uniquely via 

measured data on the boundary. From a practical point of view, seeking weak solutions 

might be an option. To this end, some weak assumptions have been proposed accordingly 

in order to find the so-called weak solutions to inverse source problems. This turns out to 

be a priori knowledge, which makes the inverse source problems solvable [2]. For 

example, if one variable of the product is known when using the separation of variables, 

the bottom area is known for the source to be sought in a cylinder, while the source to be 

sought is described by a characteristic function. According to the principle of parsimony 

[3], a minimum-norm solution to the inverse problem can be regarded as the approximate 

solution to this problem, provided that the minimum-norm solution is the simple one 

revealing the minimum detail. By relating the inverse source problem to Poisson’s 

equation, it was shown that the minimum-norm solution satisfies Laplace’s equation [1]. 

On the other hand, there are limited numerical methods proposed to solve inverse heat 

source problems effectively so far [4]. Farcas et al. used the Tikhonov regularization 

method to recover the minimum-norm solution [1]. Gu et al. introduced the generalized 

finite difference method to solve the inverse heat source problems [4]. The weighted 

collocation method with reproducing kernel approximation and/or gradient reproducing 

kernel approximation has been applied to inverse analysis with great success to, for 

example, elasticity problems [5], Cauchy problems with complex geometry such as 

singularity [6], and multiply connected problems [7]. Nevertheless, the aforementioned 
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problems are of second order while the inverse source problems are analyzed by solving 

the fourth-order PDEs in strong form, which indicates that the computation of the fourth-

order derivatives of reproducing kernel shape functions is required. Due to the 

complicated composition of reproducing kernel shape functions, constructing the direct 

derivatives of reproducing kernel shape functions involves the calculation of derivatives 

of inverse matrix and other functions. In view of this, the present study further introduces 

the weighted high-order gradient reproducing kernel collocation method (G-RKCM) to 

compute derivatives implicitly and solve inverse heat source problems efficiently and 

effectively. Other advanced versions of smooth or gradient reproducing kernel collocation 

methods have shown the efficacy of solving both the second-order and fourth-order 

partial differential equations with superconvergent rates recently [8–10]. With the aid of 

high-order gradient approximation [11], the direct differentiation of reproducing kernel 

(RK) shape functions is avoided. It should be noted that the weighted collocation method 

is established on the basis of the least-squares minimization [12,13]. The weights imposed 

on the boundary collocation equations can be treated as one kind of regularization 

techniques of the system equations. Under the framework of a weighted least-squares 

functional, the weights on the boundary conditions act to keep balance of errors arising 

from the domain and boundary. As such, the minimum-norm solution to the inverse 

source problem can be obtained numerically. 

It should be particularly noticed that the weights are different for direct problems 

and inverse problems in general. Hence, the proper weights are determined uniquely on 

the basis of theoretical error estimates derived from the inverse analysis. Then, several 

benchmark problems are provided to demonstrate the viability of the proposed weighted 

high-order G-RKCM in solving the fourth-order partial differential equations. Especially, 

a conscientious comparison is made, and the unlikely results in the literature are pointed 

out with correct presentation instead. The present study is arranged in the following way: 

The two mathematical formulations of inverse source problems are given in Section 2. The 

weighted high-order G-RKCM for solving the fourth-order partial differential equations 

is introduced in Section 3. The numerical examples are provided in Section 4. Section 5 

concludes this paper. 

2. Mathematical Formulation 

Assuming that the medium of a heat conduction problem is isotropic and in the 

steady-state condition, the corresponding governing equation can be described by the 

following Poisson’s equation [2]: 

( ) ( )2 , ,    in u x y f x y =   (1) 

where ( ),u x y  is the potential field and ( ),f x y  is the heat source in the domain  . The 

domain is enclosed by the boundary  , where the heat flux ( ),q x y  flowing across the 

boundary is expressed as: 

( ),    on nq x y u=   (2) 

where nu u= n  and n  denotes the unit outward normal on the boundary.  

The heat source is assumed to be unknown. Let 1   denote the accessible 

boundary with measured data, and 2   denote the inaccessible part of the 

boundary, i.e., 1 2 =   . The governing equation is as follows: 

( ) ( )2

2, ,    in u x y f x y =   (3) 

The boundary conditions are as follows: 

( ) ( ) 1, ,    on u x y u x y=   (4) 
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( ) ( ) 1, ,    on q x y q x y=   (5) 

From Equations (1), (4), and (5), it is obvious that this problem is mathematically 

under-determined due to the unknown heat source and inaccessible boundary. For the 

current purpose of numerical investigation on the methodology, two mathematical 

formulations including Laplace’s and modified Helmholtz equations as a priori 

assumptions will be provided in Sections 2.1 and 2.2 in order to seek the weak solutions 

to the fourth-order inverse problems, while it is assumed that the heat source satisfies the 

second-order PDE. Nevertheless, other formulations might be possible for this problem. 

As it is outside the scope of the present study, only the heat conduction described by 

Poisson’s equation is considered in this regard. Once ( ),u x y  is found by solving the 

fourth-order inverse problems, the heat source can be inversely computed by using 

Equation (3) as ( ) 2 2 2 2, +f x y u x u y=     . 

2.1. Mathematical Formulation I 

The heat source ( ),f x y  is assumed to be a harmonic function varying in the 

domain, which satisfies the following Laplace’s equation: 

( )2

2, 0   in f x y =   (6) 

Applying the Laplace operator 2  to both sides of Equation (1) leads to: 

( )2 2 2

20   in u f  = =   (7) 

Combining the boundary conditions yields the following fourth-order inverse source 

problem: 

4 4 4

24 2 2 4
+2 0   in 

u u u

x x y y

  
+ = 

   
 (8) 

( ) ( ) 1, ,    on q x y q x y=   (9) 

( ) ( ) 1, ,    on u x y u x y=   (10) 

2.2. Mathematical Formulation II 

The heat source ( ),f x y  is assumed to satisfy the following homogeneous modified 

Helmholtz equation: 

( ) ( )2 2

2, 0   in f x y − =   (11) 

where   is the wave number of a known value. Applying the operator ( )2 2 −  to 

both sides of Equation (1) leads to: 

4 2 2

20   in u u −  =   (12) 

Similarly, combining the boundary conditions yields the following fourth-order 

inverse source problem: 

4 4 4 2 2
2 2

24 2 2 4 2 2
+2 0   in 

u u u u u

x x y y x y
 

    
+ − − = 

     
 (13) 

( ) ( ) 1, ,    on q x y q x y=   (14) 
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( ) ( ) 1, ,    on u x y u x y=   (15) 

3. Weighted High-Order Gradient Reproducing Kernel Collocation Method 

3.1. Review of High-Order Gradient Reproducing Kernel Approximation 

In the collocation method, the unknown u  can be approximated by reproducing 

kernel (RK) shape function through sN  source points as follows: 

( ) ( ) ( )
1

 
sN

I I

I

u v a
=

 = x x x  (16) 

where Ia  is the generalized coefficient. The RK shape function ( )I x , consisting of a 

monomial basis ( )I−H x x , coefficient vector ( )b x , and kernel function ( )a I −x x , 

takes the following form: 

( ) ( ) ( ) ( )T

I aI I− = −H x x b xx x x  (17) 

where ( )b x  is found by the reproducing conditions listed below: 

( )
1

,    0
sN

I I

I

p  
=

 =   x x x  (18) 

where   is the multi-index defined as 
1 2  = +  in two dimensions and p  is the 

order of ( )I−H x x . The details of deriving RK shape functions are described in a previous 

study [13]. The explicit form of RK shape functions is as follows: 

( ) ( ) ( ) ( ) ( )T 1

I I a I− = − −x H 0 M x H x x x x  (19) 

with the moment matrix ( )M x  defined as: 

( ) ( ) ( ) ( )T

1

sN

I I a I

I


=

= − − −M x H x x H x x x x  (20) 

For the fourth-order differential equations considered in this paper, the high-order 

gradient reproducing kernel approximation is introduced to reduce the complexity of 

constructing the derivatives of RK shape functions directly. The mathematical proof of 

reduced complexity in comparison with reproducing kernel approximation is described 

in a previous study [13]. For direct problems solved by using high-order implicit gradient 

reproducing kernel approximation, the details are described in a recent study [11]. In the 

present study, the fourth-order gradient reproducing kernel approximation is adopted, 

and the corresponding implicit RK shape functions to the first-, second-, third-, and 

fourth-order are expressed explicitly as follows: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

T 1

,

T 1

,

x

I x I a I

y

I y I a I





−

−

 = − − −

 = − − −

x H 0 M x H x x x x

x H 0 M x H x x x x
 (21) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

T 1

,

T 1

,

xx

I xx I a I

yy

I yy I a I





−

−

 = − −

 = − −

x H 0 M x H x x x x

x H 0 M x H x x x x
 (22) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

T 1

,

T 1

,

xxx

I xxx I a I

yyy

I yyy I a I





−

−

 = − − −

 = − − −

x H 0 M x H x x x x

x H 0 M x H x x x x
 (23) 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

T 1

,

T 1

,

xxxx

I xxxx I a I

yyyy

I yyyy I a I





−

−

 = − −

 = − −

x H 0 M x H x x x x

x H 0 M x H x x x x
 (24) 

From Equations (21)–(24), it is obvious that the major difference lies in the derivatives 

of monomial basis ( )I−H x x  and the sign. To ensure continuity, higher order B-spline 

kernel function is particularly needed in strong form collocation methods. The common 

B-spline kernel functions such as quintic and sextic B-spline kernel functions are given by: 

( )

2 4 5

2 3 4 5

2 3 4 5

11 9 81 81 1
,                               0

20 2 4 4 3

17 15 63 135 243 81 1 2
,     

40 8 4 4 8 8 3 3

81 81 81 81 81 81 2
,        1

40 8 4 4 8 40 3

0,                                          

a

s s s
s

s s s s s
s

s

s s s s s
s



− + −  

+ − + − +  
=

− + − + −  

    

                               1s










 

 (25) 

and 

( )

2 4 6

2 3 4 5 6

5887 3773 16807 117649 1
,                                                                    0

1920 128 128 384 7

7861 49 13377 12005 151263 117649 117649
,        

2560 256 512 384 512 256 512

a

s s s
s

s s s s s s

s

− + −  

− − − + − +

= 2 3 4 5 6

2 3 4 5 6

1 3
            

7 7

1379 8869 48363 45619 151263 117649 117649 3 5
,                

1280 320 256 96 256 320 1280 7 7

117649 117649 117649 117649 117649 117649 117649

7680 1280 512 384 512 1280 768

s

s s s s s s
s

s s s s s s

 

+ − + − + −  

− + − + − +
5

,     1
0 7

0,                                                                                                                                  1

s

s












 




 (26) 

where the nodal distance is normalized by RK support size a , namely Is a= −x x . For 

the p th order monomial basis, the RK support size is chosen as ( )a p h= +  with 

0   and h  the average nodal distance. 

3.2. Weighted Collocation Method with High-Order Gradient Approximation 

According to Section 2, the general strong form of the fourth-order PDEs can be 

written as: 

, , , , , 2   in a b c d e

xxxx xxyy yyyy xx yyL u L u L u L u L u m+ + + + =   (27) 

, 1   on h nB u q=   (28) 

1   on gB u u=   (29) 

where aL , bL , cL , dL , and eL  are the differential operators in the domain, hB  is the 

Neumann boundary operator, 
gB  is the Dirichlet boundary operator, and ( )m m= x  is 

a given function. For illustration purposes, take the problem described in Section 2.2 as an 

example; the operators are explicitly derived by using the implicit approximation: 

1a cL L= = , 2bL = , 2d eL L = = − , hB n= , 1gB = , and 0m= . As 2  denotes the 

inaccessible boundary, it is numerically enforced to satisfy the governing equation, which 

is commonly done in solving inverse problems [5]. Without loss of generality, the same 

discretization of collocation points cN  and source points sN  is adopted in this study. In 

other words, an over-determined system of collocation equations is established. Thus, 
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according to Equations (27)–(29) and introducing the approximation, a weighted version 

of least-squares functional is constructed as follows: 

( ) ( )

( )

( ) ( ) ( ) ( )

2

1 1

T

22
TT

1 1

1

2

                       

        
2 2

a b c d e

xxxx xxyy yyyy xx yy

a b c d e

xxxx xxyy yyyy xx yy

gh

h n h n g g

E v L v L v L v L v L v m

L v L v L v L v L v m d

ww
B v q B v q d B v u B v u d



 

= + + + + −

+ + + + − 

+ − −  + − − 



 

 (30) 

where 2

hw  and 2

gw  are the weights introduced in order to balance the errors in the 

domain and on the boundary.  

With reference to our previous study [5], the discrete weighted collocation system 

can be derived by using the equivalent quadrature rule, i.e., performing the integration at 

collocation points, and by minimizing the functional, i.e., utilizing the stationary 

condition. As such, the following collocation equation can be reached: 

h h h h

g g g g

w w

w w

   
   

=   
   
   

A b

A a b

A b

 (31) 

where a  contains the generalized coefficients ( )1,2,...,I sa I N=  as introduced in 

Equation (16). Three sets, px , qx , and rx , containing pN , qN , and rN  collocation 

points, are defined as follows: 

1 2 2

1 2 1

1 2 1

, , ,   

, , ,   

, , ,   

p

q

r

p p p pN

q q q qN

r r r rN

 =  
 

 =  
 

 =   

x x x x

x x x x

x x x x

 (32) 

where the domain   is partially enclosed by 1  in a simply connected domain with 

the inaccessible boundary denoted by 2 . It should be noticed that qx  may not be the 

same as rx  in a multiply connected domain. Then, the submatrices in Equation (31) are 

given explicitly as: 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( ) ( )( )

T T T T T

T T T T T

T T T T T

1 1 1 1 1

2 2 2 2 2

p p p p p

a xxxx b xxyy c yyyy d xx e yy

p p p p p

a xxxx b xxyy c yyyy d xx e yy

p p p p p

a xxxx b xxyy c yyyy d xx e yy

pN pN pN pN pN

L L L L L

L L L L L

L L L L L

 + + + +
 
 

+ + + + 
=
 
 
 

+ + + + 
 

Ψ x Ψ x Ψ x Ψ x Ψ x

Ψ x Ψ x Ψ x Ψ x Ψ x
A

Ψ x Ψ x Ψ x Ψ x Ψ x

 (33) 

( )( )
( )( )

( )( )

T

T

T

1

2

q

n

h q

n

h q

h

n

h qN

B

B

B

 
 
 
 

=
 
 
 
 
 

Ψ x

Ψ x
A

Ψ x

 (34) 
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( )( )

( )( )

( )( )

T

1

T

2

T

r

g r

g r

g

g rN

B

B

B

 
 
 
 =
 
 
 
 

Ψ x

Ψ x
A

Ψ x

 (35) 

( )

( )

( )

( )

( )

( )

( )

( )

( )

1 1
1

22 2
, ,  

r
p q

p q
r

rp q

h g

rN
pN qN

m q u

um q

um q

   
    
 

   
 

   = = =  
   

 
     
     
   

x x x

xx x
b b b

xx x

 (36) 

For the problem described in Section 2.2, the components in the submatrices A , hA

, and gA  and the sub-vectors b , hb , and gb  are derived as: 

( ) ( ) ( ) ( ) ( )

( )

( )

2 22xxxx xxyy yyyy xx yy

IJ J pI J pI J pI J pI J pI

n

hIJ J qI

gIJ J rI

n

  =  +  + −  − 
 

 = 
 

=   

A x x x x x

A x

A x

 (37) 

0  

  

  

IJ pI

hIJ qI

gIJ rI

q

u

= 

= 

= 

b x

b x

b x

 (38) 

As for the values of weights hw  and gw , they are determined both theoretically and 

numerically according to the error estimate and computational results. Referring to a 

previous study [13], it was shown that the weights in the gradient reproducing kernel 

collocation method for solving second-order direct Cauchy problems are given by: 

( ) ( )1 1
1 ,   q p

h gw O w O a O
a

− −  
    

 
 (39) 

where p  and q  denote the order of basis for RK shape functions and gradient RK shape 

functions, respectively, and a  denotes the support size of RK and gradient RK shape 

functions. It was reported that the equal-order basis 2p q= =  can reach synchronized 

convergence rates of u  and its derivatives. For the fourth-order PDEs in consideration, 

4p q= =  is adopted herein. On the other hand, referring to another previous study [11], 

the weights in the high-order gradient RKCM for solving fourth-order Kirchhoff plate 

problems are given by: 

2 3
,   h g

G G
w O w O

a a

   
    

   
 (40) 

where G  is the constant related to Young’s modulus, Poisson’s ratio, and the plate’s 

thickness. As the fourth-order PDEs described in Section 2 do not contain the elasticity 

problem, the normalized version of Equation (40) should be used instead, which is given 

by: 

2 3

1 1
,   h gw O w O

a a

   
    

   
 (41) 
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As the fourth-order inverse source problem is of major interest in the present study, 

either Equation (39) or Equation (41) might be a good candidate to meet our need. To this 

end, the proper weights will be determined numerically in the next section. 

4. Numerical Examples 

In this section, four examples are provided to demonstrate the viability of the 

weighted high-order G-RKCM in solving the fourth-order PDEs with two mathematical 

formulations. As mentioned in Section 3, the proper weights will be investigated 

numerically on the basis of the theoretical derivation, as described in Equations (39) and 

(41). Furthermore, the RK and high-order gradient RK shape functions are constructed by 

using the equal-order basis function of quartic order to ensure consistency. Both quintic 

and sextic B-spline kernel functions are adopted to assure smoothness in the 

approximation. Without loss of generality, the RK support size is 5a h= . To compare the 

approximate solutions with reference solutions in the literature, the following error norm 

is defined [2,4]: 

( )
2

1

2

1

relative error norm

c

c

ana

N i i

numerica lytical

analytica

li

N i

i l

f f

f

=

=

−
=



 (42) 

The presentation of contour plot is expressed in terms of the maximum relative error 

defined as: 

maximum relative error

i i

numeri analytica

i

c l

an l

a

c

l

a yti al

f f

f

−
=  (43) 

for 1,2,..., ci N= . 

4.1. Mathematical Formulation I in a Square Domain 

The governing equation together with boundary conditions in a square domain are 

described as follows: 

( ) 
4 4 4

4 2 2 4
+2 0   in , 0 , 6

u u u
x y x y

x x y y

  
+ =  =  

   
 (44) 

( )

( )

2

2

2

2

1
1 on 0

4 100

1
36 1 on 6

4 100

1
1 on 0

4 100

1
36 1 on 6

4 100

s
u y rand x

s
u y rand x

s
u x rand y

s
u x rand y

 
= +  = 

 

 
= + +  = 

 

 
= +  = 

 

 
= + +  = 

 

 (45) 

,

,

,

,

on 0
100

3 1 on 6
100

on 0
100

3 1 on 6
100

x

x

y

y

s
u rand x

s
u rand x

s
u rand y

s
u rand y

 =

 
+  = 

 

=  =

 
+  = 

 

=

=

=

 (46) 
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where rand  denotes the Matlab built-in function of a random number in the interval 0~1. 

Referring to Ref. [4], the accessible boundary 1  is taken as the  . For 0s = , the 

analytical solutions to this problem are given by: 

( ) ( )2 21
,

4
u x y x y= +  (47) 

( ), 1f x y =  (48) 

To determine the weights in the proposed method for solving the fourth-order PDEs in 

consideration, two sets of weights introduced in Section 3.2 are investigated through the 2L  

norms of u  and ,u  . The uniform discretization is schematically shown in Figure 1a. In 

Figure 2, both sets of weights exhibit similar convergence rates for 2L  norms of u  and ,u   

with respect to the quintic kernel function ( 4.95a h= ) and sextic kernel function ( 5.25a h= ), 

except the 2L  norm of ,u   for the quintic kernel function. Furthermore, some negative 

slopes are observed as high-order gradient approximation, which might cause numerical 

instability for certain discretization. Reaching an acceptable convergence rate with high 

accuracy becomes critical for high-order G-RKCM in approximating high order derivatives by 

high order basis functions. In general, the sextic kernel function shows higher convergence 

and accuracy in the approximation. The reason for similar convergence rates might be 

explained as follows: for RK support size 6a h=  with 230sN = , the two sets of weights are 

( )1 1O =  and ( )
( )

1 1
1 0.8

6 6 6 29
O a

h
 = =


, and ( )2 21 1 0.64O a a =  and 

( )3 31 1 0.51O a a = , respectively. The ratios of weights in each set are equal to each other, 

i.e., 
( ) ( )

( ) ( )2 3

1 1
1.25

1 1

O O a

O a O a
= . As the set of weights given in Equation (41) can be more 

sensitive to the discretization, it is adopted in the following study. 

The results obtained by the weighted high-order G-RKCM are first verified with the 

results obtained by the method of fundamental solutions (MFS) [2] and the generalized finite 

difference method (GFDM) [4] in the literature. Referring to Table 1, the present method yields 

the best results with high accuracy among the three methods, regardless of the RK support 

size used in the approximation. The selected contour plots of maximum relative error of f  

obtained by 5a h=  are depicted in Figure 3; it is confirmed that high accuracy for recovering 

source f  is assured. Next, the boundary equations in Equations (45) and (46) are disturbed 

by some percentage of noise s , and the results obtained by using 225s cN N= =  are 

summarized in Table 2. As the reference result was obtained by adding noise into the input 

data as described ambiguously in [4], three possible scenarios with disturbance adding on 

various kinds of boundary conditions (BCs) are investigated herein. Still, the present method 

yields better accuracy than the reference method in general, although G-RKCM with the 

quintic kernel function shows larger errors when Dirichlet boundary condition or both 

boundary conditions are disturbed. Nevertheless, the present method is quite stable up to the 

noise level 3s = . As shown in Figure 1b, the non-uniform discretization for 225s cN N= =  

obtained by 5% disturbance of domain points is considered. The contour plots of maximum 

relative error of f  are depicted in Figure 4; furthermore, the corresponding relative error 

norms of f  obtained by various kinds of disturbance of boundary conditions are 

summarized in Table 3. From Tables 2 and 3, it is observed that the disturbance adding on the 

Neumann boundary condition produces minimal error, while the other two kinds of 

boundary disturbances produce a similar amount of error. Even subjected to double 

disturbance of discretization and boundary condition, the robustness of the method is 

apparently demonstrated. 
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(a) 

 
(b) 

Figure 1. Discretization of the square domain: (a) uniform; (b) non-uniform. 

 
(a) 

 
(b) 

Figure 2. Convergence rates of a square domain problem: (a) 2L  norm of u ; (b) 2L  norm of ,u  . 

 
(a) 

 
(b) 

Figure 3. Contour plots of f  obtained by maximum relative error: (a) quintic kernel function; (b) 

sextic kernel function. 
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(a) 

 

(b) 

Figure 4. Contour plots of f  obtained by maximum relative error with non-uniform 

discretization: (a) quintic kernel function; (b) sextic kernel function. 

Table 1. Comparison of relative error norms of f  by different methods and influence of RK 

support size in G-RKCM with 
225sN = . 

Method Relative Error Norm 

MFS with 40sN =  [2] 72.13 10−  

GFDM with 225sN =  [4] 88.26 10−  

G-RKCM (quintic) 4.5a h=  101.63 10−  

G-RKCM (sextic) 4.5a h=  107.30 10−  

G-RKCM (quintic) 5a h=  114.32 10−  

G-RKCM (sextic) 5a h=  117.89 10−  

G-RKCM (quintic) 5.5a h=  114.08 10−  

G-RKCM (sextic) 5.5a h=  115.07 10−  

G-RKCM (quintic) 6a h=  112.44 10−  

G-RKCM (sextic) 6a h=  112.90 10−  

Table 2. Comparison of relative error norms of f  by various s  on boundary conditions in 

Section 4.1. 

s  1 2 3 

GFDM [4] 0.025 - - 

G-RKCM 

(quintic) 

Neumann BC 0.0198 0.0480 0.0614 

Dirichlet BC 0.0464 0.1062 0.1387 

both BCs 0.0432 0.1203 0.1613 

G-RKCM 

(sextic) 

Neumann BC 0.0144 0.0295 0.0432 

Dirichlet BC 0.0189 0.0388 0.0824 

both BCs 0.0184 0.0417 0.0661 

Table 3. Comparison of relative error norms of f  obtained by non-uniform discretization with 

various s  added to the boundary conditions in Section 4.1. 

s  1 2 3 

G-RKCM 

(quintic) 

Neumann BC 0.0285 0.0578 0.0834 

Dirichlet BC 0.1189 0.1531 0.2297 

both BCs 0.0940 0.1462 0.2069 



Mathematics 2022, 10, 241 12 of 21 
 

 

G-RKCM 

(sextic) 

Neumann BC 0.0263 0.0562 0.1114 

Dirichlet BC 0.0868 0.1411 0.1900 

both BCs 0.0926 0.1745 0.1925 

4.2. Mathematical Formulation I in an Annular Domain 

The governing equation and boundary conditions in an annular domain are 

described as follows: 

( ) 
4 4 4

2 2

4 2 2 4
+2 0   in , 1 2i o

u u u
x y R r x y R

x x y y

  
+ =  = =  = +  =

   
 (49) 

( ) ( ) ( )
3 31

, cos 6 sin 6 ,    0
6

o o o ou R R R     = − − + −  
 

 (50) 

( ) ( ) ( )
2 21

, cos 6 cos sin 6 sin ,    0
2

n o o o ou R R R       = − − + −  
 

 (51) 

with the inner boundary condition: 

( ) ( ) ( )
3 31

, cos 6 sin 6 ,    0 2
6

i i iu R R R     = − − + −  
 

 (52) 

In Equations (50) and (51), o  denotes the angle along the outer boundary, 

measured from positive x  axis in the counterclockwise direction, in which the portion 

of outer boundary is imposed with both Dirichlet and Neumann boundary conditions. 

The analytical solutions to this problem are as follows: 

( ) ( ) ( )
3 31

, 6 6
6

u x y x y = − − + −
 

 (53) 

( ), 12f x y x y= − −  (54) 

The discretization of the problem using 386sN =  is depicted in Figure 5, and the 

corresponding contour plots of maximum relative error of f  obtained by quintic and 

sextic kernel functions are shown in Figure 6. The relative error norms obtained by various 

RK support size are summarized in Table 4. Obviously, the present method with both 

kernel functions exhibits higher accuracy in retrieving the heat source f  regardless of 

the RK support size in comparison with the reference solution by GFDM given in [4]. 

Concerning the disturbance with various s  added to the outer boundary, the 

comparison of relative error norms of f  is made in Table 5. It is observed that the 

disturbance added to the Neumann boundary conditions has the smallest error among 

three scenarios of boundary conditions. The selected contour plots of maximum relative 

error of f  obtained by adding 1s =  to the Neumann boundary condition are shown in 

Figure 7. Still, the present method is stable under various kinds of boundary disturbance. 

To further investigate the limitation of the method in retrieving the heat source, the 

relative error norms obtained by accessible outer boundary with different angles o  

without considering disturbance on the outer boundary are shown in Figure 8. It is 

observed that both kernel functions yield similar accuracy when o  , while the 

quintic kernel function maintains accuracy for < o  . As discussed in [11], reaching 

acceptable accuracy becomes critical for high-order G-RKCM in approximating high order 

derivatives by high-order basis functions in direct problems. Although a similar situation 

is observed for the inverse problem in consideration, the present method is able to retrieve 

heat source with high accuracy within limited accessible boundary 2 0.1o  = , which is 

much better than 2 0.4o  = , as reported in the literature [4]. 
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Figure 5. Discretization of the annular domain. 

 

(a) 

 

(b) 

Figure 6. Contour plots of maximum relative error of f  obtained by: (a) quintic kernel function; 

(b) sextic kernel function. 

 

(a) 

 

(b) 

Figure 7. Contour plot of maximum relative error of f  obtained by adding 1s =  to the Neumann 

boundary conditions: (a) quintic kernel function; (b) sextic kernel function. 



Mathematics 2022, 10, 241 14 of 21 
 

 

 

Figure 8. Relative error norm obtained by different accessible boundary o . 

Table 4. Comparison of the relative error norms of f  by different methods and influence of RK 

support size in G-RKCM with 386sN = . 

Method Relative Error Norm 

GFDM with 386sN =  [4] 88.00  10−  

G-RKCM (quintic) 4.5a h=  4.34 10 10−  

G-RKCM (sextic) 4.5a h=  3.44 9 10−  

G-RKCM (quintic) 5a h=  2.99 10 10−  

G-RKCM (sextic) 5a h=  1.75 10 10−  

G-RKCM (quintic) 5.5a h=  4.12 10 10−  

G-RKCM (sextic) 5.5a h=  4.57 10 10−  

G-RKCM (quintic) 6a h=  5.23 10 10−  

G-RKCM (sextic) 6a h=  5.02 10 10−  

Table 5. Comparison of the relative error norms of f  by various s  on boundary conditions in 

Section 4.2. 

s  1 2 3 

GFDM [4] 0.06 - - 

G-RKCM 

(quintic) 

Neumann BC 0.0348 0.0701 0.1147 

Dirichlet BC 0.1694 0.4567 0.6620 

both BCs 0.1815 0.4380 0.7094 

G-RKCM 

(sextic) 

Neumann BC 0.0465 0.0942 0.1488 

Dirichlet BC 0.3731 0.6007 0.9965 

both BCs 0.2897 0.6417 1.2433 

4.3. Mathematical Formulation II in a Circular Domain 

The governing equation together with boundary conditions in a circular domain are 

described as follows: 

( ) 
4 4 4 2 2

2 2 2 2

4 2 2 4 2 2
+2 0   in , 1

u u u u u
x y r x y

x x y y x y
 

    
+ − − =  = = + 

     
 (55) 
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( ) ( )cos cos sin, sin sin 1 ,    0 2
100

s
u r e e rand     −  

 = + +     
 

 (56) 

( ) ( )

( ) 

cos sin

cos sin

, sin sin cos

            cos sin sin 1 ,    0 2
100

nu r e e

s
e e rand

 

 

  

   

−

−

 = + 

 
 + − +     

 

 (57) 

where the wave number is 2 = . The analytical solutions to this problem are given by: 

( ), sinx x yu x y e y e −= +  (58) 

( ), 2 x yf x y e −=  (59) 

The discretizations of the domain by uniform and non-uniform points 468s cN N= =  

are shown in Figure 9a,b, respectively. As the reference solution in the literature is given with 

disturbed noise, to verify the results obtained by the present method, different levels of noise 
s  on various kinds of boundary conditions is considered. Table 6 summarizes the relative 

error norms of f  obtained by the method of fundamental solutions (MFS) [2] and the present 

G-RKCM, in which smaller errors can be obtained when a smaller RK support size 4.5a h=  

is adopted as compared with reference solution. The flexibility of reproducing kernel 

approximation in adjusting the support size is observed. Additionally, G-RKCM with the 

sextic kernel function yields higher accuracy than the quintic kernel function. The contour 

plots of f  obtained by adding 2s =  to the Neumann boundary condition are depicted in 

Figure 10; the distribution of magnitude of f  agrees well with the reference solution [2]. 

Nevertheless, by checking x y=  in the analytical solution given in Equation (59), it is easily 

found that ( ), 2f x y =  along the diagonal direction with 45 . Therefore, the trend or 

orientation of the contour in the reference [2] is not correct, and the correct contours of f  are 

provided in Figures 10 and 11. Particularly, Figure 11 presents the corresponding contours 

obtained by non-uniform discretization (5% noise added to uniform discretization) with 

various s  added to the Neumann boundary condition. The relative error norms of f  

obtained by non-uniform discretization with various s  added to the boundary conditions 

are summarized in Table 7; again, 4.5a h=  yields better accuracy than 5a h= , and the sextic 

kernel function is more accurate than the quintic kernel function. From above results, it is 

found that the present method is stable no matter what kinds of disturbance and levels of 

noise are imposed on. 

 

(a) 

 

(b) 

Figure 9. Discretization of the circular domain: (a) uniform; (b) non-uniform. 
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(a) 

 

(b) 

Figure 10. Contour plots of f  obtained by adding 2s =  to the Neumann boundary condition for 

uniform discretization: (a) quintic kernel function; (b) sextic kernel function. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 11. Contour plots of f  obtained by adding various s  to the Neumann boundary 

condition for non-uniform discretization: (a) quintic kernel function with 0s = ; (b) sextic kernel 

function with 0s = ; (c) quintic kernel function with 2s = ; (d) sextic kernel function with 2s = . 
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Table 6. Comparison of the relative error norms of f  by various s  on boundary conditions in 

Section 4.3. 

s  2 3 

MFS [2] 0.0175 - 

G-RKCM (quintic) 

4.5a h=  

Neumann BC 0.0157 0.0391 

Dirichlet BC 0.0343 0.0718 

both BCs 0.0468 0.0749 

G-RKCM (sextic) 

4.5a h=  

Neumann BC 0.0166 0.0392 

Dirichlet BC 0.0410 0.0651 

both BCs 0.0409 0.0747 

G-RKCM (quintic) 

5a h=  

Neumann BC 0.0237 0.0427 

Dirichlet BC 0.0512 0.0549 

both BCs 0.0411 0.0735 

G-RKCM (sextic) 

5a h=  

Neumann BC 0.0243 0.0399 

Dirichlet BC 0.0397 0.0457 

both BCs 0.0428 0.0675 

Table 7. Comparison of relative error norms of f  obtained by non-uniform discretization with 

various s  added to the boundary conditions in Section 4.3.  

s  1 2 3 

G-RKCM 

(quintic) 

4.5a h=  

Neumann BC 0.0149 0.0278 0.0413 

Dirichlet BC 0.0298 0.0531 0.0850 

both BCs 0.0279 0.0528 0.0784 

G-RKCM 

(sextic) 

4.5a h=  

Neumann BC 0.0128 0.0263 0.0428 

Dirichlet BC 0.0250 0.0526 0.0715 

both BCs 0.0284 0.0572 0.0613 

G-RKCM 

(quintic) 

5a h=  

Neumann BC 0.0156 0.0287 0.0494 

Dirichlet BC 0.0379 0.0425 0.0752 

both BCs 0.0273 0.0517 0.0878 

G-RKCM 

(sextic) 

5a h=  

Neumann BC 0.0166 0.0314 0.0579 

Dirichlet BC 0.0393 0.0488 0.0702 

both BCs 0.0320 0.0479 0.0743 

4.4. Mathematical Formulation II in an Annular Domain 

The governing equation with boundary conditions in an annular domain are 

described as follows: 

( ) 

4 4 4 2 2
2 2

4 2 2 4 2 2

2 2

+2 0   

                                   in , 1 2i o

u u u u u

x x y y x y

x y R r x y R

 
    

+ − − =
     

 = =  = +  =

 (60) 

( ) ( ) ( )cos sincos
, sin sin ,    0oo RR

o o ou R e R e
    
−

= +    (61) 

( ) ( )

( )

cos sin

cos sin

, sin sin cos

               cos sin sin ,    0

o o

o o

R R

n o o

R R

o o

u R e R e

e R e

 

 

  

   

−

−

 = + 

 + −   

 (62) 

with the inner boundary condition: 



Mathematics 2022, 10, 241 18 of 21 
 

 

( ) ( ) ( )cos sincos
, sin sin ,    0 2ii RR

i iu R e R e
    
−

= +    (63) 

where the wave number is 2 = . The same analytical solutions are described in Section 

4.3. 

The uniform discretization and non-uniform discretization (5% noise added to 

uniform discretization) of the annular domain by 666s cN N= =  are depicted in Figure 

12a and Figure 12b, respectively. To reach the desired accuracy, a layer of ghost points is 

arranged along the radial direction with a distance of 0.65h  from the outer boundary of 

the domain, i.e., total points 742sgN = . For quintic and sextic kernel functions, the RK 

support size is chosen as 4.75a h=  and 4.35a h= , respectively. The corresponding 

contour plots of f  obtained by uniform discretization are shown in Figure 13; both 

kernel functions generate consistent contour plots. Next, different levels of noise s  are 

added to various boundary conditions, and the results are summarized in Table 8. It is 

observed that more accurate results are reached by G-RKCM with the sextic kernel 

function than those by the quintic kernel function, and the case with noise added to the 

Neumann boundary condition has the smallest error for G-RKCM with both kernel 

functions. For non-uniform discretization disturbed by various s  added to the 

Neumann boundary condition, the contour plots of f  are given in Figure 14. Especially, 

Figure 14c,d are the contours obtained by quintic kernel function with 1s =  and sextic 

kernel function with 2s = . By observation, the contours of f  obtained by G-RKCM 

with the sextic kernel function are more stable than those obtained by quintic kernel 

function, even under disturbance on both discretization and boundary condition. The 

corresponding relative error norms of f  obtained by various s  on different boundary 

conditions are summarized in Table 9. Again, higher accuracy of G-RKCM with the sextic 

kernel function is observed. For an accessible outer boundary in the range 0 2o   , 

the relative error norms are depicted in Figure 15. Obviously, both kernel functions exhibit 

similar accuracy, and the error increases with reducing accessible outer boundary while 

the approximation retains acceptable accuracy for o  . 

 

(a) 

 

(b) 

Figure 12. Discretization of the annular domain: (a) uniform; (b) non-uniform. 
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(a) 

 

(b) 

Figure 13. Contour plots of f  obtained by uniform discretization: (a) quintic kernel function; (b) 

sextic kernel function. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 14. Contour plots of f  obtained by adding various s  to the Neumann boundary 

condition for non-uniform discretization: (a) quintic kernel function with 0s = ; (b) sextic kernel 

function with 0s = ; (c) quintic kernel function with 1s = ; (d) sextic kernel function with 2s = . 
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Figure 15. Relative error norm obtained by different accessible boundary o . 

Table 8. Comparison of relative error norms of f  obtained by uniform discretization with various 

s  added to the boundary conditions in Section 4.4. 

s  0 1 2 

G-RKCM 

(quintic) 

Neumann BC 0.0095 0.0219 0.0385 

Dirichlet BC 0.0095 0.3180 0.5597 

both BCs 0.0095 0.3577 0.6664 

G-RKCM 

(sextic) 

Neumann BC 0.0040 0.0135 0.0299 

Dirichlet BC 0.0040 0.1553 0.2972 

both BCs 0.0040 0.1610 0.2389 

Table 9. Comparison of relative error norms of f  obtained by non-uniform discretization with 

various s  added to the boundary conditions in Section 4.4. 

s  0 1 2 

G-RKCM 

(quintic) 

Neumann BC 0.1804 0.2349 0.3903 

Dirichlet BC 0.1804 0.4305 1.3475 

both BCs 0.1804 0.7970 1.8118 

G-RKCM 

(sextic) 

Neumann BC 0.0535 0.0599 0.0606 

Dirichlet BC 0.0535 0.2250 0.3218 

both BCs 0.0535 0.2971 0.3126 

5. Conclusions 

The high-order gradient reproducing kernel approximation is introduced to solve 

fourth-order PDEs with weak solutions to inverse source problems. With the aid of 

gradient approximation, tedious computation is avoided. For the present study 

concerning the fourth-order PDEs, it is efficacious to use equal-order bases of quartic 

order. The numerical results have shown that the sextic kernel function exhibits higher 

accuracy and convergence rate than the quintic kernel function; nevertheless, to retrieve 

the heat source with a reducing accessible boundary, the quintic kernel function might be 

a better choice. 

Theoretically, the convergence rates of unknown variable u  and its derivatives are 

directly related to the bases adopted in constructing RK and high-order gradient RK shape 
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functions. As the heat source f  is recovered from u  by using the second-order gradient 

RK approximation, the fluctuation of f  is determined by the order of u . From the 

example in Section 4.3, it was found that the equal quartic-order bases are able to 

reproduce the infinite-order polynomial function with desired accuracy in the inverse 

analysis, except for the example in Section 4.4 needing additional ghost points due to more 

complex geometry. 

Concerning the disturbance on discretization and boundary conditions, the present 

method has shown the robustness in sight of non-uniform discretization and various noise 

levels on boundary conditions. Especially the reproducing kernel approximation offers 

flexibility in adjusting the support size if need be. From the investigation of benchmark 

problems, it is demonstrated that the weighted high-order G-RKCM is able to retrieve a 

heat source from the fourth-order PDEs with desired accuracy, even with limited 

accessible boundary. 
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