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Abstract: Hypergroups can be subdivided into two large classes: those whose heart coincide with
the entire hypergroup and those in which the heart is a proper sub-hypergroup. The latter class
includes the family of 1-hypergroups, whose heart reduces to a singleton, and therefore is the trivial
group. However, very little is known about hypergroups that are neither 1-hypergroups nor belong
to the first class. The goal of this work is to take a first step in classifying G-hypergroups, that
is, hypergroups whose heart is a nontrivial group. We introduce their main properties, with an
emphasis on G-hypergroups whose the heart is a torsion group. We analyze the main properties
of the stabilizers of group actions of the heart, which play an important role in the construction of
multiplicative tables of G-hypergroups. Based on these results, we characterize the G-hypergroups
that are of type U on the right or cogroups on the right. Finally, we present the hyperproduct tables
of all G-hypergroups of size not larger than 5, apart of isomorphisms.

Keywords: hypergroups; heart; group action; 1-hypergroups; cogroups

1. Introduction

Hypercompositional algebra is a branch of Algebra that falls under the many gener-
alizations of group theory [1]. Therefore, it is not surprising that there is a great deal of
overlap between the tools and problems of group theory and those of hypergroup theory.
In fact, one of the best developed research areas in hypergroup theory is that of their clas-
sification. Although a complete classification of hypergroups is well beyond any current
research horizon, several important results have been obtained in characterizing classes of
hypergroups having certain properties. For example, the class of D-hypergroups consists
of those hypergroups that are isomorphic to the quotient set of a group with respect to a
non-normal subgroup, and is a subclass of cogroups [2–4], and cogroups appear as gener-
alizations of C-hypergroups, that were introduced as hyperstructures having an identity
element and a weak form of the cancellation law [5,6].

A strong link between group theory and hypergroup theory is established by the
relation β, which is the smallest equivalence relation defined on a hypergroup H such that
the corresponding quotient set H/β is a group [7–9]. This relation is a very expressive tool
for classifying significant families of hypergroups. In particular, the β-class of the identity
of the quotient group H/β is called heart [10–12]. The heart is a special sub-hypergroup
of H that gives detailed informations on the partition of H determined by β. Notably, a 1-
hypergroup is a hypergroup whose heart consists of only one element [13,14]. In this case,
that element is also the identity of the hypergroup. In [15,16], the authors characterized
1-hypergroups in terms of the height of their heart and provided a classification of the
1-hypergroups with |H| ≤ 6 based on the partition of H induced by β. By means of
this technique, the authors were able to enumerate all 1-hypergroups of size up to 6 and
construct explicitly all non-isomorphic 1-hypergroups of size up to 5.

Motivated by these studies, in this paper we consider the class of hypergroups whose
heart is isomorphic to a group. These hypergroups are called G-hypergroups. Clearly, this
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class contains that of 1-hypergroups as the heart of a 1-hypergroup is the trivial group.
The plan of this paper is the following. In the next section, we introduce basic definitions
and notations to be used throughout the paper. In Section 3, we introduce G-hypergroups
and their main properties, and give a flexible construction of G-hypergroups that allows
to prescribe arbitrarily both the heart and the quotient group H/β. Moreover, we analyze
G-hypergroups whose the heart is isomorphic to a torsion group. We denote this sub-
class of G-hypergroups with T(H). If (H, ◦) ∈ T(H) then the identity ε of ωH is also
identity of (H, ◦), that is x ∈ x ◦ ε ∩ ε ◦ x for all x ∈ H. Consequently, we prove that the
singleton {ε} is an invertible sub-hypergroup of (H, ◦) and the family of right (or left)
cosets ε ◦ x (or x ◦ ε, respectively) is a partition of H. Moreover, all β-classes are a disjoint
union of right (left) cosets of {ε}. In Section 4, we analyze the main properties of the
stabilizers of special actions of ωH on the set families L = {x ◦ g | x ∈ H − ωH , g ∈ ωH}
and R = {g ◦ x | x ∈ H − ωH , g ∈ ωH}. These stabilizers play an important role in the
construction of multiplicative tables of G-hypergroups, as they fix the hyperproducts g ◦ x
and x ◦ g for all g ∈ ωH and x ∈ H. The results of Section 5 concern products of elements
x, y ∈ H − ωH such that x ◦ y ⊆ ωH . In Section 6, we characterize the G-hypergroups
in T(H) that are of type U on the right. Moreover, we find a sufficient condition for a
G-hypergroup of type U on the right to be a cogroup. Finally, in Section 7, we classify the G-
hypergroups of size ≤ 5 and |ωH | ∈ {2, 3, 4}. Apart of isomorphisms, all the multiplicative
tables of these hypergroups are listed and, using the results on 1-hypergroups found in [16],
we conclude that there are 48 non-isomorphic G-hypergroups of size ≤ 5.

2. Fundamentals of Hypergroup Theory

Throughout this paper, we will use standard definitions of fundamental concepts
in hyperstructure theory, such as hyperproduct, semi-hypergroup, hypergroup, and sub-
hypergroup, see, e.g., in [17–19]. To keep the exposition self-contained, we recall below
some auxiliary definitions and results that will be needed in the sequel.

A sub-hypergroup K of a hypergroup (H, ◦) is invertible on the right (resp., on the
left) if for all x, y ∈ H, x ∈ y ◦ K ⇒ y ∈ x ◦ K (resp., x ∈ K ◦ y ⇒ y ∈ K ◦ x). Moreover,
if K is invertible both on the right and on the left then it is called invertible.

A sub-hypergroup K of a hypergroup (H, ◦) is said to be conjugable if for all x ∈ H
there exists x′ ∈ H such that xx′ ⊆ K.

An element ε of a semihypergroup (H, ◦) is an identity if x ∈ x ◦ ε∩ ε ◦ x, for all x ∈ H.
Moreover, if {x} = x ◦ ε = ε ◦ x then ε is a scalar identity.

Given a semihypergroup (H, ◦), the relation β∗ of H is the transitive closure of the
relation β = ∪n≥1βn, where β1 is the diagonal relation in H and, for every integer n > 1,
βn is defined as follows:

xβny⇐⇒ ∃(z1, . . . , zn) ∈ Hn : {x, y} ⊆ z1 ◦ z2 ◦ · · · ◦ zn.

The relations β and β∗ are among the so-called fundamental relations [7,9,11,20]. Their
relevance in hyperstructure theory stems from the following facts. If (H, ◦) is a semihy-
pergroup (resp., a hypergroup), then the quotient set H/β∗ endowed with the operation
β∗(x)⊗ β∗(y) = β∗(z) for x, y ∈ H and z ∈ x ◦ y is a semigroup (resp., a group) [21,22].
The canonical projection ϕ : H → H/β∗ verifies the identity ϕ(x ◦ y) = ϕ(x)⊗ ϕ(y) for all
x, y ∈ H, that is, ϕ is said to be a good homomorphism. Moreover, if (H, ◦) is a hypergroup
then β is transitive [8], H/β is a group and the kernel ωH = ϕ−1(1H/β) of ϕ is the heart
of (H, ◦).

If A is a non-empty set of a semihypergroup (H, ◦), then we say that A is a complete
part if for every n ≥ 1 and (x1, x2, . . . , xn) ∈ Hn,

(x1 ◦ x2 ◦ . . . ◦ xn) ∩ A 6= ∅ =⇒ x1 ◦ x2 ◦ · · · ◦ xn ⊆ A.

The transposed hypergroup of a hypergroup (H, ◦) is the hypergroup (H, ?) where
x ? y = y ◦ x for all x, y ∈ H.
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For later reference, we collect in the following theorem some classic results of hyper-
group theory, see in [8,17].

Theorem 1. Let (H, ◦) be a hypergroup. Then,

1. the relation β is transitive;
2. if K is a subhypergroup invertible on the right (resp., on the left) of (H, ◦), then the family

{x ◦ K}x∈H (resp., {K ◦ x}x∈H) is a partition of H;
3. a subhypergroup K of (H, ◦) is a complete part if and only if it is conjugable;
4. the heart ωH is the intersection of all conjugable subhypergroups (or complete parts) of (H, ◦);
5. the heart ωH is a reflexive subhypergroup of (H, ◦), that is, x ◦ y ∩ ωH 6= ∅ ⇒ y ◦ x ∩

ωH 6= ∅.

3. G-Hypergroups

The heart of a hypergroup (H, ◦) allows us to explicitly compute the partition de-
termined by β, as β(x) = wH ◦ x = x ◦ wH for all x ∈ H. For this reason, the heart
of hypergroups has been the subject of much research, in particular, to characterize it
as the union of particular hyperproducts [12]. A special class of hypergroups is that of
1-hypergroups, where the heart is a singleton. Clearly, the heart of a 1-hypergroup is
isomorphic to a trivial group and if wH = {ε} then the element ε is an identity since
x ∈ β(x) = ε ◦ x = x ◦ ε. Other relevant results on 1-hypergroups can be found, e.g.,
in [13–16]. In this section, we will study the main properties of hypergroups whose heart is
isomorphic to a group G, which we call G-hypergroups.

Notably, the class of G-hypergroups is closed under direct product. Indeed, if (H, ◦) and
(H′, ?) are G-hypergroups then the direct product H × H′ is a G-hypergroup as ωH×H′ =
ωH × ω′H. Indeed, for all (x, y) ∈ H × H′, we have βH×H′(x, y) = βH(x)× βH′(y). Non-
trivial examples of G-hypergroups can be built by means of the construction shown in
Example 2 of [15], which we recall hereafter. Let Aut(H) be the automorphism group of a
hypergroup (H, ◦). For f ∈ Aut(H), let 〈 f 〉 denote the subgroup of Aut(H) generated by
f . In H × 〈 f 〉, define the following hyperproduct: for (a, f m), (b, f n) ∈ H × 〈 f 〉, let

(a, f m) ? (b, f n) = {(c, f m+n) | c ∈ a ◦ f m(b)} = (a ◦ f m(b))× { f m+n}.

with respect to this hyperproduct (H × 〈 f 〉, ?) is a hypergroup whose heart is ωH × { f 0}.
Clearly, if (H, ◦) is a G-hypergroup then also (H × 〈 f 〉, ?) is a G-hypergroup.

3.1. A Construction of G-Hypergroups

Let T and G be groups with |T| ≥ 2. Consider a family F = {Ak}k∈T of non-empty
and pairwise disjoint sets such that A1T = G and |Ai| = |G|, for all i ∈ T. In these
hypotheses we pose Ai = {ai,h}h∈G, for all i 6= 1T . In the set H =

⋃
k∈T Ak we consider the

hyperproduct ◦ : H × H → P∗(H) defined as follows: for all x, y ∈ H,

x ◦ y =


{xy} if x, y ∈ A1T ;
{ai,hy} if x = ai,h , y ∈ A1T and i 6= 1T ;
Aij if x ∈ Ai, y ∈ Aj and j 6= 1T ;

(1)

We note that, by definition of hyperproduct ◦, we have x ◦ 1G = {x} and x ∈ 1G ◦ x
for all x ∈ H. Moreover, for every i, j ∈ T and x ∈ Aj we obtain

Ai ◦ x = Aij, x ◦ Ai = Aji. (2)

Indeed, if j 6= 1T then Ai ◦ x =
⋃

y∈Ai
y ◦ x = Aij. Otherwise, if i = j = 1T then

A1T ◦ x = Gx = G = A1T . Moreover, if i 6= 1T and j = 1T then we obtain Ai ◦ x =⋃
h∈G ai,h ◦ x =

⋃
h∈G{ai,hx} = Ai. By analogous arguments, we can deduce that x ◦ Ai =

Aji. These simple remarks yield the basis of the following result, where we prove that
(H, ◦) is a G-hypergroup with some special properties.
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Theorem 2. In the previous notations, the hyperoperation ◦ defined in (1) is associative. Moreover,
we have

1. for every integer n ≥ 3 and for every (z1, z2, . . . , zn) ∈ Hn, there exists r ∈ T such that
z1 ◦ z2 ◦ . . . ◦ zn ⊆ Ar;

2. for all i ∈ T there exist x, y ∈ H such that x ◦ y = Ai;
3. (H, ◦) is a hypergroup such that β = β2;
4. ωH = A1T = G and β(x) = Ak, for all x ∈ Ak and k ∈ T;
5. H/β ∼= T.

Proof. Let x ∈ Ai, y ∈ Aj and z ∈ Ak with i, j, k ∈ T. If i = j = k = 1T then we have
immediately (x ◦ y) ◦ z = x ◦ (y ◦ z) since A1T = G is a group. Otherwise, we have the
following cases:

• Only two of the three elements i, j, k coincide with 1T ;
• Only one of the three elements i, j, k coincides with 1T ;
• i, j, k ∈ T − {1T}.

In the first case, if we assume that i = j = 1T and k 6= 1T , then we have (x ◦ y) ◦ z =
{xy} ◦ z = Ak = x ◦ Ak = x ◦ (y ◦ z).

If i = k = 1T and j 6= 1T , we obtain (x ◦ y) ◦ z = x ◦ (y ◦ z) = Aj.
If j = k = 1T and i 6= 1T , we have (x ◦ y) ◦ z = x ◦ (y ◦ z) = Ai.

In the second case, suppose i = 1T and j, k ∈ T − {1T}, we have (x ◦ y) ◦ z = Aj ◦ z =
Ajk = x ◦ Ajk = x ◦ (y ◦ z).

If j = 1T and i, k ∈ T − {1T}, we obtain (x ◦ y) ◦ z = x ◦ (y ◦ z) = Aik because
x ◦ y ⊆ Ai, z ∈ Ak and y ◦ z = Ak.

If i, j ∈ T − {1T} and k = 1T , we deduce (x ◦ y) ◦ z = x ◦ (y ◦ z) = Aij as x ◦ y = Aij,
x ∈ Ai and y ◦ z ⊆ Aj.

In the last case we have (x ◦ y) ◦ z = x ◦ (y ◦ z) = Aijk. Thus, ◦ is associative. Now,
we complete the proof of the remaining claims.

1. To prove this claim it suffices to proceed by induction on n, based on (2) and the
associativity of hyperproduct ◦.

2. Let i ∈ T. If i 6= 1T then we have x ◦ y = Ai, for all x ∈ A1T and y ∈ Ai. If i = 1T ,
since |T| ≥ 2, there exists j, k ∈ T − {1T} such that jk = 1T and so x ◦ y = Ajk = A1T ,
for all x ∈ Aj and y ∈ Ak.

3. To prove that (H, ◦) is a hypergroup we only need to prove reproducibility. Let x ∈ Ai.
As iT = T, using (2) we obtain

x ◦ H = x ◦

⋃
j∈T

Aj

 =
⋃
j∈T

x ◦ Aj =
⋃
j∈T

Aij = H.

Analogously, we can prove that H ◦ x = H for every x ∈ H. Now, being (H, ◦) a
hypergroup, we have the chain of inclusions

β1 ⊆ β2 ⊆ β3 ⊆ · · · ⊆ βn · · ·

Thus, if aβb then there exists n ≥ 3 such that aβnb. For points 1. and 2., there exist
r ∈ T and x, y ∈ H such that {a, b} ⊆ Ar = x ◦ y, so we obtain xβ2y.

4. Clearly A1 = G is a subhypergroup of H. Moreover, G is conjugable as for all
x ∈ H − G and x ∈ Aj there exists x′ ∈ Aj−1 such that x ◦ x′ = A1T = G. By point 4.
of Theorem 1, we have ωH ⊆ G. Moreover, G ⊆ ωH because ωH is a complete part
of H and G = x ◦ x′

⋂
ωH 6= ∅. Finally, by (2) we have β(x) = ωH ◦ x = G ◦ x = Ak,

for all x ∈ Ak and k ∈ T.
5. The application f : T 7→ H/β such that f (k) = Ak is a group isomorphism.
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3.2. If G Is a Torsion Group

In this subsection, we denote by ε the identity of the heart of a G-hypergroup (H, ◦).
Moreover, we denote by T(H) the class of G-hypergroups whose heart is a torsion group.
For each element x of a hypergroup (H, ◦), we identify x1 with the singleton {x} and,
for any integer n ≥ 2, we set

xn = x ◦ x ◦ · · · ◦ x︸ ︷︷ ︸
n times

.

Moreover, define

x̆ =
∞⋃

k=1

xk.

The set x̆ is the cyclic semihypergroup generated by x. This hypercompositional
analogue of cyclic semigroups has attracted the interest of many researchers, being a
powerful tool for the construction and study of remarkable families of hypergroups. We
point the interested reader to the detailed reviews in [23,24].

In what follows, we exploit cyclic sub-semihypergroups to derive some properties
of hypergroups in T(H). Specifically, we prove that the identity of the heart ωH of a
hypergroup (H, ◦) ∈ T(H) is an invertible sub-hypergroup of (H, ◦). We will use these
properties in the subsequent section to describe the group actions of ωH on families of
hyperproducts g ◦ x and x ◦ g for g ∈ ωH and x ∈ H.

Theorem 3. Let (H, ◦) ∈ T(H). Then, ε is an identity of (H, ◦).

Proof. Let x ∈ H − G. There exists e ∈ ωH such that x ∈ x ◦ e by reproducibility of (H, ◦).
Moreover, x ∈ x ◦ e ⊆ (x ◦ e) ◦ e = x ◦ (e ◦ e) = x ◦ e2 and, by an inductive argument,
x ∈ x ◦ en for all n ≥ 1. Finally, as ωH is a torsion group, there exists m ≥ 1 such that
em = {ε}, thus x ∈ x ◦ ε. By analogous arguments we also have x ∈ ε ◦ x.

Proposition 1. Let (H, ◦) an G-hypergroup and x ∈ H. The following conditions are equivalent:

1. ε ◦ y = {y} (resp., y ◦ ε = {y}) for all y ∈ β(x);
2. |g ◦ y| = 1 (resp., |y ◦ g| = 1) for all g ∈ ωH and y ∈ β(x).

Proof. 1. ⇒ 2. Let g ∈ ωH and y ∈ β(x). The thesis is obvious if β(x) = ωH , so let
x ∈ H −ωH and a ∈ g ◦ y. We have a ∈ g ◦ y ⊆ ωH ◦ y = β(y) = β(x) and so ε ◦ a = {a}.
Moreover, g−1 ◦ a ⊆ g−1 ◦ (g ◦ y) = (g−1 ◦ g) ◦ y = ε ◦ y = {y}. Hence g−1 ◦ a = {y}.
Consequently, g ◦ y = g ◦ (g−1 ◦ a) = (g ◦ g−1) ◦ a = ε ◦ a = {a}. Therefore |g ◦ y| = 1.
In the same way we prove that |y ◦ g| = 1 if y ◦ ε = {y} for all y ∈ β(x).

The converse implication, 2.⇒ 1., is an immediate consequence of Theorem 3.

Corollary 1. Let (H, ◦) ∈ T(H). Then ε is a left scalar identity (resp., right scalar identity) of
(H, ◦) if and only if |g ◦ x| = 1 (resp., |x ◦ g| = 1), for all g ∈ ωH and x ∈ H.

Theorem 4. Let (H, ◦) ∈ T(H). If S is a finite sub-semihypergroup of (H, ◦) then we have:

1. ε ∈ S;
2. S is a sub-hypergroup of (H, ◦).

Proof. 1. Let ϕ : H → H/β be the canonical projection. As S is finite, there exists x ∈ S
such that x̆ has minimal size.

If x ∈ x2 then ϕ(x) = ϕ(x) ⊗ ϕ(x). Hence ϕ(x) = 1H/β and x ∈ ωH . As ωH is a
torsion group, there exists a positive integer n such that xn = {ε} and so ε ∈ S.

If x 6∈ x2 then there exists y ∈ x2 such that y 6= x. Clearly, we have y̆ ⊆ x̆ and
consequently y̆ = x̆ as x̆ has minimal size. Therefore, x ∈ y̆ and there exists a integer n ≥ 2
such that x ∈ yn ⊆ (x2)n = x2n = x ◦ x2n−1. Therefore, there exists a ∈ x2n−1 such that
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x ∈ x ◦ a and ϕ(x) = ϕ(x)⊗ ϕ(a). Thus, ϕ(a) = 1H/β and a ∈ ωH . Finally, there exists a
integer positive m such that am = {ε} and ε ∈ (x2n−1)m = x(2n−1)m ⊆ x̆ ⊆ S.

2. We must show that x ◦ S = S ◦ x = S, for all x ∈ S. By point 1. and Theoreme 3,
ε ∈ S and ε is identity in (H, ◦). Therefore, we have S ⊆ ε ◦ S ⊆ S ◦ S ⊆ S and so
ε ◦ S = S ◦ S = S. Now, if x ∈ S, the subset x ◦ x̆ is a finite sub-semihypergroup of (H, ◦)
as S is finite, x ◦ x̆ ⊆ S and (x ◦ x̆) ◦ (x ◦ x̆) = x ◦ x ◦ x̆ ◦ x̆ ⊆ x2 ◦ x̆ ⊆ x ◦ x̆. Thus, for point
1., we obtain ε ∈ x ◦ x̆. Finally,

S = ε ◦ S ⊆ x ◦ x̆ ◦ S ⊆ x ◦ S ◦ S ⊆ x ◦ S ⊆ S ◦ S = S.

Therefore, x ◦ S = S for all x ∈ S. In the same way we prove that S ◦ x = S.

Theorem 5. Let (H, ◦) ∈ T(H). The singleton S = {ε} is a invertible sub-hypergroup of (H, ◦).

Proof. We prove that S = {ε} is invertible on the left, that is x ∈ S ◦ y ⇒ y ∈ S ◦ x,
for all x, y ∈ H. In the same way, it is proved that S is invertible on the right. Let
x ∈ S ◦ y = ε ◦ y. If y ∈ ωH , we have x = y and y ∈ ε ◦ x = S ◦ x. Now, we suppose
y ∈ H − ωH . Clearly, we have ε ◦ x ⊆ ε ◦ y. Moreover, we obtain x ∈ ωH ◦ y = β(y) and
so y ∈ β(x) = ωH ◦ x. Therefore, there exists g ∈ ωH such that y ∈ g ◦ x. Consequently,
y ∈ g ◦ x ⊆ g ◦ (ε ◦ y) ⊆ g ◦ (ε ◦ (g ◦ x)) = g2 ◦ x and y ∈ g2 ◦ x. By induction, we deduce
that y ∈ gn ◦ x, for all integer n ≥ 1. As ωH is a torsion group, there exists a positive integer
m such that gm = {ε} and so y ∈ ε ◦ x = S ◦ x.

Remark 1. The invertibility on the left (resp., on the right) of the sub-hypergroup S = {ε} implies
that the family of right cosets (resp., left cosets) of S = {ε} is a partition of H. Since for each element
y of a β-class β(x) we have ε ◦ y ⊆ ωH ◦ x = β(x) (resp., y ◦ ε ⊆ x ◦ ωH = β(x)), then every
β-class is a disjoint union of right cosets of S (resp., left cosets of S).

3.3. The Cosets of {ε}
As suggested by Remark 1, the families of right and left cosets of S = {ε} are relevant

to determine the structure of G-hypergroups in T(H). In this subsection we deepen the
knowledge of these cosets. We will only do proofs for right cosets because properties that
are true for a hypergroup are also true for its transposed hypergroup.

Proposition 2. Let (H, ◦) ∈ T(H). For all x ∈ H and g ∈ ωH we have:

1. x ∈ g ◦ x ⇔ g ◦ x = ε ◦ x;
2. g ◦ x ∩ ε ◦ x 6= ∅ ⇔ g ◦ x = ε ◦ x;
3. x ∈ x ◦ g ⇔ x ◦ g = x ◦ ε;
4. x ◦ g ∩ x ◦ ε 6= ∅ ⇔ x ◦ g = x ◦ ε;

Proof. 1. The implication⇐ is a consequence of Theorem 3. Now, suppose that x ∈ g ◦ x.
Clearly, we have ε ◦ x ⊆ ε ◦ (g ◦ x) = (ε ◦ g) ◦ x = g ◦ x. Moreover, g ◦ x ⊆ g ◦ (g ◦ x) =
g2 ◦ x and, by induction, we obtain the chain of inclusions ε ◦ x ⊆ g ◦ x ⊆ g2 ◦ x ⊆ · · · ⊆
gn ◦ x ⊆ · · · . As ωH is a torsion group, there exists a positive integer m such that gm = {ε}
and so ε ◦ x ⊆ g ◦ x ⊆ ε ◦ x. Therefore, ε ◦ x = g ◦ x.

Concerning point 2., it is enough to prove the implication ⇒. Let z ∈ ε ◦ x ∩ g ◦ x.
As S = {ε} is a invertible subhypergroup of H, we have ε ◦ x = ε ◦ z and so z ∈ g ◦ x =
g ◦ ε ◦ x = g ◦ ε ◦ z = g ◦ z. Therefore, by point 1., we obtain ε ◦ z = g ◦ z. Consequently,
we deduce ε ◦ x = ε ◦ z = g ◦ z = g ◦ ε ◦ z = g ◦ ε ◦ x = g ◦ x.

Points 3. and 4. follow from 1. and 2. by considering the transposed hypergroup
of (H, ◦).

Proposition 3. Let (H, ◦) ∈ T(H). For all x, y ∈ H and g, g′ ∈ ωH we have

1. y ∈ g ◦ x ⇔ ε ◦ y = g ◦ x;
2. g ◦ x ∩ g′ ◦ y 6= ∅ ⇔ g ◦ x = g′ ◦ y;
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3. if y ∈ g ◦ x, then ε ◦ x ∩ g ◦ x = ∅ ⇔ ε ◦ y ∩ g ◦ y = ∅;
4. y ∈ x ◦ g ⇔ y ◦ ε = x ◦ g;
5. x ◦ g ∩ y ◦ g′ 6= ∅ ⇔ x ◦ g = y ◦ g′;
6. if y ∈ x ◦ g, then x ◦ ε ∩ x ◦ g = ∅ ⇔ y ◦ ε ∩ y ◦ g = ∅.

Proof. 1. The implication⇐ is a consequence of the Theorem 3. Let y ∈ g ◦ x. We have
g−1 ◦ y ⊆ g−1 ◦ g ◦ x = ε ◦ x. Taking an element z ∈ g−1 ◦ y, we obtain ε ◦ z ⊆ ε ◦ x.
Therefore, for invertibility of subhypergroup S = {ε} in (H, ◦), ε ◦ z = ε ◦ x. Consequently,
as ε ◦ z ⊆ g−1 ◦ y ⊆ ε ◦ x, we deduce g−1 ◦ y = ε ◦ x and so ε ◦ y = g ◦ x.

2. Let z ∈ g ◦ x ∩ g′ ◦ y. By point 1. of Proposition 3, we have ε ◦ z = g ◦ x and
ε ◦ z = g′ ◦ y. Therefore, g ◦ x = g′ ◦ y.

3. As y ∈ g ◦ x, by point 1. of Proposition 3, we have ε ◦ y = g ◦ x and so
ε ◦ x = g−1 ◦ (g ◦ x) = g−1 ◦ (ε ◦ y) = g−1 ◦ y. Consequently, ε ◦ x ∩ g ◦ x = ∅ ⇔
g−1 ◦ y ∩ ε ◦ y = ∅ ⇔ ε ◦ y ∩ g ◦ y = ∅.

Points 4., 5., and 6. follow from 1., 2., and 3. by considering the transposed hypergroup
of (H, ◦).

4. Actions of ωH

If φ : (g, e) 7→ ge is a group action of G on the set E, the sets O(e) = {ge | g ∈ G} and
StabG(e) = {g ∈ G | ge = e} are the orbit and the stabilizer of element e ∈ E, respectively.
The orbits family {O(e)}e∈E is a partition of E and the stabilizer StabG(e) is a subgroup of
G. If e and e′ belong to the same orbit the stabilizers are conjugates. Moreover, we have
|O(e)| = [G : StabG(e)] and when G is finite we obtain that |O(e)| divides the size of G.

If (H, ◦) ∈ T(H), we denote by L and R the following sets:

L = {x ◦ g | x ∈ H −ωH , g ∈ ωH}, R = {g ◦ x | x ∈ H −ωH , g ∈ ωH}.

On L and R we consider the actions φl : ωH × L→ L e φr : ωH ×R→ R such that

φl(h, x ◦ g) = x ◦ (g ◦ h) e φr(h, g ◦ x) = (h ◦ g) ◦ x,

for all x ◦ g ∈ L, g ◦ x ∈ R and h ∈ ωH .

For simplicity, let StabωH (x ◦ ε) = xS and xO = O(x ◦ ε) = {x ◦ g | g ∈ ωH} be the
stabilizer and the orbit of x ∈ H−ωH with respect to the action φl , and let StabωH (x ◦ ε) =

xS and xO = O(x ◦ ε) = {x ◦ g | g ∈ ωH} be those with respect to φr.
If y ∈ β(x) then there exists g ∈ ωH such that y ∈ g ◦ x. By Proposition 3, we deduce

ε ◦ y = g ◦ x. Conversely, again for the Proposition 3, if g ◦ x ∈ Ox and y ∈ g ◦ x we have
ε ◦ y = g ◦ x with y ∈ β(x). Therefore, we obtain

Ox = {g ◦ x | g ∈ ωH} = {ε ◦ y | y ∈ β(x)}. (3)

xO = {x ◦ g | g ∈ ωH} = {y ◦ ε | y ∈ β(x)}. (4)

Next, we establish a connection between the sizes of Ox, xO, ωH , and β(x). For brevity,
we only expose results for the action φr. The corresponding results for the action φl follow
trivially by recurring to transposed hypergroups.

Lemma 1. Let (H, ◦) ∈ T(H) and x ∈ H −ωH .

1. Sx = {ε} (resp., xS = {ε}) if and only if g ◦ x ∩ g′ ◦ x = ∅ (resp., x ◦ g ∩ x ◦ g′ = ∅),
for all {g, g′} ⊆ ωH and g 6= g′;

2. if Sx = {ε} (resp., xS = {ε}) then |Ox| = |ωH | ≤ |β(x)| (resp., |xO| = |ωH | ≤ |β(x)|;
3. Sx = ωH (resp., xS = ωH) if and only if β(x) = ε ◦ x (resp., β(x) = x ◦ ε).
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Proof. 1. If Sx = {ε} then |O(x)| = [ωH : {ε}] = |ωH | and, by Proposition 3, g ◦ x ∩ g′ ◦ x = ∅,
for all {g, g′} ⊆ ωH and g 6= g′. Conversely, if g ∈ Sx then g ◦ x = ε ◦ x and g = ε
by hypothesis.

2. By point 1., we have Ex = Ox and so |Ex| = |O(x)| = [ωH : {ε}] = |ωH |. Moreover,
as the hyperproducts g ◦ x in O(x) have size ≥ 1 and g ◦ x ⊆ β(x), for all g ∈ ωH , we
deduce |ωH | ≤ |β(x)|.

3. If Sx = ωH then g ◦ x = ε ◦ x, for all g ∈ ωH . Therefore, β(x) = ωH ◦ x =
∪g∈ωH g ◦ x = ε ◦ x. Conversely, if β(x) = ε ◦ x then ωH ◦ x = ε ◦ x and g ◦ x = g ◦ (ε ◦ x) =
g ◦ωH ◦ x = ωH ◦ x = ε ◦ x, for all g ∈ ωH . Hence Sx = ωH .

Proposition 4. Let (H, ◦) ∈ T(H) and let x be an element of H − ωH such that ε ◦ y = {y}
(resp., y ◦ ε = {y}), for every y ∈ β(x). Then |β(x)| ≤ |ωH | and equality holds if and only if
Sx = {ε} (resp., xS = {ε}).

Proof. By Proposition 1, we have |g ◦ y| = 1, for every g ∈ ωH and y ∈ β(x). Therefore,
|β(x)| = |ωH ◦ x| = | ∪g∈ωH g ◦ x| ≤ |ωH |. Now, if Sx = {ε} then |β(x)| = |ωH | by point
2. of Lemma 1. Conversely, if |β(x)| = |ωH |, then g ◦ x ∩ g′ ◦ x = ∅, for all g, g′ ∈ ωH and
g 6= g′. Thus, by point 1. of Lemma 1, Sx = {ε}.

A consequence of the previous proposition is the following result:

Theorem 6. Let (H, ◦) ∈ T(H) be such that ε is a left scalar identity and Sx = {ε}, for all
x ∈ H − ωH (resp., ε is a right scalar identity and xS = {ε}, for all x ∈ H − ωH). Then
|β(x)| = |ωH |, for all x ∈ H. Moreover, if (H, ◦) is finite then |H| = |H/β| · |ωH |.

Now, if (H, ◦) ∈ T(H) and x, y ∈ H, we denote by Lx(y) and xL(y) the following sets:
Lx(y) = {g ∈ ωH | g ◦ x = ε ◦ y}, xL(y) = {g ∈ ωH | x ◦ g = y ◦ ε}. Clearly, we have
Lx(x) = Sx and xL(x) = xS.

Proposition 5. If (H, ◦) ∈ T(H) and x, y ∈ H−ωH then the following conditions are equivalent:

1. Lx(y) 6= ∅ (resp., xL(y) 6= ∅);
2. β(x) = β(y);
3. Ox = Oy (resp., xO = yO).

Proof. 1. ⇔ 2. If Lx(y) 6= ∅ then there exists g ∈ ωH such that g ◦ x = ε ◦ y, and so
ωH ◦ x ∩ ωH ◦ y 6= ∅. Thus β(x) = β(y). On the other hand, if β(x) = β(y) then
y ∈ β(x) = ωH ◦ x and there exists g ∈ ωH such that y ∈ g ◦ x. By point 1. of Proposition 3,
we have g ◦ x = ε ◦ y and so g ∈ Lx(y).

2. ⇔ 3. Let β(x) = β(y). By (3), ε ◦ y ∈ Ox ∩Oy and Ox = Oy since the orbits are a
partition of H − ωH . Now, let Ox = Oy. There exist g ◦ x ∈ Ox and h ◦ y ∈ Oy such that
g ◦ x = h ◦ y. Consequently, we have ωH ◦ x ∩ωH ◦ y 6= ∅ and β(x) = β(y).

Proposition 6. Let (H, ◦) ∈ T(H) and let x, y ∈ H−ωH such that β(x) = β(y). Then, we have

1. |Lx(y)| = |Sx| (resp., |xL(y)| = |xS|);
2. the subgroups Sx and Sy (resp., xS and yS) are conjugates;
3. if Sx or Sy (resp., xS or yS) is a normal subgroup or ωH is abelian, then Sx = Sy (resp.,

xS = yS);
4. |Lx(y)| = |Sx| = |Sy| = |Ly(x)|;
5. |xL(y)| = |xS| = |yS| = |yL(x)|.

Proof. 1. By Proposition 5, the sets Lx(y) and Ly(x) are not empty as β(x) = β(y). Fixed
an element h ∈ Ly(x), we have h ◦ y = ε ◦ x = g ◦ x for all g ∈ Sx. Therefore, (h−1 ◦
g) ◦ x = ε ◦ y and h−1 ◦ g ∈ Lx(y). Clearly, the application ϕh−1 : Sx → Lx(y) such that
ϕh−1(g) = h−1 ◦ g, for all g ∈ Sx, is injective and so |Sx| ≤ |Lx(y)|. On the other hand,
as h ◦ y = ε ◦ x, we obtain ε ◦ y = h−1 ◦ x. Therefore, g ∈ Lx(y) ⇒ g ◦ x = ε ◦ y =
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h−1 ◦ x ⇒ h ◦ g ◦ x = ε ◦ x ⇒ h ◦ g ∈ Sx. Finally, the application φh : Lx(y)→ Sx such that
φh(g) = h ◦ g, for all g ∈ Lx(y), is injective and so |Lx(y)| ≤ |Sx(ωH)|.

2. By Proposition 5, we have Ox = Oy. Thus, the elements ε ◦ x, ε ◦ y of R belong to
the same orbit. Consequently, the stabilizers Sx and Sy are conjugates.

Point 3. is an immediate consequence of 2., and points 4. and 5. follow from 1. and 2.
because conjugated subgroups have the same size.

An immediate consequence of point 3. in Proposition 6 is the following result:

Corollary 2. Let (H, ◦) ∈ T(H) and let x, y be elements of H−ωH such that β(x) = β(y). Then,

1. Sx = {ε} ⇔ Sy = {ε} (resp., xS = {ε} ⇔ yS = {ε});
2. Sx = ωH ⇔ Sy = ωH (resp., xS = ωH ⇔ yS = ωH).

5. Properties of the Hyperproducts x ◦ y ⊆ ωH with x, y ∈ H−ωH

In this section, we prove certain properties of products of elements x, y ∈ H−ωH such
that x ◦ y ⊆ ωH . These properties will be utilized in the next section in the construction of
G-hypergroups of small size. Note that x ◦ y ∩ωH 6= ∅ =⇒ x ◦ y ⊆ ωH , for all x, y ∈ H
as ωH is a complete part of H by point 4. of Theorem 1.

Proposition 7. Let (H, ◦) ∈ T(H) and let x, y ∈ H − ωH such that x ◦ y ∩ ωH 6= ∅.
If Sx = ωH and Sy ∈ {{ε}, ωH} (alternatively, if yS = ωH and xS ∈ {{ε}, ωH}) then
x ◦ y = y ◦ x = ωH .

Proof. Let Sx = ωH and x ◦ y ∩ ωH 6= ∅. By Lemma 1 we have β(x) = ωH ◦ x = ε ◦ x.
Thus,

x ◦ y = ε ◦ (x ◦ y) = (ε ◦ x) ◦ y = (ωH ◦ x) ◦ y = ωH ◦ (x ◦ y) = ωH .

Moreover, we have y ◦ x ⊆ ωH because ωH is a reflexive subhypergroup of (H, ◦).
Now, by hypothesis, two cases are possible: Sy = ωH or Sy = {ε}. If Sy = ωH then
y ◦ x = ωH follows by transposing the previous arguments, and the claim follows. On the
other hand, if Sy = {ε} then, by Lemma 1, we have g ◦ y ∩ g′ ◦ y = ∅ for all {g, g′} ⊆ ωH
and g 6= g′. Consequently, if by absurd we suppose that ωH 6= y ◦ x then we deduce the
contradiction

β(y) = y ◦ωH = y ◦ (x ◦ y) = (y ◦ x) ◦ y =
⋃

g∈y◦x
g ◦ y 6=

⋃
t∈ωH

t ◦ y = ωH ◦ y = β(y).

Therefore, also in this case y ◦ x = ωH and x ◦ y = y ◦ x = ωH . When yS = ωH and
xS ∈ {{ε}, ωH} the claim follows by transposition.

Remark 2. If the heart ωH of a hypergroup (H, ◦) ∈ T(H) is isomorphic to a group of size a prime
number p then Sx ∈ {{ε}, ωH}, for every x ∈ H −ωH . In this case, if x, y ∈ H −ωH , x ◦ y ∩
ωH 6= ∅ and at least one of the subgroups Sx, Sy is different from {ε}, then x ◦ y = y ◦ x = ωH .
This fact is not true if Sx = Sy = {ε}. For example, consider the hypergroup represented by the
following table:

◦ ε b c d e f
ε ε b c d e f
b b ε d c e f
c c d ε b f e
d d c b ε f e
e e e f f ε, b c, d
f f f e e c, d ε, b

Here, ωH = {ε, b} ∼= Z2, Sc = Sd = {ε}, and c ◦ d = d ◦ c = {b} 6= ωH . Recall that
the 1-hypergroups are a special class of G-hypergroups and their sub-hypergroups are conjugable.
The same property is not true if the heart of a G-hypergroup is not trivial. Indeed, if ε is the
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identity of the heart then {ε} is a non-conjugable sub-hypergroup of H. On the other hand,
there are G-hypergroups that have non-trivial non-conjugable sub-hypergroups. For instance,
the hypergroup of the previous table has five non-trivial sub-hypergroups different from H and ωH ,
that is, G1 = {ε, c}, G2 = {ε, d}, G3 = {ε, b, c, d}, K1 = {ε, b, e}, K2 = {ε, b, f }. Note that G1
and G2 are isomorphic to Z2 and are not conjugable.

Proposition 8. Let (H, ◦) ∈ T(H) and let x, y ∈ H −ωH such that ε ∈ x ◦ y. Then, Sx ∪ yS ⊆
x ◦ y.

Proof. We have x ◦ y ⊆ ωH as ε ∈ x ◦ y. If g ∈ Sx then g ◦ x = ε ◦ x and so g ∈ g ◦ ε ⊆
g ◦ (x ◦ y) = (g ◦ x) ◦ y = (ε ◦ x) ◦ y = ε ◦ (x ◦ y) = x ◦ y. Therefore, Sx ⊆ x ◦ y. In the
same way, we prove that yS ⊆ x ◦ y.

An immediate consequence of Propositions 7 and 8 is the following:

Corollary 3. Let (H, ◦) ∈ T(H) and let x, y ∈ H −ωH such that ε ∈ x ◦ y. If ωH is isomorphic
to a group of size a prime number and Sx 6= {ε} or yS 6= {ε}, then x ◦ y = ωH .

Proposition 9. Let (H, ◦) ∈ T(H) and let x, y ∈ H − ωH such that x ◦ y ⊆ ωH . Then,
|a ◦ b| = |x ◦ y|, for all a ∈ β(x) and b ∈ β(y).

Proof. By hypothesis x ◦ y ⊆ ωH . Moreover, as a ∈ β(x) = ωH ◦ x and b ∈ β(y) = y ◦ωH ,
there exist h, k ∈ ωH such that a ∈ h ◦ x and b ∈ y ◦ k. By Proposition 3, we have ε ◦ a = h ◦ x
and b ◦ ε = y ◦ k. As a ◦ b ⊆ β(x) ◦ β(y) = x ◦ ωH ◦ y ◦ ωH = x ◦ y ◦ ωH = ωH , we have
a ◦ b = ε ◦ a ◦ b ◦ ε = h ◦ x ◦ y ◦ k. Finally, the application f : x ◦ y → a ◦ b such that
f (g) = h ◦ g ◦ k, for all g ∈ x ◦ y, is bijective and so |x ◦ y| = |a ◦ b|.

Lemma 2. Let (H, ◦) ∈ T(H) and let P be a normal subgroup of ωH . Moreover, let a, b ∈ H−ωH
and h ∈ ωH . Then, we have

1. if a ◦ b = h ◦ P, then for all z ∈ β(b) there exists z′ ∈ β(a) such that z′ ◦ z ⊆ P;
2. if |H/β| = 2 and P 6= ωH then a ◦ b 6= h ◦ P.

Proof. 1. Let a ◦ b = h ◦ P. If z ∈ β(b) = b ◦ωH , there exists k ∈ ωH such that z ∈ b ◦ k. Now,
taken z′ ∈ k−1 ◦ h−1 ◦ a, we have z′ ∈ ωH ◦ a = β(a). Moreover, as P is a normal subgroup
and a ◦ b = h ◦ P, we deduce z′ ◦ z ⊆ k−1 ◦ h−1 ◦ a ◦ b ◦ k ⊆ k−1 ◦ h−1 ◦ h ◦ P ◦ k = P.

2. By absurdity, let a ◦ b = h ◦ P. As |H/β| = 2 and a, b ∈ H − ωH , we have β(a) =
β(b) = H −ωH . Now, let z ∈ H. Clearly, if z ∈ ωH then z−1 ◦ z = {ε} ⊆ P. If z ∈ H −ωH ,
we have z ∈ β(a) and, by point 1., there exists z′ ∈ β(b) such that z′ ◦ z ⊆ P. Hence,
P is a conjugable subhypergroup of (H, ◦) and we have ωH ⊆ P ⊆ ωH ; impossible as
P 6= ωH .

Proposition 10. Let (H, ◦) ∈ T(H) such that |H/β| = 2 and |ωH | ≥ 2. We have

1. |a ◦ b| ≥ 2, for all a, b ∈ H −ωH ;
2. if there exists x ∈ H − ωH such that Sx = ωH or xS = ωH , then a ◦ b = ωH , for all

a, b ∈ H −ωH ;
3. if |ωH | = 2 then a ◦ b = ωH , for all a, b ∈ H −ωH .

Proof. 1. By hypothesis S = {ε} is a proper normal subgroup of ωH and a ◦ b ⊆ ωH , for
all a, b ∈ H − ωH . If there exist a, b ∈ H − ωH such that |a ◦ b| = 1, we can suppose that
a ◦ b = {h}, with h ∈ ωH . Therefore, we have a ◦ b = {h} = h ◦ S, that is impossible by
point 2. of Lemma 2.

2. Let x ∈ H − ωH and Sx = ωH . For reproducibility, there exists y ∈ H − ωH such
that ε ∈ x ◦ y. By Proposition 8, we have x ◦ y = ωH . Consequently, from Proposition 9, we
deduce a ◦ b = ωH , for all a, b ∈ H −ωH . We get the same result if xS = ωH .

3. is an immediate consequence of 1.
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Corollary 4. Let (H, ◦) ∈ T(H) and let x be an element of H − ωH such that |β(x)| < |ωH |.
If (H, ◦) is finite and ωH is a group of size a prime number p then y ◦ g = g ◦ y = β(x), for all
y ∈ β(x) and g ∈ ωH . Moreover, if |H/β| = 2 then x ◦ y = y ◦ x = ωH , for all x, y ∈ H −ωH .

Proof. Since |ωH | is a prime number p and |β(x)| < |ωH |, by Lemma 1, Sx = xS = ωH
and ε ◦ x = x ◦ ε = β(x). Now, if y ∈ β(x), g ∈ ωH and a ∈ g ◦ y (resp., a ∈ y ◦ g), by
Proposition 3, we have ε ◦ a = g ◦ y = β(y) = β(x) (resp., a ◦ ε = y ◦ g = β(y) = β(x)).
Furthermore, by Proposition 10, if |H/β| = 2 and x, y ∈ H − ωH then x ◦ y = y ◦ x
= ωH .

Example 1. In the next table we show a hypergroup (H, ◦) ∈ T(H) such that |H/β| = 2,
ωH ∼= Z3, |H| = |ωH | · |H/β| and all hyperproducts a ◦ b have size 2, for all a, b ∈ H −ωH .

◦ ε b c d e f
ε ε b c d e f
b b c ε f d e
c c ε b e f d
d d f e ε, b ε, c b, c
e e d f ε, c b, c ε, b
f f e d b, c ε, b ε, c

According to Proposition 10, necessarily we have here Sx 6= ωH and xS 6= ωH , for all
x ∈ H −ωH .

In the previous example, each element of the heart is contained in exactly six hyperproducts
x ◦ y ⊂ ωH. This fact finds full justification in the next proposition. A new notation is entered:
For all x, y ∈ H such that x ◦ y ⊆ ωH and g ∈ ωH, let Nx,y

g = {(a, b) ∈ β(x)× β(y) | g ∈ a ◦ b}.
Clearly, Nx,y

g 6= ∅ as β(x) ◦ β(y) = x ◦ωH ◦ y ◦ωH = x ◦ y ◦ωH ◦ωH = ωH .

Proposition 11. Let (H, ◦) ∈ T(H), x, y ∈ H − ωH and x ◦ y ⊆ ωH . If ε ◦ a = {a}, for all
a ∈ β(x) (resp., b ◦ ε = {b}, for all b ∈ β(y)), then |Nx,y

g | is the same for all g ∈ ωH .

Proof. Let (a, b) ∈ Nx,y
g . There exists h ∈ ωH such that {g′} = h ◦ g. Clearly, h ◦ a ⊆

ωH ◦ a = β(a) = β(x), with |h ◦ a| = 1 by Proposition 1. Moreover, if h ◦ a = {a′} then
{g′} = h ◦ g ⊆ h ◦ (a ◦ b) = (h ◦ a) ◦ b = a′ ◦ b and so (a′, b) ∈ Nx,y

g′ . Finally, the application

ϕh : Nx,y
g → Nx,y

g′ such that ϕh(a, b) = (a′, b), with h ◦ a = {a′}, is injective because

h ◦ a1 = h ◦ a2 ⇔ a1 = a2, for all a1, a2 ∈ β(x). Therefore, |Nx,y
g | ≤ |N

x,y
g′ |. Similarly, we

have |Nx,y
g′ | ≤ |N

x,y
g |.

Corollary 5. Let (H, ◦) be a finite hypergroup in T(H), and let x, y ∈ H − ωH such that
x ◦ y ⊆ ωH . If ε ◦ a = {a}, for all a ∈ β(x) (resp., b ◦ ε = {b}, for all b ∈ β(y)), then
|a ◦ b| · |β(x)| · |β(y)| = |ωH | · |N

x,y
g | for all a ∈ β(x), b ∈ β(y) and g ∈ ωH . In particular,

if |ωH | is a prime number then a ◦ b = ωH or |ωH | divides |β(x)| or |β(y)|.

Proof. Let nx,y = |Nx,y
g |. By Proposition 9, |a ◦ b| = |x ◦ y| for all a ∈ β(x) and b ∈ β(y).

Thus, taking a ∈ β(x) and b ∈ β(y), by Proposition 11 and β(x) ◦ β(y) = ωH , we obtain
|a ◦ b| · |β(x)| · |β(y)| = |ωH | · nx,y counting in two different ways. Finally, as a ◦ b ⊆ ωH ,
if |ωH | is a prime number then a ◦ b = ωH or |ωH | divides |β(x)| or |β(y)|.

In Proposition 11, the hypothesis ε ◦ a = {a} for all a ∈ β(x) is essential. Indeed,
consider the following hypergroup:
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◦ ε b c d e f g h
ε ε b c d, e d, e f , g f , g h
b b c ε f , g f , g h h d, e
c c ε b h h d, e d, e f , g
d d, e f , g h ε, b ε, b b, c b, c ε, c
e d, e f , g h ε, b ε, b b, c b, c ε, c
f f , g h d, e b, c b, c ε, c ε, c ε, b
g f , g h d, e b, c b, c ε, c ε, c ε, b
h h d, e f , g ε, c ε, c ε, b ε, b b, c

Here, we have ωH ∼= Z3, |H/β| = 2, |Nd,e
ε | = 16 and |Nd,e

b | = |N
d,e
c | = 17. In this

example, Proposition 11 cannot be applied because ε ◦ d 6= {d}.

6. Hypergroups of Type U in T(H)

Among the best-known classes of hypergroups are undoubtedly those of type U, type
C, and the cogroups. A hypergroup of type U on the right is a hypergroup (H, ◦) with
a right scalar identity ε that fulfills the condition a ∈ a ◦ b ⇒ b = ε, for all a, b ∈ H,
see [25–27]. A hypergroup of type C on the right is a hypergroup (H, ◦) of type U on the
right that fulfills the condition a ◦ b ∩ a ◦ c 6= ∅ ⇒ ε ◦ b = ε ◦ c, for all a, b, c ∈ H, see [5,6].
A cogroup on the right is a hypergroup of type C on the right such that |a ◦ c| = |b ◦ c|
for all a, b, c ∈ H, see in [2–4]. The transposed of a hypergroup of type U on the right is
a hypergroup of type type U on the left, and analogously for hypergroup of type C and
cogroups. The purpose of this subsection is to characterize the hypergroups in T(H) that
are of type U on the right or cogroups on the right. We have the following result:

Theorem 7. Let (H, ◦) ∈ T(H). Then, (H, ◦) is of type U on the right if and only if xS = {ε}
and x ◦ ε = {x}, for all x ∈ H −ωH .

Proof. If (H, ◦) is of type U on the right, x ∈ H −ωH , and g ∈ xS then x ◦ g = x ◦ ε = {x}
and so we have g = ε. Conversely, let xS = {ε} and x ◦ ε = {x}, for all x ∈ H − ωH . If
a, u are elements of H such that a ∈ a ◦ u then u ∈ ωH . Indeed, if ϕ : H → H/β is the
canonical projection then ϕ(a) = ϕ(a)⊗ ϕ(u) and ϕ(u) = 1H/β. Clearly, if a ∈ ωH then
u = ε because a ∈ a ◦ u and ωH is isomorphic to a group. If a ∈ H − ωH then, using
Proposition 2, we have a ◦ ε = a ◦ u and u ∈ aS = {ε}. Thus, u = ε and so (H, ◦) is of type
U on the right.

We note that if (H, ◦) ∈ T(H) is a 1-hypergroup of type U on the right then ωH = {ε}
and H/{ε} ∼= H as ε is a right scalar identity. In this case H is isomorphic to a group.
Consequently, we have the following result.

Corollary 6. A hypergroup (H, ◦) ∈ T(H) is isomorphic to a group if and only if (H, ◦) is a
1-hypergroup of type U on the right.

In reference to Theorem 7 and the previous corollary, we note that the hypergroup
shown in Example 1 is of type U both on the right and on the left. Indeed, in that hypergroup
we have |ωH | ≥ 2, xS = Sx = {ε} and x ◦ ε = ε ◦ x = {x}, for all x ∈ H − ωH . The next
result provides a sufficient condition for a hypergroup of type U on the right to be also
a cogroup.

Theorem 8. Let (H, ◦) ∈ T(H) be of type U on the right. If Sx = ωH for all x ∈ H −ωH then
(H, ◦) is a cogroup.

Proof. The thesis is obvious if (H, ◦) is a group. Therefore, we suppose that |ωH | ≥ 2.
Let Sx = ωH , for all x ∈ H − ωH . If a ◦ b ∩ a ◦ c 6= ∅, we obtain ϕ(b) = ϕ(c) and so
β(b) = β(c). Hence, b ∈ ωH if and only if c ∈ ωH . Now, if b ∈ H − ωH , by point 3. of
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Lemma 1, then ε ◦ b = β(b) = β(c) = ε ◦ c. If b ∈ ωH and a ∈ H − ωH , by point 5. of
Proposition 3, we obtain a ◦ b = a ◦ c and so b ◦ c−1 ∈ aS = {ε} as (H, ◦) is of type U
on the right. Therefore, b = c and ε ◦ b = ε ◦ c. We get the same result if we suppose
that a, b ∈ ωH . Thus, (H, ◦) is of type C on the right. Now, we distinguish two cases to
prove that |b ◦ a| = |c ◦ a|, for all a, b, c ∈ H. We note that, by Theorem 6, we have that
|β(x)| = |ωH |, for all x ∈ H.

If a ∈ ωH then we have |b ◦ a| = |c ◦ a| = 1 by Corollary 1. On the other hand, if
a ∈ H − ωH and x ∈ H then, from point 3. of Lemma 1, we have ε ◦ a = β(a) = a ◦ ωH
and so

x ◦ a = (x ◦ ε) ◦ a = x ◦ (ε ◦ a)

= x ◦ (a ◦ωH)

= (x ◦ a) ◦ωH =
⋃

y∈x◦a
y ◦ωH =

⋃
y∈x◦a

β(y).

Finally, as β(y) = β(z), for all y, z ∈ x ◦ a, we obtain that x ◦ a = β(y), for all
y ∈ x ◦ a. Therefore, |x ◦ a| = |β(y)| = |ωH |. Thus, if a ∈ H − ωH and b, c ∈ H then
|b ◦ a| = |ωH | = |c ◦ a| and the proof is over.

The hypothesis Sx = ωH in Theorem 7 is sufficient but not necessary for a hypergroup
of type U on the right to be a cogroup. Indeed, the following hypergroup is a cogroup on
the right in T(H) but Sx 6= ωH , for all x ∈ H −ωH .

◦ ε b c d e f g h i l m n
ε ε b c d e, g f , h e, g f , h i, m l, n i, m l, n
b b c d ε f , h e, g f , h e, g l, n i, m l, n i, m
c c d ε b e, g f , h e, g f , h i, m l, n i, m l, n
d d ε b c f , h e, g f , h e, g l, n i, m l, n i, m
e e f g h i, m l, n i, m l, n ε, c b, d ε, c b, d
f f g h e l, n i, m l, n i, m b, d ε, c b, d ε, c
g g h e f i, m l, n i, m l, n ε, c b, d ε, c b, d
h h e f g l, n i, m l, n i, m b, d ε, c b, d ε, c
i i l m n ε, c b, d ε, c b, d e, g f , h e, g f , h
l l m n i b, d ε, c b, d ε, c f , h e, g f , h e, g
m m n i l ε, c b, d ε, c b, d e, g f , h e, g f , h
n n i l m b, d ε, c b, d ε, c f , h e, g f , h e, g

In this case the heart ωH = {ε, b, c, d} is isomorphic to Z4 and Sx = {ε, c} for all
x ∈ H −ωH .

7. G-Hypergroups of Minimal Size

In [16] the authors classified the 1-hypergroups of size ≤ 6. Hereafter, we classify
the G-hypergroups of size ≤ 5 and |G| ≥ 2, apart of isomorphisms. Recall that ε denotes
the identity of G. Furthermore, let T(G, p, q) be the subclass of T(H) such that ωH = G,
|H| = p and |H/β| = q. With these notations, using the results in Section 3, we classify
the hypergroups of the subclasses T(Zn, p, q) with 2 ≤ n ≤ 4, 3 ≤ p ≤ 5, 2 ≤ q ≤ 4 and
T(Z2 ×Z2, 5, 2).
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Apart of isomorphisms, the classes T(Z2, 3, 2), T(Z2, 4, 3), T(Z3, 4, 2), T(Z3, 5, 2),
T(Z3, 5, 3), T(Z4, 5, 2), and T(Z2 × Z2, 5, 2) consist of only one hypergroup. We list their
tables respecting the order in which the previous classes are written.

H1 :

◦ ε b c
ε ε b c
b b ε c
c c c ε, b

H2 :

◦ ε b c d
ε ε b c d
b b ε c d
c c c d ε, b
d d d ε, b c

H3 :

◦ ε b c d
ε ε b c d
b b c ε d
c c ε b d
d d d d ε, b, c

H4 :

◦ ε b c d e
ε ε b c d, e d, e
b b c ε d, e d, e
c c ε b d, e d, e
d d, e d, e d, e ε, b, c ε, b, c
e d, e d, e d, e ε, b, c ε, b, c

H5 :

◦ ε b c d e
ε ε b c d e
b b c ε d e
c c ε b d e
d d d d e ε, b, c
e e e e ε, b, c d

H6 :

◦ ε b c d e
ε ε b c d e
b b c d ε e
c c d ε b e
d d ε b c e
e e e e e ε, b, c, d

H7 :

◦ ε b c d e
ε ε b c d e
b b ε d c e
c c d ε b e
d d c b ε e
e e e e e ε, b, c, d

We note that the table of hypergroup in T(Z3, 5, 2) is a consequence of Corollary 4.
The other tables are deduced by considering the quotient group H/β.

Class: T(Z2, 4, 2). Using the Propositions 6 and 10, we have the following four hypergroups,
apart of isomorphisms:

H8 :

◦ ε b c d
ε ε b c d
b b ε d c
c c d ε, b ε, b
d d c ε, b ε, b

H9 :

◦ ε b c d
ε ε b c d
b b ε d c
c c, d c, d ε, b ε, b
d c, d c, d ε, b ε, b

H10 :

◦ ε b c d
ε ε b c, d c, d
b b ε c, d c, d
c c d ε, b ε, b
d d c ε, b ε, b

H11 :

◦ ε b c d
ε ε b c, d c, d
b b ε c, d c, d
c c, d c, d ε, b ε, b
d c, d c, d ε, b ε, b

According to Theorems 7 and 8, and Corollary 6, H8 is a hypergroups of type U on the
right and on the left, H9 is a cogroup on the left and H10 is a cogroup on the right. We note that
if (G, ·) is a group and S is a non-normal subgroup of G then the quotient G/S (resp. S\G) is a
hypergroup with hyperproduct xh⊗ yh = {zh | z ∈ xhyh} (resp. hx⊗ hy = {hz | z ∈ hxhy}).
These hypergroups are called D-hypergroups [3]. The hypergroups H9 and H10 are iso-
morphic to S\D4 and D4/S respectively, being D4 is the dihedral group of size 8 and S is
a non-normal subgroup of size 2. Moreover, H10 can be obtained from the construction
shown in Section 3.1 with G = T ∼= Z2.

Class: T(Z2, 5, 2). The element ε is not a left scalar identity (resp., right scalar identity)
otherwise, by Proposition 1, we have |g ◦ y| = 1, for all g ∈ ωH and y ∈ H − ωH . Con-
sequently, as |ωH | = 2, if y ∈ H − ωH then we have the contradiction 3 = |H − ωH | =
|β(y)| = |ωH ◦ y| = 2. Furthermore, in this case, using the Propositions 6 and 10, we obtain
the following four hypergroups, apart of isomorphisms:
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H12 :

◦ ε b c d e
ε ε b c d, e d, e
b b ε d, e c c
c c d, e ε, b ε, b ε, b
d d, e c ε, b ε, b ε, b
e d, e c ε, b ε, b ε, b

H13 :

◦ ε b c d e
ε ε b c d, e d, e
b b ε d, e c c
c c, d, e c, d, e ε, b ε, b ε, b
d c, d, e c, d, e ε, b ε, b ε, b
e c, d, e c, d, e ε, b ε, b ε, b

H14 :

◦ ε b c d e
ε ε b c, d, e c, d, e c, d, e
b b ε c, d, e c, d, e c, d, e
c c d, e ε, b ε, b ε, b
d d, e c ε, b ε, b ε, b
e d, e c ε, b ε, b ε, b

H15 :

◦ ε b c d e
ε ε b c, d, e c, d, e c, d, e
b b ε c, d, e c, d, e c, d, e
c c, d, e c, d, e ε, b ε, b ε, b
d c, d, e c, d, e ε, b ε, b ε, b
e c, d, e c, d, e ε, b ε, b ε, b

Class: T(Z2, 5, 3). If the β-classes are ωH = {ε, b}, β(c) = {c, d} and β(e) = {e}, the
quotient group H/β returns the partial table:

◦ ε b c d e
ε ε b e
b b ε e
c e e ε, b
d e e ε, b
e e e ε, b ε, b c, d

.

By Propositions 2 and 6, we obtain the following four tables, apart of isomorphisms:

H16 :

◦ ε b c d e
ε ε b c d e
b b ε d c e
c c d e e ε, b
d d c e e ε, b
e e e ε, b ε, b c, d

H17 :

◦ ε b c d e
ε ε b c d e
b b ε d c e
c c, d c, d e e ε, b
d c, d c, d e e ε, b
e e e ε, b ε, b c, d

H18 :

◦ ε b c d e
ε ε b c, d c, d e
b b ε c, d c, d e
c c d e e ε, b
d d c e e ε, b
e e e ε, b ε, b c, d

H19 :

◦ ε b c d e
ε ε b c, d c, d e
b b ε c, d c, d e
c c, d c, d e e ε, b
d c, d c, d e e ε, b
e e e ε, b ε, b c, d

Class: T(Z2, 5, 4). Apart of isomorphisms, we obtain two hypergroups according to that
H/β is isomorphic to Z4 or Z2 ×Z2.

H20 :

◦ ε b c d e
ε ε b c d e
b b ε c d e
c c c d e ε, b
d d d e ε, b c
e e e ε, b c d

H21 :

◦ ε b c d e
ε ε b c d e
b b ε c d e
c c c ε, b e d
d d d e ε, b c
e e e d c ε, b

Therefore, the following result is obtained:

Theorem 9. There are 21 non-isomorphic G-hypergroup of size ≤ 5 and |ωH | ∈ {2, 3, 4}, as
summarized in Table 1.
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Table 1. The G-hypergroups with |H| ≤ 5.

|H| 3 4 5

|ωH | = 2 H1 H2, H8...11 H12...21
|ωH | = 3 - H3 H4,5
|ωH | = 4 - - H6,7

The G-hypergroups with |ωH | = 1 are 1-hypergroups, which include groups. In [16],
the authors classified the 1-hypergroups of size ≤ 6. In particular, those of size ≤ 5 are 27.
Thus, we have the following result.

Corollary 7. There are 48 non-isomorphic G-hypergroup of size ≤ 5.

Remark 3. In every G-hypergroup (H, ◦) with |H| ≤ 5 all subgroups S ⊂ H satisfy the condition
that ωH ⊆ S or S ⊆ ωH . On the other hand, the hypergroup shown in Remark 2 has order 6
and contains a subgroup S such that neither S ⊆ ωH nor ωH ⊆ S. Therefore, that hypergroup is
minimal with respect to this property.

8. Conclusions and Directions for Further Research

If (H, ◦) is a hypergroup then the kernel ωH of the canonical projection ϕ : H 7→ H/β
is a sub-hypergroup called heart [10,12]. If |ωH | = 1 then (H, ◦) is a 1-hypergroup [13,14,16].
However, very little is known about hypergroups that have a heart that does not consist
of either a single element or the entire hypergroup. This paper provides a contribution
to the knowledge of such hypergroups. To achieve this goal, we generalized the notion
of 1-hypergroup to hypergroups whose heart is isomorphic to a group. We analyzed in
detail this class of hypergroups, here called G-hypergroups, with a special emphasis on the
sub-class T(H) of G-hypergroups whose heart is a torsion group. In the future, these results
can hopefully lead to a more general construction than the one presented in Section 3.1,
allowing all G-hypergroups to be constructed.

Table 2. Number of non-isomorphic G-hypergroups with |H| ≤ 5, depending on the size of
their hearts.

|H| 1 2 3 4 5

|ωH | = 1 1 1 2 4 19
|ωH | = 2 - - 1 5 10
|ωH | = 3 - - - 1 2
|ωH | = 4 - - - - 2

Total 1 1 3 10 33

Among our main results, we characterized the G-hypergroups that are also of type
U on the right or cogroups on the right. Furthermore, we enumerated all non-isomorphic
G-hypergroups with |H| ≤ 5. The results achieved in Section 7 describe all G-hypergroups
with |H| ∈ {3, 4, 5} and |ωH | ∈ {2, 3, 4}, and are condensed in Table 2. We note that the
hypergroups H9 and H10 are also cogroups. Cogroups are one of the best known classes of
hypergroups. A most notable problem with them is characterizing cogroups that are also
D-hypergroups, i.e., quotient hypergroups G/S of a group G with respect to a non-normal
subgroup S. This problem was solved in greater generality by L. Haddad and Y. Sureau
in [3,4] by considering the group of permutations σ of H such that σ(x ◦ y) = σ(x) ◦ y,
for all x, y ∈ H. The cogroups H9 and H10 are D-hypergroups isomorphic to S\D4 and
D4/S, respectively, being D4 the dihedral group of size 8 and S a non-normal subgroup of
size 2.

At the conclusion of this work we would like to indicate some possible topics for
further investigation. First of all, it would be interesting to verify whether the cogroups in
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T(H) are also D-hypergroups. A challenging problem related to the research carried out,
e.g., in [16], which is classifying G-hypergroups of size greater than 5.

Finally, we observe that all G-hypergroups (H, ◦) produced by the construction shown
in Section 3.1 are such that the identity of ωH is also identity of (H, ◦), also when ωH is
not a torsion group. At present, we are not able to prove or disprove that this is always
the case. Hence, a problem that remains open after our findings can be formulated as the
following conjecture: if (H, ◦) is a G-hypergroup then the scalar identity of ωH is also the
identity of (H, ◦).
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