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Abstract: The research presented in this article is dedicated to analyzing the acceptability of tradi-
tional techniques of statistical management decision-making in conditions of stochastic chaos. A
corresponding example would be asset management at electronic capital markets. This formulation
of the problem is typical for a large number of applications in which the managed object interacts
with an unstable immersion environment. In particular, this issue arises in problems of managing gas-
dynamic and hydrodynamic turbulent flows. We highlight the features of observation series of the
managed object’s state immersed in an unstable interaction environment. The fundamental difference
between observation series of chaotic processes and probabilistic descriptions of traditional models is
demonstrated. We also present an additive observation model with a chaotic system component and
non-stationary noise which provides the most adequate characterization of the original observation
series. Furthermore, we suggest a method for numerically analyzing the efficiency of conventional
statistical solutions in the conditions of stochastic chaos. Based on numerical experiments, we estab-
lish that techniques of optimal statistical synthesis do not allow for making effective management
decisions in the conditions of stochastic chaos. Finally, we propose several versions of compositional
algorithms focused on the adaptation of statistical techniques to the non-deterministic conditions
caused by the specifics of chaotic processes.

Keywords: currency market; Forex risk control models; chaotic processes; trends prediction

1. Introduction

A distinctive feature of dynamic open systems that interact with unstable immersion
environments is the presence of random perturbations associated with unpredictable
physical, economical, political, natural, etc. factors. At each moment of time any given
(often latent) factor may start to dominate, which makes many explicitly pronounced local
trends appear. The presence of such trends and large areas of observation series that are
oscillatory non-periodic processes exactly satisfies the description of chaotic processes [1–6].
The chaotic nature of observation series violates the established constraints that are required
for statistical estimates to be consistent, efficient, and non-biased. In particular, this refers
to the stationarity of the noise, independence of increments, normality (gaussianity) of
value variations, and others. The full list of conditions that provide effectiveness and
consistency of statistical solutions can be found in classical and modern textbooks on
mathematical statistics [7–12]. At the same time, as dedicated statistical studies [5,6]
show, the most adequate model for describing observation series of the state of unstable
objects is an additive combination of a system component consisting of an oscillatory
non-periodic process with many local trends, and a random component that is a non-
stationary random process. It is obvious that in these conditions, aptly named stochastic
chaos, the most important assumption about the repeatability of events which underlies the
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probabilistic-statistical paradigm has been violated. At the same time, statistical analysis
methods remain the primary tool of management decision-making in the conditions of
non-determinism. Hence, there is a problem of evaluating the effectiveness of statistical
methods of data analysis in conditions in which they are obviously not optimal. Moreover,
the estimates made in the conditions of stochastic chaos generally are not unbiased and
effective. Therefore, the question about the effectiveness of management decisions based
on them remains open. Currently, there are no analytical methods for assessing the quality
of statistical estimates generated for chaotic data. The only available assessment means are
numerical studies. Therefore, this is the methodology we use in the present article. Note that
the specifics of chaotic dynamics do not allow us to obtain a stable result that determines
the effectiveness of the estimation procedures themselves. However, considering the
management task for which such estimates are made, it would be more sensible to assess
the quality of the used algorithms via terminal performance indicators of the constructed
strategies. We propose and examine the corresponding technique in this study.

2. Materials and Methods
2.1. Generalized Statistical Decision-Making

Decision-making via statistical synthesis requires constructing a statistical model of
the trading situation state. A traditional example of such a model is the statement that
an observation series of financial instrument quotations y1, y2, . . . , yn are independent,
identically distributed random variables with a total density f (y, θ), y ∈ R1, where
θ ∈ Θ ⊂ Rm is the set of market parameters, Rm is an m-dimensional real Euclidean space,
and D is the decision space. It is assumed that information about X is needed to select a
trading decision d ∈ D from a predetermined set of management decisions D. In general,
d is the result of a certain predictive analysis procedure concerning the trading situation,
which includes formalized data processing and interpretation of the obtained results. In
practice, a trading decision d is made based on the predicted values of the trading situation
state vector X̂.

A trading strategy (a decision function) is a map S : Y → D, i.e., a rule according to
which, within the framework of a given statistical model, a set of observations of a trading
situation y1, y2, . . . yn ∈ Y corresponds to a trading decision d ∈ D. Thus, a trading
strategy is essentially a procedure for analyzing and processing observation series, and a
rule for interpreting the result.

The fundamental task of statistical synthesis of management decisions is to choose
a strategy that is optimal with respect to some specific quality measure. Such a choice
requires the introduction of “more—less”, “better—worse” order relations to the class of
all strategies. Strategy S0 is called feasible if it provides management decisions that satisfy
a given class of constraints. Strategy S∗ is optimal in a given class of feasible strategies
S ∈ {S0} if, taking into account the existing constraints, it outperforms any other strategy
from this class by a specified effectiveness measure µ(S): S = S∗ : µ(S∗) > µ(S), ∀S ∈ {S0}.

The most common method of ordering a set of strategies requires a loss function w(X, d)
that maps X̂τ × D → R+, where R+ is the positive semi-axis of the real axis R, which
represents the loss of a trading decision d ∈ D based on forecast X̂τ in conditions when
the true state of the trading environment is described by a vector parameter Xτ , and τ is
the forecasting interval. In estimation problems,the full square of the forecast error is often
used as a loss function: w(Xτ , X̂τ) = (X̂τ − Xτ)2, i.e., the square of the Euclidean distance
between X̂τ and Xτ . Sometimes the loss function is made more complex by adding a
weight, thus becoming a weighted sum: w(Xτ , X̂τ) = λ(Xτ)(X̂τ − Xτ)2, where the weight
λ(Xτ) is selected from the condition of a specific task.

2.2. Specifics of Asset Management in the Conditions of Dynamic Chaos

During the construction of Bayesian management strategies, each acceptable trading
strategy S ∈ {S0} is mapped to an average loss or risk RS(X) = E{w(X, d)}, where E
is the symbol of mathematical expectation. In the tasks of proactive (i.e., forecast-based)
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management, which is typical for trading, the main cause of risk is errors in predicting the
market situation state vector X̂τ for the forecast interval τ chosen by the trader. In the case
of a point state vector of a particular financial instrument based on an independent sample
of observations y1, y2, . . . , yN with a distribution density f (Y), the average loss from the
selected trading decision will have the form

RS(xτ) =
∫

. . .
∫

Rn
w(xτ , x̂τ(y1, . . . , yn))

n

∏
i=1

f (yi | xτ)dy. (1)

In the conditions of chaotic dynamics, the observed process does not meet the condi-
tions of stationarity and ergodicity [5,6], the distribution function continuously changes
in time and it is not possible to restore it from the previous sample of observations. In
this case, the quality of the forecast itself is often estimated based on average square error
RS = E{(X̂τ −Xτ)2} = D{X̂τ}+ (E{X̂τ}−Xτ)2, where D{X̂τ} is the variance of the fore-
cast X̂τ . The trading risk from adopting a management strategy S is mainly related to the
probabilistic scatter of X̂τ near the true value Xτ for time t + τ. For a normal distribution
law, variance lim

n→∞
E{X̂τ − X} = lim

n→∞
D{X̂τ} = σ2

τ is a natural scatter measure. However,

for chaotic processes, there is no natural general measure of scatter, and the choice has to
be made in accordance with the conditions of a specific task.

The risk RS(X) associated with the application of strategy S introduces a partial order
in the set of strategies so that S1 ≥ S2 ⇔ RS1(X) ≤ RS2(X) ∀X ∈ {X}.

Generally, in chaotic conditions curves RS1(X) and RS2(X) intersect and, therefore,
the corresponding strategies are generally incomparable. Only in very rare cases there may
exist a curve in this class that lies uniformly below all the others at ∀X ∈ {X}, and thus
corresponds to the optimal strategy according to the criterion of minimum trading risk.

2.3. Specifics of Applying Statistical Synthesis of Management Strategies in Asset Management

Making control decisions, according to the general theory of statistical decisions, is a
procedure for choosing a decision d ∈ D0 from a set of acceptable decision D0 based on the
results of observations of the state of the trading situation of interest to us, described by the
process Xt, t = 1, . . . , n. In a real situation, this vector process can not always be observed
directly and a judgment about it is made on the basis of functionally related, technically
accessible observations Yt, t = 1, . . . , n. In other words, an investor or trader usually only
has access to direct or indirect observations that are functionally related to the considered
trading situation. It would be interesting to consider a generalized representation of an
asset’s state phase trajectory in a visual coordinate system “profit P — risk R — state
X” using posterior observation data. The trading situation is described by the respective
estimates of the specified parameters (P, R, X)tat the time t = 1, . . . , n. In some cases, in
particular forecasting changes in the trading situation, the estimated parameters include
estimates of the speed and acceleration of changes in the expected profit and risk measures.
Then, the vector of the estimated parameters of the phase trajectory at the time t = 1, . . . , n
will have the form (P, P′ , P′′, R, R′, R′′, X, X′, X′′)t. Observations Yt, t = 1, . . . , n are
the values of quotation vector of financial instruments Xt, t = 1, . . . , n and, possibly, some
other econometric, political, social and other values, the ensemble of which determines
the dynamics of expected changes in profit and risk. The perturbations that a submersion
environment exerts on a trading situation ensures that observations contain a random
component in all cases. The association between the the parameter vector and observation
series Yt, t = 1, . . . , n can be expressed with a (generally non-linear) one-dimensional
operator: Φ : y = Φ(x, v), y ∈ Y0, x ∈ X0.

A management decision d ∈ D is chosen based on observations Yt, t = 1, . . . , n and
all prior information available to the trader. Thus, the procedure for making a management
decision, which is the main subject of statistical synthesis, can be written in the form of an
operator S : d = S(Y, x). In the ideal case, this operator inverts Φ. The quality of a decision
is substantially determined by the availability and reliability of prior information. The lack
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of reliable prior and current information relating to the trading situation defines the level
of uncertainty at which a trading decision is made.

The most complete prior information consists of a probabilistic description of the
observation and state spaces that uses a prior distribution of state g(x) and a family of
distributions of observations f (y|x) for all x ∈ X0. In this case, the management decision is
chosen in accordance with the Bayesian ordering of strategies (1) described above, and the
preference rule is based on Bayesian risk

RS( f , g) =
∫

Θ
RS(x, f )g(x)dx =

∫
X

g(x)
∫

Rn
w(xτ , x̂τ(y1, . . . , yn))

n

∏
i=1

f (yi, x)dyi, (2)

where h(x) is the prior distribution density of the estimated parameter. This approach
provides the most effective management decisions for conventional statistical synthesis
problems. However, in the conditions of non-stationary dynamics of observation series,
prior information turns out to be unsuitable for dynamic reconstruction of distribution
functions. The transition to conventional non-Bayesian techniques eliminates the need to
restore the prior distribution of the forecast parameter. However, statistical technologies re-
main inapplicable due to the non-stationarity of the observed process, i.e., the dependence
of observation distribution density f (Y | x) on time. In particular, maximum likelihood
estimation (MLE) [1–4], which is based on minimization of the joint distribution of observa-
tions L(X) = ∏n

i=1 f (yi, x) and is widely used in statistical synthesis problems [1–4], turns
out to be unsuitable for the same reason — the non-stationarity of observation series.

At the same time, it is known [1–6] that the purely random component of observations
consisting of the difference between the values of observations, and the smoothed (or sys-
tem) component of quotation dynamics, will tend to a Gaussian distribution by the central
limit theorem. This convergence is approximate, and its degree remains undetermined,
due to the impossibility to strictly separate the system component of observation series
(deterministic chaos) and the random component.

Nevertheless, even for an approximate Gaussian scheme, using MLE (for a Gaussian
model, this leads to the well-known least squares method (LSM)) it is possible to build
constructive computational schemes intended to generate predictive management deci-
sions. However, analytical estimates of the quality of such decisions are impossible due
to the aforementioned uncertainty regarding the structure of the source data. The only
possible way to analyze the problem is thus via numerical studies based on computational
experiments. This article is dedicated to the investigation of these issues.

2.4. Observation Model in Asset Management

Figure 1 shows several examples of changes in various currency instrument quotations
on a 250-day observation interval.

Figure 1. Change dynamics of EURUSD, EURJPY, and USDJPY during 250 observation days.
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A visual examination of asset price observation series reveals that their nature is
chaotic and can be described by an additive model of form:

yk = xk + vk, k = 1, . . . , n, (3)

in which the systemic component of the observed process xk, k = 1, . . . , n used to make
a decision is an implementation of dynamic chaos [1–10,13], and usually is an oscillatory
non-periodic process with a large quantity of false local trends of undetermined length.
The noise vk, k = 1, . . . , n , as shown by applying statistical hypothesis tests [5,6], is a
non-stationary heteroscedastic process with a non-degenerate time-dependent autocorrela-
tion function.

Further on, we evaluate the feasibility of using decisions made based on conventional
statistical methods in asset management described by the observation model (3). In order
to do so, we have constructed a method based on the general theory of evaluating the
effectiveness of IT systems presented in [14].

2.5. Analysing the Effectiveness of Statistical Decision-Making in Asset Management

According to the aforementioned theory, the effectiveness of IT systems (in this case,
data analysis algorithms) should be assessed according to the performance of the meta-
system, in interests of which it is utilized. In the trading case, the management decision
is proactive, i.e., it is based on the forecast of the development of the observed process.
Conventional statistical synthesis provides an ability to construct an optimal forecast based
on well-known methods such as Bayesian estimation, maximum likelihood estimation,
least squares method, etc. [1–4,7], as shown above. It is impossible to analytically estimate
whether such methods are effective if the observed processes present chaotic and non-
stationary dynamics. Considering that, we present numerical studies based on the terminal
estimate of the efficiency of the forecast algorithms and proactive management decisions
for real trading asset quotation dynamics processes.

In particular, we consider extrapolation-based computational schemes of optimal
statistic forecasting, which estimate the parameters of a polynomial forecast model via the
least squares method.

The movement model undergoes statistical identification on the segment of observa-
tions that corresponds to the time interval of a financial instrument’s price changing by a
specific value dL. This approach corresponds to the problem in which the entire range of
price changes of a financial instrument is divided into uniform segments of width dL. A
positive or correct decision based on statistical trend identification accounts for the ability
of the considered process to preserve the previously identified trend from the level it was
detected at to the crossing of the next level in its direction. In the cases when the process
turns around and reaches the opposite level, the respective experiment fragment will be
considered to be a false decision. This approach is quite compatible with the tasks of
electronic trading, when the gain (TP, Take Profit) is achieved when the process reaches a
given level before it reverses and reaches the level of limiting losses (SL, Stop Loss).

Thus, the criterion of decision effectiveness is defined as the estimated probability
(frequency) of the process intersecting the trend presence and identification level earlier
than the Stop Loss level.

It should be noted that visual posterior observation of chaotic processes reflecting
the currency instrument quotation dynamics confirms the assumption that there are local
areas with pronounced trends which can be described by low-order polynomials. If this
can be proven mathematically, then we can say that the degree of chaos of the observed
process decreases locally. This, in turn, opens up prospects for constructing effective trading
strategies. Areas that preserve trend direction can be described via conventional statistical
methods. If this assumption turns out to be incorrect, it will not be possible to construct
effective management strategies based on statistical methods of identifying trends.

As a typical process with non-stationary dynamics, we will consider changes in the
quotations of currency pairs at the electronic FOREX market. To study this question, a



Mathematics 2022, 10, 226 6 of 14

number of computational experiments for the most commonly used currency instruments
are carried out in this paper.

3. Computational Experiments
3.1. Description

The area on which the studied process Yt changes is divided into equal sectors that are
dL points in percentage (pipses) long. Suppose that the process has moved from level dL to
the level Lk+1 above it. We can loosely consider this to be an appearance of a positive trend.
Such a transition will be denoted as Lk → Lk+1. Conversely, we can understand Lk → Lk−1
as negative dynamics [15].

The main problem that we focus on consists in proving the persistence of process Yt
defined as it arriving at the next level of the detected trend.

We assess positive outcome probability, i.e., Yt going from Lk → Lk+1 after it has gone from
Lk−1 → Lk. We define a negative outcome as a opposite transition to the level below Lk → Lk+1
directly after an upwards transition Lk−1 → Lk. Due to symmetry, similar measurements
work for downwards transitions as well. Therefore, the set of exhaustive events consists of two
positive outcomes (Lk → Lk+1 | Lk−1 → Lk),(Lk → Lk−1 | Lk+1 → Lk) and two negative
outcomes (Lk → Lk−1 | Lk−1 → Lk), (Lk → Lk+1 | Lk+1 → Lk).

As in illustration, Figure 2 presents an example of EURUSD quotation dynamics on a
10-day observation interval with segmentation boundaries and marks denoting boundary
intersections.

Figure 2. An example of EURUSD quotation dynamics on a 10-day observation interval.

The figure presents both the Yt, t = 1, . . . , n process and its smoothed version Ỹt,
t = 1, . . . , n. It was smoothed via a simple exponential filter Ỹt = αYt + βỸt−1, t = 1, . . . , n,
in which α ∈ (0, 1), β = 1− α.

Examples of positive outcomes are shown in Figure 3, and negative ones in Figure 4.
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Figure 3. Examples of positive outcomes of management decisions.

Figure 4. Examples of negative outcomes of management decisions.

Assume that N experiments were run, each of which has identified a transition from
level to level, interpreted as a trend. If this direction persists until the process intersects
the next level, this outcome will confirm the trend. Conversely, if the process reverses
and reaches the previous level, it will point to trend absence. Suppose that as the result
of N consecutive experiments m outcomes prove trend presence, and N − m outcomes
disprove it.

Thus, this can be considered as an alternative H1 : p 6= 0.5 to the null hypothesis
H0 : p = 0.5 of trend absence, in which pn = m

n is the frequency of experiments that confirm
trend presence. If an experiment is repeated a sufficient number of times, the frequency
of observed event is considered to be an estimate of the probability of the corresponding
assumption. To test the H0 hypothesis, it is possible to use a well-known rule u < u∗, where
u = ( fn − 0.5)(0.25/n)1/2 [8–10]. The critical value u∗ for the right-tailed criterion is found
using the Laplace function Φ table of values, considering that Φ(u∗) = (1−2γ)

2 . Here, γ is
the significance level of the null hypothesis.

3.2. Results

In order to cover as many variations of chaotic dynamics in electronic trading as
possible, we have considered five 100-day segments for three most widespread financial
instruments: EURUSD, EURJPY, and USDJPY. We have used the dL = 100 (pipses) as the
size of the inter-level interval.

Probability is estimated using the frequency of positive outcomes, that is, the ratio of
positive outcomes to the total number of experiments. The corresponding results of the
computational experiment are presented in Table 1.
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Table 1. Positive outcome frequency at dL = 100.

Time Interval, Days EURUSD EURJPY USDJPY

1–100 0.552 0.484 0.444
101–200 0.507 0.536 0.465
201–300 0.533 0.552 0.560
301–400 0.494 0.452 0.465
401–500 0.446 0.545 0.444

The presented data clearly indicates complete absence of any inertia in quotation
dynamics. This statement can be verified with statistical hypothesis testing. As mentioned
above, the null hypothesis H0 : p = 0.5 is tested against the alternative H1 : p 6= 0.5.

As an example, consider an experiment for the 100-day interval of EURUSD obser-
vation. It resulted in N = 76 closes, out of which m = 42 corresponded to the inertia
condition at dL = 100. The relative frequency m

N = 0.552 corresponds to the value of the
decision statistic

u =
(m

N − p0)
√

N
√

p0q0
=

0.052
√

76√
0.25

= 0.91.

Here, q0 = 1− p0, u ∈ N(0, 1), i.e., it is subject to the standard Gaussian distribution
with the (0, 1) parameters. The assumption about the normal distribution of the criterion
follows from Laplace’s theorem (for a sufficiently large n, the relative frequency can be
approximately considered normally distributed with the mathematical expectation p and

standard deviation
√

pq
N ). In the general case, this assumption needs additional verification.

The critical area for the symmetrical competing hypothesis H1 : p 6= 0.5 is determined
based on the selected significance level α = 0.99. For a two-sided critical area, ucr is determined
via the Laplace function value table according to Φ(ucr) =

1−α
2 = 0.005. Using the distribution

tables of the Laplace function, we determine ucr = 2.85. Therefore, the calculated value of
statistic u = 0.91 belongs to the area of hypothesis acceptance H0 : p = 0.5, which means that
statistical solutions are unsuitable for the considered processes.

The conclusion that inertia is absent in the previous experiment may be caused by
an excessively large confirmation interval dL = 100 p. Let us check whether we can
confirm the presence of inertia on smaller segmentation levels. Note that the considered
process contains a significant completely random component. Considering the random
value spread relatively to the smoothed process from Ỹt, t = 1, . . . , n α = 0.02 then its
SD on 100-day observation segments oscillates within 11–14 pipses for various currency
instruments. Decreasing α to 0.01, the corresponding SD changes within 15–20 pipses,
which is due to a lower degree of smoothness and therefore a smaller difference between
the initial and smoothed processes.

The width of the spread is responsible for random decisions that do not correspond
to systemic processes of quotation dynamics and therefore skews the conclusions on inertia
presence. Thus, in order to obtain a correct conclusion on inertia, the size of the segmentation
step (system dynamics) must be significantly larger than the random component.

As an example that illustrates the minimum feasible segmentation step for the pre-
sented SD values, consider the same task with dL = 50. The frequencies of positive
outcomes that confirm process inertia can be found in Table 2.
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Table 2. Positive outcome frequency at dL = 50.

Time Interval, Days EURUSD EURJPY USDJPY

1–100 0.539 0.568 0.522
101–200 0.524 0.528 0.497
201–300 0.529 0.503 0.537
301–400 0.503 0.550 0.534
401–500 0.493 0.548 0.552

The results, similarly to the previous case, confirm the stability of the hypothesis
H0 : p = 0.5, which refutes the use of statistical management techniques in a chaotic environ-
ment. The positive asymmetry is too small to accept the null hypothesis on the significance of
the difference between the frequency of positive outcomes and 50%. The difference between
the following series of experiments is that the beginning of each stage of the management
process is fixed when the segmentation level is crossed not by the process itself, but by
its smoothed version. Positions are closed (i.e., establishing the fact of recognizing or not
recognizing inertia in each experiment) by the process Yt, t = 1, . . . , n itself.

Obviously, the higher the degree of smoothness, the less the result will depend on the
fluctuating component of the process randomly crossing the levels. On the other hand, a
higher degree of smoothness inevitably leads to a lag in the smoothed process relative to
the original one, which skews the resulting estimates. As a compromise, we will use values
α = 0.005− 0.02. The segmentation step, as in the first experiment, is equal to 100 p. The
results of estimating the probability of a positive outcome confirming the alternative H1
for five 100-day observation intervals and different values of the exponential filter transfer
coefficient α are presented in Table 3.

Table 3. Positive outcome frequency: opening by smoothed curve.

Time Interval, Days α = 0.005 α = 0.01 α = 0.01

1–100 0.667 0.681 0.618
101–200 0.771 0.791 0.667
201–300 0.606 0.706 0.612
301–400 0.612 0.653 0.618
401–500 0.648 0.581 0.574

It can be seen from the above data that the smoothed version of the process has more
inertia, which in general is suitable for making useful trading recommendations. However,
one should keep in mind that negative decisions are more drastic in terms of loss, since in
this case the dynamics of the quote reverse, and the departure of the process Yt, t = 1, . . . , n
during the time when the smoothed curve Ỹt, t = 1, . . . , n crosses the opening level can be
very large.

The final computational experiment is similar to the previous one, but both were
carried out by a smoothed process Ỹt, t = 1, . . . , n at the intersection of the corresponding
level. The results of the experiment are shown in Table 4.

Table 4. Positive outcome frequency: opening and closing by smoothed curve.

Time Interval, Days α = 0.005 α = 0.01 α = 0.01

1–100 0.652 0.652 0.593
101–200 0.698 0.706 0.696
201–300 0.686 0.707 0.688
301–400 0.612 0.612 0.582
401–500 0.567 0.534 0.574
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It is easy to see that the presented results are quite close to the corresponding estimates
given in Table 3. In other words, using a smoothed curve did not change the final result.
This is due to the fact that the probability of process Yt, t = 1, . . . , n reaching the decision
level will be higher both with a positive and negative outcome.

The disadvantage of the analysis method proposed above is that it does not take into
account the quality of the transitions on which the local trend is detected. For example,
transition Y(k)→ Y(k) + dY can go on for a long time, with fluctuations and with a large
negative “sagging” (it is only necessary that it does not turn around and does not reach
level Y(k) − dY). Such a process is quite difficult to perceive as a trend. However, in
accordance with the above formalization, such a transition will also be interpreted as a
positive trend. In this regard, it makes sense to move on to a more complex trend detection
criterion, based, for example, on the average rate of change in the state of the process on a
sliding time window of size l:

∆Y(k, l) = Y(k− l + 1, k) = [Y(k− l + 1), Y(k− l + 2), . . . , Y(k)] (4)

Trend detection in this case is exceeding the value of the linear approximation coeffi-
cient a1(k) calculated at the observation site ∆Y(k, l) of a certain critical value a1(k) > a∗.
This approach can be generalized to more complex trend detection rules. In particular,
we can consider a version of trend detection based on linear approximation coefficients
calculated on two observation windows of different lengths ∆Y(k, l1) and ∆Y(k, l2), l1 > l2,
or a version that uses a sliding approximation by a second-order polynomial. The second
half of the proposed effectiveness analysis approach, namely, confirming the existence of
a trend, remains unchanged. The H0 hypothesis of trend absence in the prolongation of
the detected trend means that the process, after its detection at t0, reaches threshold values
Y(t0) + dL and Y(t0)− dL with the same probability, i.e., H0 : p = p0 = 0.5, p being the
value of the observed process at the time of trend detection. An alternative hypothesis
indicating the possibility of using such strategies in conditions of market chaos will have
the form H1 : p 6= p0 = 0.5. As in previous experiments, in addition to the main chaotic
process Y(t), we will use its smoothed version Ys(t) (4) with a transmission coefficient.
The process Ys(t), which simulates the system component of chaotic dynamics makes
it possible to isolate the purely random component of the initial noise chaotic process
v(t) = Y(t)−Ys(t), which is a centered random process with a distribution that is close to
Gaussian. The variance of the residual process D(v(t)) , in turn, allows us to estimate the
lower bound of the parameter dL that determines the level of confirmation or denial of the
trend presence hypothesis. The method of conducting computational experiments is close
to its prototype described above. An observation series of a trading asset’s state at various
non-intersecting 100-day observation intervals is considered as the polygon of chaotic
data. Next, we form a sliding observation window ∆Y(k, l) of size l, on which we calculate
approximating polynomials P(q, l), q being their degree. A decision about the presence of a
trend is made based on the comparison of estimated coefficients of a with critical values a∗ .
The number of outcomes corresponding to the process reaching a predetermined level dL is
calculated to statistically verify the effectiveness of management decisions made following
trend-based strategies. Due to the symmetry of the task, the negative result consists in a
trend reversal and reaching the −dL level. If the ratio of reaching dL to the total number of
position openings m/n (the frequency of the event) is close to 0.5, then this confirms the
hypothesis H0 that it is impossible to successfully implement trend-based management
strategies. The parameters of the computational experiment are observation window l,
degree of smoothing polynomial q, threshold values of trends a∗, and trend confirmation
level dL . The simplest linear approximation scheme Ỹ(t) = a0 + a1t is used on a sliding
observation window ∆Y(k, l). A trend is confirmed when the linear approximation coeffi-
cient a1 exceeds a pre-set value a∗ : a1 ≥ a∗. Trend presence is either denied or confirmed
when the condition Y(t) = Y0 ± dL is met, in which Y0 = Y(t0) is the value of the process
at the time of trend detection t0, and dL = 30, 50, 100 are the trend confirmation levels. The
size of the observation window l varies in the (0.1–0.5) day range. A trend is detected if
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|a1| ≥ a∗ is satisfied, and confirmed when Y(t) = Y0 ± dL levels are reached. Estimates of
the probability (frequency) of reaching the trend confirmation level for its various values
dL = 25, 50, 75, 100, for the l = 0.1, 0.25, 0.5-day observation window and for threshold
values a∗ = 0.05, 0.075, 0.1 on a 100-day observation interval are shown in Table 5.

Table 5. Trend confirmation frequency for different parameter values.

a∗ dL, n l, Days 0.025 0.05 0.075 0.1

0.025 25 0.50 0.48 0.49 0.49
0.025 50 0.51 0.50 0.51 0.50
0.025 75 0.50 0.50 0.50 0.51
0.025 100 0.50 0.51 0.51 0.51
0.05 25 0.50 0.48 0.48 0.50
0.05 50 0.50 0.50 0.51 0.50
0.05 75 0.50 0.50 0.51 0.50
0.05 100 0.50 0.51 0.51 0.51

0.075 25 0.50 0.49 0.49 0.49

The presented data clearly confirms that it is impossible to successfully prolongate
Ys(t) in a wide range of changes in intensity values, fixation levels and trend confirmation
levels. The disadvantage of this experiment is the fixed length of the sliding observation
window l. A large window causes a significant delay in trend detection, which leads to
a delayed decision and, as a result, to an incorrect assessment of the probability of trend
confirmation. An example is shown in Figure 5.

Figure 5. Examples of incorrect conclusions about the presence of a trend associated with a delay in
decision-making.

A small window leads to an increased sensitivity of the trend detection procedure to
the random component, which, in turn, leads to statistical errors of Type II (false alarms),
that is, to the detection of a non-existent trend. In this regard, it makes sense to consider the
problem of trend detection based on a complex criterion that uses two sliding observation
windows of different sizes.

Unlike the previous experiment, in this one we consider two trends. In this case,
linear approximations q = 1 are used for two sliding observation windows of size l1 and
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l2, l1 > l2. It is obvious that the first trend has stronger smoothing characteristics, and the
second is more sensitive to both systemic process changes and “false alarms”. Let l1 = 300,
l2 = 90 minute counts, critical values of the linear regression coefficient a∗1 = 0.05, a∗2 = 0.1 ,
the level of trend confirmation dL = 75. The decision on the presence of a trend is made
if both linear regression coefficients exceed their critical values by the absolute value. An
example of the implementation of such a scheme is shown in Figure 6.

Figure 6. Example of a decision-making scheme with two trends

Longer trends correspond to larger observation windows. Let us consider the result
of using this method for four 100-day intervals with different levels of trend confirmation
dL = 25 : 25 : 100. The corresponding data is presented in Table 6. It is easy to see that the
modification did not have a positive effect.

Table 6. Trend confirmation frequency for various time intervals.

dL, n / ∆T 1–100 Days 101–200 Days 201–300 Days 301–400 Days

25 0.48 0.49 0.48 0.47
50 0.53 0.46 0.48 0.48
75 0.53 0.50 0.49 0.45

100 0.55 0.50 0.52 0.47

Obviously, the issues of the previous version of this approach have not been resolved.
Additionally, the method, as a rule, detects a trend at the time of confirmation (or denial)
of the previous trend. At the same time, there is no new trend detection during the
confirmation time: this would require a method that simultaneously analyzes several
trends. The provided data clearly illustrates the extremely insignificant fluctuations in
the frequency of trend confirmation relative to the 0.5 value. This conclusion is easily
confirmed by testing the statistical hypothesis H0 : p = 0.5 about the absence of a trend
using U-statistics and confidence level α = 0.99.

4. Discussion

The applicability of statistical techniques for making management decisions for chaotic
processes with a non-stationary random component is a key question in applied problems
of asset management. An example of such a problem are effective management strategies
based on statistical trend analysis. It is impossible to make analytical estimates of unstable
inertia-less system management strategies because the observed processes are unstable
parameter-wise. Thus, such studies can be conducted as numerical studies exclusively,
considering large observation intervals that cover the variety of stochastic chaos. The
technique proposed in the article uses segmentation of the area of change of the considered
random process. Thus, it allows us to build a visual system for analyzing the effectiveness
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of statistical management decisions. The use of the process itself to fix the levels of confir-
mation or denial of the management effectiveness does not lead to a stable solution due to
the high degree of its stochastic spread. The process reaches decision-making levels more
often due to high variance than as a result of an inertial trend. This leads to the idea of
using a smoothed process for analysing inertia. In particular, good results are obtained
with smoothing via an exponential filter with transfer coefficient α = 0.005− 0.02.

A better management result can be expected from more efficient computational
schemes for the extraction of the system component in observation series. This issue
is currently under study.

Trend analysis that we have conducted does not confirm the effectiveness of trend-
based statistical decisions. The trend management strategy for areas with a weak trend of
chaotic variations of the immersion environment is essentially non-profitable. Detecting a
trend on such segments of price dynamics indicates an upcoming change in the near future
and, therefore, it being appropriate to open a position in the opposite direction. In other
words, the problem lies not in the statistical methods of estimation themselves, but in the
infinite variety of dynamic forms generated by market chaos, which makes it impossible to
utilize simple stationary observation models.

It should be noted that currency market inertia is still not confirmed with statistical
significance. Some facts that are observed at financial markets confirm this point. If a
trend is detected, it is highly likely that in the next moment it will reverse. This means
strategies that were effective on backtest could accidentally be effective in the future. The
inability of the trend to continue its development can be explained by the fact that most of
the time the composition of trading participants is in an equilibrium balance. The influence
of trend-following traders (momentum traders) is compensated by market makers and
mean reversion traders [16]. At the same time, according to the inaction inertia theory [17],
individual investors who missed the opportunity to enter a position at a good price prefer
to hold back from a trade at a less favorable price, thereby preventing the trend from
developing. However, these factors become insignificant when the fundamental valuation
of the asset is changed. When this view is shared by the majority of traders, a continuous
trend may develop [18].

This leads to the conclusion that the market situation needs multilateral analysis.
In particular, the use of the considered types of statistical solutions combined with an
automatic text analyzer, which would assess the general “mood” in relation to the financial
instruments used, would significantly increase the effectiveness of the generated decisions.

Therefore, the most promising direction in the development of the task of automatic
management of market assets is the development of trading robots based on multi-expert
systems. Our current and planned publications will be dedicated to the development of
the conceptual and practical aspects of such systems.
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