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Abstract: In this paper we propose an approximation method for solving second kind Volterra
integral equation systems by radial basis functions. It is based on the minimization of a suitable
functional in a discrete space generated by compactly supported radial basis functions of Wendland
type. We prove two convergence results, and we highlight this because most recent published papers
in the literature do not include any. We present some numerical examples in order to show and justify
the validity of the proposed method. Our proposed technique gives an acceptable accuracy with
small use of the data, resulting also in a low computational cost.
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1. Introduction

A considerable large amount of research literature and books on the theory and applica-
tions of Volterra’s integral equations have emerged over many decades since the apparition
of Volterra’s book “Leçons sur les équations intégrales et intégro-différentielles” [1] in 1913.

The applications include elasticity, plasticity, semi-conductors, scattering theory, seis-
mology, heat and mass conduction or transfer, metallurgy, fluid flow dynamics, chemical
reactions, population dynamics, and oscillation theory, among many others (see for exam-
ple [2]). Other important references more related with the numerics of this type of equation
are [3,4].

In fact, Volterra integral equations (VIEs) appear naturally when we try to transform
an initial value problem into integral form, so that the solution of this integral equation
is usually much easier to obtain than the original initial value problem. In the same way,
some nonlinear Volterra integral equations are equivalent to an initial-value problem for a
system of ordinary differential equations (ODEs). So, some authors (like for example [5])
have sought to exploit this connection for the numerical solution of the integral equations
as well, since very effective ODE codes are widely available.

Volterra integral equations arise in many usual applications of technology, engineering
and science in general: as in population dynamics, the spread of epidemics, some Dirichlet
problems in potential theory, electrostatics, mathematical modeling of radioactive equilib-
rium, the particle transport problems of astrophysics and reactor theory, radiative energy
and/or heat transfer problems, other general heat transfer problems, oscillation of strings
and membranes, the problem of momentum representation in quantum mechanics, etc.
However, many other complex problems of mathematics, chemistry, biology, astrophysics
and mechanics, can be expressed in the terms of Volterra integral equations. Moreover,
some practical problems, where impulses arise naturally (like in population dynamics or
many biological applications) or are caused by some control system (like electric circuit
problems and simulations of semiconductor devices) can be modeled by a differential equa-
tion, an integral equation, an integro-differential equation, or a system of these equations
all combined.
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The systems of integral and/or integro-differential equations are usually difficult to
solve analytically, in particular systems of Volterra integral non-linear equations or with
variable coefficients; so a numerical method is often needed. In such cases, it is required to
approximate the solutions; and many different numerical techniques have been developed
and presented during decades of research, with appropriate combinations of numerical
integration and interpolation procedures (see the references [3,6], among others). In order
to approximate numerically the solution of general integral equations, the predominant
technique have been the use of some kind of piecewise constant basis functions (PCBFs) (see
for example [7], among many others); Chebyshev polynomial ([8] and others). However,
after a long period of time many other techniques have attracted much attention recently;
like wavelets theory, started with the introduction of Haar function in 1910, and from
1990’s (see [9]) also many wavelet type methods have been applied for solving integral
equations. Haar wavelets, despite its relative simplicity, have many valued properties: as
its compact support and orthogonality properties. So they can be used for the solution of
differential and integro-differential equations related with signal and image processing,
for example. They have been also used to solve linear and nonlinear integral equations by
Aziz et. al. [10], Babolian et. al. [11], Lepik [12], Maleknejad et al. [13], Farshid Mirzaae [14],
among others. More recently, several numerical methods based on different triangular type
and delta orthogonal functions were designed for approximating the solution of integral
and/or integro-differential Volterra equations (see for example [15–17], and the references
therein). All these publications have demonstrated and revealed that these techniques
based on PCBF and wavelets are effective to obtain the solution of such integral equations.

Particularly, systems of linear integral equations, and their exact or approximate
solutions, are of great importance in science and engineering. There are several numerical
methods for solving systems of linear Volterra integral equations of the second kind, and
they have been often solved by classical numerical and analytical methods: such as Galerkin
and Finite Element methods, collocation and spectral methods, Taylor or Power series
and expansion methods, transforming the equations into a linear or nonlinear system of
algebraic equations, and so on. However, new methods also have been applied to solve
them, like the homotopy perturbation method [18], Adomian decomposition method (and
many others) [19], use of Legendre wavelets [20] or hybrid Legendre and block pulse
functions [21], Chebyshev polynomials [22,23], etc. Berenguer et al. [24,25] have solved
them with the aid of a combination of analytical methods and bi-orthogonal systems in
Banach spaces, Sahn et al. [26] have used Bessel polynomials method, Malnekad et al. [15]
have employed delta basis functions (DBFs), Balakumar et al. [27] have applied the block-
pulse functions method, Li-Hong et al. [28] have applied reproducing kernel method.
Furthermore, there are also expansion methods for integral equations such as El-gendi’s
and Wolfe’s methods (see for example [29]). Additionally, the approximate solutions of
systems of integral equations that usually appear in problems of physics, biology and
engineering are based on numerical integration methods: such as Euler–Chebyshev or
Runge–Kutta methods (see for example [30]).

Concerning many other possible techniques to solve these types of integral equations,
Draidi and Qatanani [31] implemented a product Nystrom and sinc-collocation meth-
ods to solve Volterra integral equations with Carleman kernel; also Issa, Qatanani and
Daraghmeh [32] used a Taylor expansion and the variational iteration methods to give an
approximate solution of Volterra integral equations of the second kind. Aggarwal et al. [33]
and Chauhan [34] used different integral transformations for obtaining the solutions of VIEs
of second kind. Mahgoub [35] solved constant coefficient linear differential equations by
defining the called Sawi transformation, but many other authors exploited this idea, or other
appropriate transforms, to deal with these types of integral or integro-differential equations.

Next, we are going to cite the most recent references from the last 3 or 4 years. In [36]
the authors present an approximation solution of system of Volterra integral equations of
second kind in an analytical way, using an Adomian decomposition method in Mathematica.
In [37] the authors propose a numerical algorithm based on Monte Carlo method for
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approximating solutions of the system of Volterra integral equations. In [38] the authors
develop a numerical technique for the solution of 2D Volterra integral equations based on a
discretization method by using two-dimensional Bernstein’s approximations. In [39] the
authors discussed the solution of linear Volterra integral equations of second kind using
Mohand transform. In [40] the authors propose Bernstein polynomials to present effective
solution for the second kind linear Volterra integral equations with delay. In [41] the author
presents a method to solve numerically Volterra integral equations of the first kind with
separable kernels.

In this work, we will present some specific variational methods adopted to study
and approximate systems of linear Volterra integral equations with the aid of Radial Basis
Functions (RBFs) of Wendland type. Wendland functions are compactly supported radial
basis functions, which makes calculations with them quite simple. However, the general
Wendland family of functions are defined recursively, and to determine the actual functions
to use in any software implementation many calculations had to be done by hand or with
the aid of some symbolic software (see for example [42]). There are for the moment just
a few articles dealing with this type of techniques, like for example [43–47]; so we think
there is still a lot to investigate in this regard.

Our goal in this work is to devise an appropriate approach procedure that is capable
of solving this type of problem in a precise and efficient way. We consider then the linear
Volterra equations system of the second kind as follows (see for example [1]):

x(t) = f (t) +
∫ t

0
k(t, s)x(s)ds, 0 ≤ s ≤ t ≤ 1, (1)

where
x(t) = (x1(t), . . . , xn(t))>,
f (t) = ( f1(t), . . . , fn(t))>,
k(t, s) = (kij(t, s))1≤i,j≤n.

We assume that (1) has a unique continuous solution for appropriate functions f . In
any case, the equations system (1) can be re-written in operator form as an equation of
second kind

f = (I − K)x,

where K is an integral operator and I denotes the identity operator. It is usual to impose
certain assumptions on compactness on the operator K (see [48], Section 2.8.1) in order to
establish the existence and uniqueness of the solution of (1), that we will assume throughout
the work.

Moreover, in [49] the authors proposed another method to solve second kind Fredholm
integral equation systems, but the discrete functional space chosen in that article has been
the space of spline functions. While at first glance it might seem that both works are
similar, especially in the way they are presented, the two methods are totally different,
not only be the fact that the discretization spaces are different (so we have adapted the
notations accordingly), while the proofs (except the very preliminary ones, that can be also
adapted), above all the proofs of the convergence results, are completely different, due to
their greater complexity.

The outline of the paper is as follows. In Section 2 we briefly recall some notations
and preliminaries. Section 3 is devoted to establish the discretization space as a radial
basis functions space. The formulation of the minimization problem is realized in Section 4
and two equivalent variational problems are given. Section 5 is devoted to prove two
convergence results. Section 6 deals with the description of the computation algorithm of
the discrete problem solution. In Section 7 we present some numerical experiments and
finally, in Section 8 we establish the conclusions of the work.
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2. Notations and Preliminaries

Let R+
0 = {x ∈ R : x ≥ 0}; and for n ≥ 1, we denote by 〈 · 〉n and 〈 · , · 〉n the

Euclidean norm and the inner product in Rn.
On the other hand, for m ≥ 1, we designate by Hm((0, 1);Rn) the Sobolev space of

order m of (classes of) functions u ∈ L2((0, 1);Rn) together with all j-th derivative functions
u(j) of order j ≤ m, in the sense of distributions. This space is equipped with

• the semi–inner products, for any u, v ∈ Hm((0, 1);Rn),

(u, v)j =
∫ 1

0
〈u(j)(t), v(j)(t)〉ndt, 0 ≤ j ≤ m,

• the corresponding semi–norms |u|j = (u, u)
1
2
j , for 0 ≤ j ≤ m,

• the inner product ((u, v))m =
m

∑
0
(u, v)j,

• and the corresponding norm ‖u‖m = ((u, u))
1
2
m.

For any 1 ≤ i ≤ n, let ki be a given function of the Sobolev vectorial functions space
Hm((0, 1)× (0, 1);Rn) and consider the matrix valued function

k(t, s) = (ki(t, s))1≤i≤n ∈ Hm((0, 1)× (0, 1);Rn,n),

together with the associated integral operator

Ku(t) =
(∫ t

0
〈ki(t, s), u(s)〉nds

)
1≤i≤n

, t ∈ (0, 1), ∀ u ∈ Hm((0, 1);Rn).

Let Rn,p be the space of real matrices of n lines and p columns, equipped with the
inner product

〈A, B〉n,p =
n

∑
i=1

p

∑
j=1

aijbij, ∀A = (aij) 1≤i≤n
1≤j≤p

, B = (bij) 1≤i≤n
1≤j≤p

∈ Rn,p,

and the corresponding norm 〈A〉n,p = 〈A, A〉
1
2
n,p.

3. Discretization Space

For the remainder of the work, we are going to consider a space of finite dimension,
where we will formulate and solve a discrete approximation problem. The discrete func-
tional space we have chosen is the radial basis functions space with compact support,
namely the radial basis function space generated by the Wendland functions (see [50]).

Definition 1. Given a continuous function φ : R+
0 → R, a subset Ω ⊂ Rd, d ≥ 1, and a point

ξ ∈ Ω, the radial function defined on Ω from the function φ with center ξ is the continuous function
Φξ : Ω→ R given by

Φξ(x) = φ(〈x− ξ〉d).

Then Φξ only depends of the distance to ξ.

Definition 2. Given a centers set Ξ = {ξ1, . . . , ξN} the linear space generated by the functions

{φ(〈· − ξ1〉)d, . . . , {φ(〈· − ξN〉)d}

is called a radial basis functions space.
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Definition 3. For a function u ∈ C([0, 1];Rn), the radial basis function interpolating u on a set
of distinct centers TN = {t1, . . . , tN} ⊂ [0, 1] is given by

su,TN (t) =
N

∑
i=1

αiφ(|t− ti|), t ∈ [0, 1],

where φ : R+
0 → R is a continuous function and the coefficients α1, . . . , αN ∈ Rn are determined

by the interpolation conditions

su,TN (ti) = u(ti), 1 ≤ i ≤ N.

In [50] H. Wendland introduced a family of compactly supported radial basis functions
in the following way: let the operator I and its inverse D for r ≥ 0 be given by

(Iφ)(r) =
∫ ∞

r
tφ(t)dt,

(Dφ)(r) = −1
r

φ′(r),

for any differentiable function φ : R+
0 → R.

Given the truncated power function φ`(r) = (1− r)`+, we define

φd,k = Ikφb d
2 c+k+1,

where bxc denotes the largest integer less than or equal to x.

Theorem 1. ([50], Theorem 1.2) The functions φd,k induce positive definite functions on Rd of
the form

φd,k(r) =
{

pd,k(r), 0 ≤ r ≤ 1,
0, r > 1,

with a univariate polynomial pd,k of degree b d
2 c+ 3k + 1. They possess continuous derivatives

up to order 2k, and they are of minimal degree for a given constant factor, uniquely determined by
this setting.

Thus, these functions are the natural candidates for interpolation by compactly sup-
ported radial basis functions, and they are called the Wendland’s functions.

For the remainder of the work we suppose 0 ≤ k ≤ N − 1, and we take φ = φ1,k in
Definition 3.

Table 1 shows the Wendland functions φ1,k for k = 0, 1, 2, and its continuity order.

Table 1. The Wendland functions φ1,k for k = 0, 1, 2 and its continuity order.

k Wendland Function Continuity Order

k = 0 φ1,0(r) = (1− r)+ C0

k = 1 φ1,1(r)
.
= (1− r)3

+(3r + 1) C2

k = 2 φ1,2(r)
.
= (1− r)5

+(8r2 + 5r + 1) C4

Let
h = sup

t∈[0,1]
min

1≤i≤N
|t− ti|. (2)

From ([50], Theorem 2.1) we can affirm that φ1,k ∈ C2k([0, 1]) and the corresponding
native space is Hk+1([0, 1]). Finally, from ([50], Theorem 2.1) and ([51], Theorem 4.1) we
conclude that there exists C > 0 such that
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‖u− su,TN‖L∞((0,1);Rn) ≤ C‖u‖k+1hk+ 1
2 , ∀ u ∈ Hk+1([0, 1];Rn),

and
|u− su,TN |j ≤ Chk+1−j‖u‖k+1, 0 ≤ j ≤ k + 1, ∀ u ∈ Hk+1([0, 1];Rn). (3)

Let SN be the space of the restrictions of functions on [0, 1] of the functional space
generated by the radial basis functions {φ1,k(| · −t1|), . . . , φ1,k(| · −tN |)} and SN = (SN)

n.
Then SN ⊂ Hk+1((0, 1);Rn) ∩ C2k([0, 1];Rn).

4. Formulation of the Problem

We can define the operator ρ : Hk+1((0, 1);Rn)→ RN,n given by

ρv = ((I − K)v(ti))1≤i≤N .

Let assume that f ∈ Hk+1((0, 1);Rn) and consider the affine variety HN = {u ∈ SN :
ρu = ( f (ti))1≤i≤N} and the linear subspace H0

N = {u ∈ SN : ρu = 0 ∈ RN,n}.

Proposition 1. The set HN is a nonempty closed bounded convex subset of SN . Moreover it is an
affine variety associated with the linear subspace H0

N .

Proof. By adapting the notations, as in the proof of Proposition 4.1 of [49].

Lemma 1. The application << · , · >>: Hk+1((0, 1);Rn)× Hk+1((0, 1);Rn)→ R defined by

<< u, v >>= 〈ρu, ρv〉N,n + ((I − K)u, (I − K)v)k+1

is an inner product on Hk+1((0, 1);Rn) and its associated norm, given by [[u]] =<< u, u >>
1
2 , is

equivalent to the usual Sobolev norm ‖ · ‖k+1.

Proof. By adapting the notations as in the proof of Lemma 4.2 of [49] and using ([48],
Theorem 7.3.12) the proof can be obtained.

Definition 4. We say that uN ∈ HN is an approximating radial basis function relative to TN , ρ
and f if uN is a solution of the following minimization problem:

Find uN ∈ HN such that ∀ v ∈ HN , J(uN) ≤ J(v), (4)

where J : Hk+1((0, 1);Rn)→ R is given by

J(v) = |(I − K)v|2k+1.

Theorem 2. Problem (4) has a unique solution uN ∈ HN which is the unique solution of the
variational problem

∀ v ∈ H0
N , ((I − K)uN , (I − K)v)k+1 = 0. (5)

Proof. From Proposition 1 and ([48], Theorem 3.4.3) we can deduce that there exists a
unique uN ∈ HN , which is the projection of 0 on HN such that

[[uN ]] ≤ [[v]], ∀ v ∈ HN

and verifying
∀w ∈ HN , << −uN , w− uN >>≤ 0,

that is
∀v ∈ H0

N , << −uN , v >>≤ 0



Mathematics 2022, 10, 223 7 of 15

and, taking into account that H0
N is a vector space, we obtain that

∀v ∈ H0
N , << uN , v >>= 0.

Therefore (5) holds. Finally, uN is the unique solution of (4) since J(v) = [[v]]2 −
〈ρ f 〉2N,n, for any v ∈ HN .

Theorem 3. There exists a unique λ ∈ RN,n such that

∀ v ∈ SN , ((I − K)uN , (I − K)v)k+1 + 〈λ, ρv〉N,n = 0, (6)

where uN is the unique solution of (5).

Proof. For i = 1, . . . , N, let us consider ϕi ∈ SN the unique radial basis function determined
by the interpolation conditions

ϕi(tj) = δij, ∀ j = 1, . . . N.

Let take v ∈ SN , and we consider the function

w = v−
N

∑
i=1

(I − K)v(ti)ϕi,

then

(I − K)w(tj) = (I − k)v(tj)−
N

∑
i=1

(I − K)v(ti)ϕi(tj) = 0, ∀ j = 1, . . . , N,

that is ρw = 0 ∈ RN,n, and in fact w ∈ H0
N . Thus, from Theorem 2, we have

((I − K)uN , (I − K)w)k+1 = 0. (7)

We notice Π` : Rn → R, for ` = 1, . . . , n, the projection application given by
Π`(x1, . . . , xn) = x`.

Then, for i = 1, . . . , N, it is verified that

((I − K)uN , (I − K)v(ti)ϕi)k+1 =
n

∑
`=1

(Π`((I − K)uN , Π`((I − K)v(ti)ϕi))k+1

=
n

∑
`=1

Π`((I − K)v(ti))(Π`((I − K)uN , ϕi)k+1.

Let denote λi` = −(Π`((I − K)uN , ϕi)k+1 ∈ R and λ = (λi`) 1≤i≤N
1≤`≤n

∈ RN,n, then

((I − K)uN , (I − K)w)k+1 =

((I − K)uN , (I − K)v)k+1 −
N

∑
i=1

((I − K)uN , (I − K)v(ti)ϕi)k+1 =

((I − K)uN , (I − K)v)k+1 +
N

∑
i=1

n

∑
`=1

Π`((I − K)v(ti))λi` =

((I − K)uN , (I − K)v)k+1 + 〈λ, ρv〉N,n.

From (7), we conclude that there exists λ = (−(Π`((I − K)un), ϕi)k+1) 1≤i≤N
1≤`≤n

∈ RN,n

such that
((I − K)uN , (I − K)v)k+1 + 〈λ, ρv〉N,n = 0

and (6) holds.
The uniqueness of λ is immediate.
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5. Convergence Result

Assume that f ∈ Hk+1((0, 1);Rn) and k ∈ Hk((0, 1)× (0, 1);Rn,n), then there exists
a unique solution x ∈ Hk+1((0, 1);Rn) of (1). Moreover, the following convergence result
is verified.

Theorem 4. Suppose given f ∈ Hk+1((0, 1);Rn) and k ∈ Hk((0, 1)× (0, 1);Rn,n). Let denote
x ∈ Hk+1((0, 1);Rn) the unique solution of (1) and uN ∈ HN the unique solution of (4). Suppose
that the hypothesis (2) holds, where h is mentioned. Then, one has

lim
h→0
‖uN − x‖k = 0.

Proof. Let sx,TN be the interpolating radial basis function of x on TN from the Wendland
function φ1,k, then sx,TN ∈ SN . Thus J(uN) ≤ J(sx,TN ), that also implies that

|(I − K)uN |k+1 ≤ |(I − K)sx,TN |k+1.

In this case, we have

[[(I − K)uN ]] ≤ [[(I − K)sx,TN ]].

From this, and that the operator (I−K) is linear and compact in the finite-dimensional
space SN , and thus bijective, we can deduce that there exists C1 > 0 verifying

‖uN‖k+1 ≤ C1‖sx,TN‖k+1. (8)

Taking into account (3), it is verified that there exists C2 > 0 such

‖sx,TN‖k+1 ≤ C2‖x‖k+1.

and, from here and (8) we obtain that there exists C > 0 such that

‖uN‖k+1 ≤ C‖x‖k+1.

Thus, the family (uN)N∈N is bounded in Hk+1((0, 1);Rn), and consequently there
exists a sequence (uN`

)`∈N extracted from this family, and an element x∗ ∈ Hk+1((0, 1);Rn)
such that

x∗ = lim
`→+∞

uN`
weakly in Hk+1((0, 1);Rn). (9)

Suppose that x∗ 6= x; then, from the continuous injection of Hk+1((0, 1);Rn) into
C([0, 1];Rn), there exists γ > 0 and a nonempty interval ω ⊂ [0, 1] such that

∀ t ∈ ω, 〈x∗ − x〉n > γ.

As this injection is compact, from (9)

∃`0 ∈ N, ∀ ` ≥ `0, 〈uN`
(t)− x∗(t)〉n ≤

γ

2
.

Thus, for any ` ≥ `0 and t ∈ ω it is verified

〈uN`
(t)− x(t)〉n ≥ 〈x∗(t)− x(t)〉n − 〈uN`

(t)− x∗(t)〉n >
γ

2
. (10)

On the other hand, as we are taking h→ 0 along the whole process, using the density
condition (2) we can assure that there exists ` ∈ N and t∗` ∈ ω such that t∗` ∈ TN`

∩ ω
and thus

(I − K)uN`
(t∗` ) = (I − K)x(t∗` ).
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The operator I − K, considering the hypotheses taken from the beginning, it is also a
bijection in C((0, 1);Rn), and thus uN`

(t∗` ) = x(t∗` ), which is a contradiction with (10). Thus
x∗ = x.

For any ` ∈ N it is verified

‖uN`
− x‖2

k = ‖uN`
‖2

k + ‖x‖
2
k − 2(uN`

, x)k.

Then, from (9) and the compact inclusion of Hk+1((0, 1);Rn) into Hk((0, 1);Rn) (see
for example [48]), one has

lim
`→+∞

‖uN`
− x‖k = 0. (11)

Suppose now that ‖uN − x‖k does not tend to 0 as h tends to 0; in this case, it would
exist α > 0, and a sequence (uN′`

)`∈N such that

∀ ` ∈ N, ‖uN′`
− x‖k > α. (12)

However, the sequence (uN′`
)`∈N is bounded in Hk+1((0, 1);Rn) and then, by reasoning

as above, we deduce that from this sequence we can extract a subsequence convergent to x
in Hk((0, 1);Rn), what contradicts (12). Thus

lim
h→0
‖uN − x‖k = 0.

Corollary 1. Under the conditions of Theorem 4 one has

lim
h→0
‖ f − (I − K)uN‖k = 0.

Proof. From Theorem 4 and the continuity of the operator I − K we have

lim
h→0

(I − K)uN = (I − K)x = f in Hk((0, 1); Rn).

Then, from here the result is obtained.

6. Computation

Let us compute the unique solution of (6). The solution of problem (5) can be ex-
pressed by

uN =
N

∑
i=1

αiφ1,k(| · −ti|),

with α1, . . . , αN ∈ Rn.
Consider the basis {B1, . . . , BNn} of the space SN given, for ` = 1, . . . Nn, by

B`(t) = φ1,k(|t− ti|)ej,

being i = quotient(`− 1, n) + 1 and j = `− (i− 1)n.
Then, the solution of (5) can be expressed by

uN =
Nn

∑
`=1

α`B`,

with α1, . . . , αNn ∈ R.
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By replacing in (6), we have

Nn

∑
`=1

α`((I − K)B`, (I − K)v)k+1 + 〈λ, ρv〉N,n = 0, ∀ v ∈ SN ,

subject to the restrictions

Nn

∑
`=1

α`(I − K)B`(ti) = f (ti), i = 1, . . . , N.

Taking v = Bj, for j = 1, . . . , Nn, we obtain a linear system of order 2Nn with
unknowns α1, . . . , αNn, λ1, . . . , λNn ∈ R, that can be expressed in matrix form as follows:(

C D
D> 0

)(
α
λ

)
=

(
0
F

)
,

with
C =

(
((I − K)B`, (I − K)Bj)k+1

)
1≤`≤Nn
1≤j≤Nn

,

D = (dij) 1≤i≤Nn
1≤j≤Nn

,

α = (α1, . . . , αNn)
>, λ = (λ1, . . . , λNn)

>,
F = ( fi)1≤i≤Nn,

being, for i = 1 . . . , Nn and j = 1, . . . , Nn,

dij = Π`((I − K)Br(ts)),

with r = quotient(i − 1, n) + 1, s = quotient(j − 1, n) + 1, ` = j − (s − 1)n and for i =
1, . . . , Nn,

fi = Π`( f (ts)),

with s = quotient(i− 1, n) and ` = i− (s− 1)n.

7. Numerical Examples

To check the validity of the described method for approximating the solution of
Problem (1) we present some numerical experiments.

In order to show the accuracy of the method, we have computed two relative error
estimations, given by the expressions

E1 =
1

1000

1000

∑
i=1
〈 f (ai)− (I − K)uN(ai)〉n,

which estimates how close uN is to the solution of (1) and

E2 =

√√√√√√√√√
1000

∑
i=1
〈uN(ai)− x(ai)〉2n

1000

∑
i=1
〈x(ai)〉2n

,

which is an approximation of the relative error of uN with respect to x in L2((0, 1); Rn)
being {a1, . . . , a1000} ⊂ [0, 1] thousand distinct random points.

From Theorem 4 and Corollary 1, these relative error estimations E1 and E2 tend to 0
as h tends to 0.
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Moreover, in all the examples, the discrete space that we use to calculate the ap-
proximated solution uN is the radial basis function space constructed from the Wendland

function φ1,1 and the centers set TN = {ti =
i
N

, i = 0, . . . , N}.
In order to compute the numerical integrals, we have used the following quadrature

formula (see [52])

∫ b

a
g(t)dt ≈

n−3

∑
i=6

g(ξi) + h
(

206
1575

(g(ξ1) + g(ξn+2)) +
107
128

(g(ξ2) + g(ξn+1))+

6019
5760

(g(ξ3) + g(ξn)) +
9467
9600

(g(ξ4) + g(ξn−1))+

13,469
13,440

(g(ξ5) + g(ξn−2))

)
,

where h =
b− a

n
and

ξ1 = a, ξn+2 = b, ξi = a +
2i− 1

2
h, i = 2, . . . , n + 1.

This formula has an error order of O(h6) for g ∈ C6([a, b]).

Example 1. We consider the following Volterra equation system of order 2
x1(t)−

∫ t

0
((t− s)3x1(s) + (t− s)2x2(s))ds = t− t5

12
,

x2(t)−
∫ t

0
((t− s)4x1(s) + (t− s)3x2(s))ds = t2 − t6

20
.

The exact solution is
x1(t) = t, x2(t) = t2.

Table 2 shows the relative error estimations for distinct values of N.

Table 2. Computed relative error estimations for Example 1 from some values of N.

N E1 E2

5 2.1868× 10−2 3.1058× 10−2

10 3.6034× 10−3 4.8048× 10−3

20 6.2683× 10−4 8.2990× 10−4

30 2.0727× 10−4 3.0254× 10−4

40 1.0215× 10−4 1.2509× 10−4

50 6.4520× 10−5 9.2824× 10−5

Example 2. We consider the following Volterra equation system of order 2
x1(t)−

∫ t

0
(et−sx1(s) + et+sx2(s))ds = et(1− 2t),

x2(t)−
∫ t

0
(−et−sx1(s) + et+sx2(s))ds = e−t.

The exact solution is
x1(t) = et, x2(t) = e−t.

Table 3 shows the relative error estimations for distinct values of N.
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Table 3. Computed relative error estimations for Example 2 from some values of N.

N E1 E2

5 3.0586× 10−2 2.5854× 10−2

10 6.4473× 10−3 3.7229× 10−3

20 1.1610× 10−3 6.3689× 10−4

30 4.4048× 10−4 2.2905× 10−4

40 1.5159× 10−4 1.1068× 10−4

50 9.9079× 10−5 6.3629× 10−5

Example 3. We consider the following Volterra equation system of order 3

x1(t)−
∫ t

0
(x1(s) + tx3(s))ds = −t + t2,

x2(t)−
∫ t

0
((t + s)x1(s) + x2(s) + (t− s)x3(s))ds = 1− t− t4

2
,

x3(t)−
∫ t

0
((−t− s)x1(s)− x2(s) + (−t + s)x3(s))ds = −t− t2 +

t4

2
.

The exact solution is

x1(t) = t2, x2(t) = 1, x3(t) = −t2.

Table 4 shows the relative error estimations for distinct values of N.

Table 4. Computed relative error estimations for Example 3 from some values of N.

N E1 E2

5 2.0024× 10−2 3.5705× 10−2

10 2.4457× 10−3 5.2296× 10−3

20 2.9878× 10−4 7.5222× 10−4

30 7.5462× 10−5 2.6518× 10−4

40 2.6133× 10−5 1.1834× 10−4

50 1.0932× 10−5 7.1453× 10−5

8. Conclusions

We conclude that the above presented experiments (see Tables 1–4)) confirm the valid-
ity of the method and justify the convergence results given in Theorem 4 and Corollary 1. In
fact, in all our experiments (see the Examples 1–3), by using small values of N, we obtain a
significant good order of approximation using the relative errors E1 and E2 considered. So,
our original goal to devise an appropriate variational procedure that is capable of solving
this type of problems in a precise and efficient way has been completely accomplished.

As compared with the other recently published works, for example [36–38,40,41], they
do not study convergence results. Likewise, our technique gives an acceptable accuracy
with a small use of data, resulting also a low computational cost.

In ([37], Tables 1 and 2) the mean of the error is of the order 10−5. We have obtained
the same order of error with only 50 points.

In [40] the authors use Bernstein polynomials and the degree of its approximation is
of order 10−4 in most of the tables. The same happens in ([41], Table 4), it uses the simple
block-by-block method and its degree of approximation is about 10−3.

In order to do more research on this topic in the future, among some of the open
problems that we consider are:
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– a numerical comparison between our method and many others in the literature,
– the theoretical study of the order of convergence of the presented method,
– the adaptation of this procedure to find the numerical solution of the linear systems of

2D Volterra integral equations of the second kind.
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