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Abstract: In this paper, the D3 dihedral logistic map of fractional order is introduced. The map
presents a dihedral symmetry D3. It is numerically shown that the construction and interpretation of
the bifurcation diagram versus the fractional order requires special attention. The system stability is
determined and the problem of hidden attractors is analyzed. Furthermore, analytical and numerical
results show that the chaotic attractor of integer order, with D3 symmetries, looses its symmetry in
the fractional-order variant.

Keywords: discrete fractional-order system; caputo delta fractional difference; hidden attractor;
dihedral symmetry D3

1. Introduction

Fractional calculus, a branch of mathematical analysis, is used to model many pro-
cesses for which the standard integer-order derivatives do not work adequately. The
derivative of non-integer order dates back to the beginning of the theory of differential
calculus (letter of Gottfried Wilhelm Leibniz, 1695). The rapid development of the theory
of fractional calculus started from the work of Euler, Liouville, Riemann, Letnikov, and so
on [1,2].

As mentioned in [3], it is well known that the classical derivative of a continuous-time
periodic function is a periodic function with the same period. However, with respect to
the derivative of fractional order, this is different because the periodicity is not necessarily
maintained by fractional derivative of periodic functions [4–11]. The non-periodicity of
solutions in continuous systems of fractional order (FO) was first discovered by engineers
(see, e.g., [10]), and then proved by mathematicians (see, e.g., [4,6]). Just as for contin-
uous FO systems, the periodicity aspects in discrete FO systems became an important
issue [5,12–17].

In this paper, the numerical orbits that apparently indicate some regular behavior are
called periodic-like orbits. It is also well known that in the theory of dynamical systems,
every emerging abrupt period-doubling is considered as bifurcation. Therefore, in this
paper the term bifurcation or bifurcation diagram is understood in the above sense of a
periodic-like phenomenon.

From a computational point of view, and based on the complexity or simplicity in
finding a basin of attraction in the phase space, it is natural to consider the following
classification of attractors: self-excited attractors, which can be revealed numerically by
integrating the systems with initial conditions within small neighborhoods of unstable
equilibria, and hidden attractors, which have the basins of attraction not connected with
any equilibria [18–21].
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Discrete fractional calculus and fractional difference equations represent nowadays
a new area for scientists [22–28]. Problems of discrete systems of FO, such as hidden
attractors and chaos control are analyzed in [3,29–31].

On the other side, as known, a dihedral group is a group of symmetries of a regular
polygon (a plane closed polygonal curve with all line segments with the same length and
interior angles with same measure) including rotations and reflections. The symmetries of
regular polygons are described mathematically by dihedral groups. In geometry by Dm
one denotes the symmetries of an m-sided regular polygon, m-gon, which form a group of
order 2m. The dihedral group can be generated by using two generators: reflection S in the
symmetry axes and rotation R about the center of the polygon with an angle θ = 3600/m
in the counterclockwise direction. The choice of generators is not unique. The group can
be considered as generated by combining rotations and mirror reflections several times.
For m = 3 the group, non-Abelian, is called the symmetry group of the equilateral triangle
i.e., the collection of transformations that maps the equilateral triangle onto itself. An
example of a D3 group is the Mercedes-Benz symbol. The operation within the group is the
composition of symmetries S and R. Rotations and reflections in lines about the center of
the polygon can be represented by matrices. The two-dimensional matrix representation of
the rotation R, with group operation corresponding to matrix multiplication, used in this
paper are

Rk =

cos 2kπ
3 − sin 2kπ

3

sin 2kπ
3 cos 2kπ

3

, (1)

and

Sk =

cos 2kπ
3 sin 2kπ

3

sin 2kπ
3 − cos 2kπ

3

, (2)

for k = 0, 1, 2. To note that R0 = I2 (identity) and the reflections Sk are about the line
through the origin and making the angle kπ/3 (not 2kπ/3) with the horizontal axis.

For a general map f : C→ C with symmetry Dm, for m ≥ 3, one has:

f [S(z)] = S[ f (z)],

f [R(z)] = R[ f (z)].
(3)

In this paper, we present an FO variant of one of D3 dihedral maps, called the D3
dihedral logistic map. Chaotic variant of Integer Order (IO) have been introduced by
Golubitsky’s [32–34] (see also [35]). Parameters are fixed and the fractional order is varied
to study the underlying dynamics.

The structure of the paper is as follows: In Section 2, the dihedral logistic map of IO is
presented; in Section 3, the FO variant of the system is deduced; Section 4 deals with the
numerical integration of the FO variant; in Section 5 the problems related to the bifurcation
diagrams are analyzed; Section 6 deals with the hidden attractors, and in Section 7 the
symmetry breaking is analyzed, and the paper ends with the Discussion Section.

2. D3 Dihedral Logistic Map of IO

The beauty of the symmetry groups can be unveiled better in the complex plane that
in the cartesian plane as it is simplest to work with complex numbers. Consider a map
f : C→ C, z = x + iy ∈ C and the iteration

zn = f (zn−1), z0 = x0 + iy0 ∈ C, n ≥ 1. (4)
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In the existing literature which describe chaotic attractors with dihedral symmetry are
mainly based on polynomial. One of such map, the Dihedral Logistic Maps (DLMs) [32–34]
(see also [35]), is defined as:

f (z) = (α + βzz̄ + γ<(zm))z + δz̄m−1,

with α, β, γ, δ as real parameters. Due to particular symmetries, this systems belongs to the
maps with Dm symmetries and is also called the Dm dihedral logistic map.

Consider the case of m = 3. After some calculations one obtains the following form
for f

f (x, y) :=
(

f1(x, y)
f2(x, y)

)
=

(
αx + (x3 + xy2)β + (x4 − 3x2y2)γ + δ(x2 − y2)

αy + (x2y + y3)β + (x3y− 3xy3)γ− 2δxy

)
. (5)

Thus, in the cartesian parametric form , the iteration (4) defining the DLM of IO is:

xn =αxn−1 + (x3
n−1 + xn−1y2

n−1)β + (x4
n−1 − 3x2

n−1y2
n−1)γ + δ(x2

n−1 − y2
n−1),

yn =αyn−1 + (x2
n−1yn−1 + y3

n−1)β + (x3
n−1yn−1 − 3xn−1y3

n−1)γ− 2δxn−1yn−1,

n = 1, x0, y0 ∈ R.

(6)

In this paper, one chose for (6) the particular case: α = −1.8040, β = 1, γ = 0 and
δ = 0.5, values chosen so that the Lyapunov exponent is positive and a spectacular chaotic
attractor is generated [34,35]

xn =− 1.8040 xn−1 + x3
n−1 + xn−1y2

n−1 + 0.5 x2
n−1 − 0.5 y2

n−1,

yn =− 1.8040 yn−1 + yn−1x2
n−1 + y3

n−1 − xn−1yn−1,

n = 1, 2, . . . , x0, y0 ∈ R.

(7)

The image of the attractor obtained after 10,000 iterations is presented in Figure 1.
Note that the chaotic behavior is not incompatible with symmetry.

Figure 1. A D3-symmetric image of the DLM of IO (7). In red is indicated the counterclockwise
rotation with 120◦ applied to the point A to obtain the point B which is symmetric with respect the
line (b).
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3. Dihedral Logistic Map of FO

Consider the Caputo’s like discrete Initial Value Problem of FO with q ∈ (0, 1) and
starting point 0:

∆q
∗u(t) = f (t + q− 1), u(t + q− 1)), t ∈ N1−q, u(0) = u0, (8)

where Na = {a, a + 1, a + 2, . . .} and ∆q
∗ stands as the q-th Caputo-like discrete fractional

difference. Then, with f given by (5) in the scalar form (7), the DLM of FO (called DLMFO
hereafter) is expressed as follows:

∆q
∗x(t) =αx(t + q− 1) + (x3(t + q− 1) + x(t + q− 1)y2(t + q− 1))β+

(x4(t + q− 1)− 3x2(t + q− 1)y2(t + q− 1))γ + δ(x2(t + q− 1)−
y2(t + q− 1)),

∆q
∗y(t) =αy(t + q− 1) + (x2(t + q− 1)y(t + q− 1) + y3(t + q− 1))β+

(x3(t + q− 1)y(t + q− 1)− 3x(t + q− 1)y3(t + q− 1))γ−
2δx(t + q− 1)y(t + q− 1)

t ∈ N1−q, x(0) = x0, y(0) = y0.

(9)

The solution of (8) is the following integral: [36–38]

u(t) = u0 +
1

Γ(q)

t−q

∑
s=1−q

(t− s− 1)(q−1) f (u(s + q− 1)). (10)

A convenable numerical form of (10) can be obtained with the following substitution:
s + q = i. Then, (t− s− 1)(q−1) becomes:

(t− s− 1)(q−1) =
Γ(t− s)

Γ(t− s− q)
=

Γ(t− 1 + q)
Γ(t− s− q + 1)

=
Γ(t− i + q)
Γ(t− i + 1)

,

and, because t ∈ N1 = {1, 2, . . .}, by replacing t ∈ N with the usual index n ∈ N, a
convenient iterative numerical form of the integral (10) is:

u(n) = u(0) +
1

Γ(q)

n

∑
i=1

Γ(n− i + q)
Γ(n− i + 1)

f (u(i− 1)), u(0) = u0, n ∈ N . (11)

Adapting (11) to the system (9), with the particularization of parameters α, β, γ, δ
mentioned before, one obtains the following integral:

x(n) = x(0) +
1

Γ(q)

n

∑
i=1

Γ(n− i + q)
Γ(n− i + 1)

(−1.804 x(i− 1) + x(i− 1)3+

x(i− 1)y(i− 1)2 + 0.5 x(i− 1)2 − 0.5 y(i− 1)2),

y(n) = y(0) +
1

Γ(q)

n

∑
i=1

Γ(n− i + q)
Γ(n− i + 1)

(−1.804 y(i− 1) + y(i− 1)x(i− 1)2+

y(i− 1)3 − x(i− 1)y(i− 1)), [x(0), y(0)]t = [x0, y0]
t, n ∈ N,
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or

xn =x0 +
1

Γ(q)

n

∑
i=1

Γ(n− i + q)
Γ(n− i + 1)

(−1.804 xi−1 + x3
i−1 + xi−1y2

i−1 + 0.5 x2
i−1 − 0.5 y2

i−1),

yn =y0 +
1

Γ(q)

n

∑
i=1

Γ(n− i + q)
Γ(n− i + 1)

(−1.804 yi−1 + yi−1x2
i−1 + y3

i−1 − xi−1yi−1),

n ∈ N, x0, y0 ∈ R.

(12)

Remark 1. Because the uniqueness of a explicit sequence as (12) is automatic, following ([39],
Definition 1.1.1), Equation (12) define a discrete dynamical system of FO, whose behavior fully
represents the dynamics of the DLMFO (9).

4. Stability of Fixed Points

The study of hidden attractors is based on the stability of the fixed points. Compared
to IO counterparts, fixed points of the system (11) are not obtained by solving the equation
f (u) = u, but solving the equation f (u) = 0. Therefore, for the DLMFO system modeled
by (12), one obtains the following seven equilibria:

X∗0 = (0, 0), X∗1 = (−1.6162, 0), X∗2 = (1.1162, 0),

X∗3,4 = (−0.5581,±0.9667), and X∗5,6 = (0.8081,±1.3996).

The Jacobian is:

J(x, y) =
(

3x2 + x + y2 − 1.804 2xy− y
2xy− y x2 − x + 3y2 − 1.804

)
.

which will be evaluated at the fixed points X∗.
Conform to ([40], Theorem 1.4), a fixed point of a discrete FO system is asymptotically

stable if all its Eigenvalues belongs to the set Sq:

Sq =

{
z ∈ C : |z| <

(
2 cos

|λ| − π

2− q

)q

and |λ| > qπ

2

}
,

where λ denotes the argument of the Eigenvalue and | • | is evaluated for each Eigenvalues
of the considered fixed point. If one or several fixed points admit Eigenvalues not belonging
to Sq, then the underlying fixed point is unstable.

Theorem 1. X∗0 is unstable for q ∈ (0, log2 1.804) and asymptotically stable for q ∈ (log2 1.804, 1).

Proof. Eigenvalues of X∗0 related to both axis Ox and Oy are: ex,y = −1.804 with arguments
λx,y = π. The first inequality of Sq becomes:

|z| = 1.804 < 2q cosq 0
2− q

= 2q,

wherefrom one obtains:
q > log2 1804 ≈ 0.8512. (13)

The second inequality is:

|λx,y| = π >
qπ

2
,

wherefrom
q < 2. (14)

Because in this paper q ∈ (0, 1), from (13) and (14) one obtains q ∈ (log2 1.804, 1).
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Theorem 2. X∗1−6 are unstable for q ∈ (0, 1).

Proof. Consider only the points X∗1,2, the calculations for the other points following the
same path. Eigenvalues of the point X∗1 are ex = 4.4161 and ey = 2.4243 with arguments
λx,y = 0. Then |λx,y| = 0 < qπ

2 which contradicts the second inequality in Sq. Therefore X∗1
is unstable on the plane (xOy).

For X∗2 , ex = 3.0499 and ey = −1.6743. Then, λx = 0 and λy = π. |λx| = 0 < qπ
2

which shows X∗2 is unstable along the axis Ox. For the axis Oy, |λy| = π and the second
inequality in Sq gives q < 2. Next, the first inequality in Sq, where |z| = 1.6743, gives
the following inequality 1.6743 < 2q cosq 0

2−q = 2q, wherefrom q > log21.6743 ≈ 0.744.
Therefore, X∗2 is stable along the direction Oy if q > 0.7446, but in the plane (xOy), X∗2 is
unstable (saddle).

The position of Eigenvalues ex,y, related to the stability region S for the range q ∈ (0.8152, 1),
is indicated by the tick line in Figure 2.

Figure 2. Stability domain S in the case of the fixed point X∗0 . Tick line represents the asymptotic
stability range of q for X∗0 .

5. Bifurcation Diagrams

To obtain a visual summary of the dynamics of the DLMFO one considers the Bi-
furcation Diagram (BD) with respect to the fractional order q ∈ (0, 1). As one can see in
this section this useful tool should be considered for FO discrete systems with precaution
not only due to the mentioned nonexistence of periodic solutions in continuous and also
discrete FO systems, but also due to a non-invariance-like with respect to initial conditions
(see also [41]). Thus, it is shown empirically that to every considered initial condition
corresponds a different diagram which, for avoid the confusion with the BD, will be called
the Bifurcative Set (BS). So, while for IO discrete systems, such as the logistic map, the BD
has a unique shape for whatever initial conditions, in the sense that the diagram obtained
for parameter variation has the same shape for whatever initial conditions (see also [42]),
the DLMFO has the BD as “composed” of several different BSs, one for each considered
initial condition. This characteristic are more evident q values close to 0.

Diagrams in this paper are obtained by integrating the system with five different initial
conditions for nmax = 2000 iterations, from which the first 1700 being discarded to avoid
transients.

Note that for different values of q, every considered initial condition in the numerical
experiment of the BD, has been iterated before drawing the diagram for nmax = 10,000,
in order to verify that the results obtained with nmax = 2000 are similar to those with
nmax = 10,000 iterations, and are not prejudiced by transients. Therefore, the choice
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of 2000 iterations proved to be an acceptable compromise between computer time and
rightness of the results.

For the sake of simplicity, one consider the diagrams for only the variable x (Figure 3).
For figure clarity, only five empirically chosen initial conditions are considered: [x0, y0]1 =
[−0.5,−0.1] (magenta), [x0, y0]2 = [0.2, 0.1] (red), [x0, y0]3 = [0.01, 0.01] (blue), [x0, y0]4 =
[−0.5, 0.3] (green), [x0, y0]5 = [0.1,−0.7] (black). Supplementary initial conditions have
been tested but the diagrams become too loaded. As can be seen, each initial condition
generates a different BS.

Figure 3b reveals the consistency of the analytical result of the asymptotical stability of
X∗0 with the numerical results (point P with q = 0.8512 ≈ log2 1.804). Moreover, the zoom
in Figure 3b shows a periodic-like orbit, which exists for q < 0.8512. Figure 3c,d present the
time series and phase plot, respectively, indicating the behavior of an orbit starting close
from X∗0 , which tends asymptotically to X∗0 for q > 0.8512.

The following natural questions arise:

Q1: Should the BD be considered as the “reunion” of all BSs?
Q2: Considering the intensive numerical experiments which indicate that different initial

conditions generates different BSs, how many such BSs can be finally obtained and
which one of these BSs should be considered the “right” BD?

Hereafter, in order to avoid the problem raised by Q1, by BD of the GLMFO one
understands the set of all obtained BSs.

Another BD with five initial conditions [−0.5, 0.1] (magenta), [0.2, 0.1] (red), [−0.01, 0.1]
(blue), [0.4, 0.1] (green) and [0.1, 0.1] (black), presented in Figure 4, underlines the differences
between BSs, even for y0 kept constant (y0 = 0.1).

The following experiment reveals the fact that for any of 600 considered initial condi-
tions [x0, y0] within the segment [x0, 0.8], for x0 ∈ [0.5, 0.5], and q = 0.03, in the bifurcation
diagram vs. initial condition, x0 and with y0 constant, there correspond different attractors
(Figure 5a). Because there are an infinity of points within the considered segment, one
can extrapolate the idea that to every initial condition there exist different BSs. On the
other side, from Figure 5b one can see that for the IO case of the considered system, the
initial conditions x0 give birth to similar (chaotic) attractors. This is in agreement with the
cases of IO other discrete and continuous systems where BDs do not present such sensible
dependence on initial conditions.

To better understand the differences between the IO cases and FO cases, consider the
sketch in Figure 6, where two BDs are considered. Figure 6a presents a BD of a discrete
system of IO depending on a real parameter r (such as the logistic map), for a single value
of r, while Figure 6b presents the BS of a discrete system of fractional order q (like the
GLMFO) for a particular value of q. Both systems are considered as depending on the
variable u. The vertical bars or points corresponding to r or q are attractors (Poincaré-like
sections of BDs through r or q), attractive points or stable cycles (like), quasiperiodic (like)
or chaotic attractors. As known, in both cases the chaotic behavior is characterized by
the sensitive dependence of initial conditions (as first formulated by Guckenheimer [43]).
However, as this paper shows, in FO systems, like the considered GLMFO, for a considered
value of q all different initial conditions (in this sketch u0i, i = 1, 2 . . . , 5), could generate
different regular-like, and chaotic attractors (red, yellow, blue, green, black tick lines), while
in the IO case all initial conditions lead finally to a single attractor (chaotic in this sketch,
black tick line), or two attractors (in the case of multistability).
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Figure 3. DLM of FO. (a) Bifurcation diagram vs. q. The bifurcation-like point P indicates the
beginning of the stability of X∗0 for q > 0.8512; (b) zoomed image; (c) time series tending to the
asymptotically stable fixed point X∗0 for q > 0.8512; (d) phase portrait with the orbit points indicating
the evolution of the orbit to X∗0 ; (e) zoomed area of the bifurcation diagram.
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Figure 4. Another bifurcation diagram vs. q ∈ (0, 0.15] for initial conditions [−0.5, 0.1], [0.2, 0.1],
[−0.01, 0.1], [0.4, 0.1], [0.1, 0.1].

Figure 5. Bifurcation diagrams of the DLM of FO and IO versus the initial conditions x0 ∈ [−0.5, 0.5]
and y0 = 0.8. (a) The FO case q = 0.03; (b) the IO case.

Figure 6. Sketch of diagrams of bifurcations. (a) The IO case; (b) FO case. u0i, i = 1, 2, . . . , 5 are initial
conditions.
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Therefore, the sensitive dependence of the BD on initial conditions has different
meaning from the classical notion of dependence on initial conditions (see [3]). Every BD
of a FO system, considered as a set of all Poincaré sections through the axis q, which are all
different, depends sensibly on the considered initial conditions, while every orbit depends
sensibly on the initial condition.

Remark 2.

(i) Beside the dependence on initial conditions, because fractional derivatives are nonlocal oper-
ators, they present the so called memory effect which means that the actual behavior is not
only influenced by the actual state of the underlying system but also by the events happened in
the past. Therefore, beside the dependence on the initial conditions, at every moment n, the
solutions xn and yn depends not only on x0 and y0 but also on all previous values xk and yk,
for k = 1, 2, . . . , n− 1.

(ii) Because the decay rate of the solutions in the asymptotically stable case is n−q [40] (see
also [14]), smaller values of q implies bigger errors, while to bigger values of q, close to 1, errors
are smaller. In Figure 7, the graph of n−q is represented as function of n for different values of
q. For clarity, only first few dozens of values n have been considered. The circles at n = 30
indicates the order of errors for each considered values of q. If one considers nmax =10,000,
from the curve q = 0.01 one obtains 10,000−0.01 = 0.9120, while the curve q = 0.9, gives
10,000−0.9 = 2.5119e− 004.

Consider q = 0.1 and the underlying attractors presented in Figure 8 (see also the
dotted line in Figure 3b).

For the initial condition [x0, y0]1 one obtains a periodic-like orbit (Figure 8a), a fact
underlined by the zoom in phase plane representation (Figure 8b), which shows the fact
that it is not about a true periodic orbit.

For [x0, y0]2 one obtains a two-band quasiperiodic-like orbit (Figure 8c). The two col-
ored filled disks indicate the alternative visiting order of the subsets denoted A1 and A2 of
the quasiperiodic-like attractor (Figure 8d). To note that for q = 0.1 similar quasiperiodicity-
like orbits can be obtained with initial condition within the blue and yellow BSs.

As Figure 3e shows, there are several bifurcation-like points, the “end” points of
quasiperiodic-like behavior of yellow, blue and red BSs (such as the points P1,2, Q1,2 and
R1,2 or the point P in Figure 3b), related to BSs, these points have different positions in
the fractional-order space (each of them take place at different values of q). Note that, by
comparing with the IO case where these points would indicate Hopf bifurcations, in FO
systems this is a delicate problem, since periodicity still does not exists.
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Figure 7. Graph of n−q for different values of q.

Figure 8. Two orbits of the DLM of FO for q = 0.1. (a) Time series of a periodic-like orbit from
[x0, y0]1 = [−0.5,−0.1]; (b) phase portrait of the orbit and a zoom indicating the slow orbit conver-
gence; (c) time series of a two-band quasiperiodic-like orbit from [x0, y0]2 = [0.2, 0.1]. The zoom
indicates the alternate pattern of the orbit between the two subsets A1 and A2 (red and brown) of the
quasiperiodic-like attractor; (d) phase portrait of the orbit [x0, y0]2 = [0.2, 0.1].
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6. Hidden Attractors

While generally in the cases of IO systems the attractors coexist, one of the ingredients
of hidden attractors is indicated by the presence of different BSs, which seem to coexist and
complement each other in a kind of harmony. In the considered case of the DLMFO (and
also in some other FO discrete systems, see [3,31]) the BSs seem to be independent, having
nothing to do with each other.

Let us find the potential hidden chaotic attractors for q within the range (0, 0.06), where
the BSs indicates chaotic behavior. As for this range of q the fixed points are unstable, one
can consider that the corresponding chaotic attractors are hidden (see the characterization
of hidden attractors in Introduction).

As the BSs show (Figure 3a), there exists periodic chaos, when in the BD, the chaotic
attractor consists of several vertical bands and even a typical orbit fills out every of the
interval irregularly, the successive iterations visit them periodically.

For example, for q = 0.03 and the initial condition [x0, y0]5, one obtains the hidden
chaotic attractor presented in Figure 9a. The projection on the Ox axis reveals a connected
set, as shown by the one-band chaotic segment in the cross-section of the black BS with
the line q = 0.03. Another hidden chaotic attractor identified in the blue BS, for the
initial condition [x0, y0]3, which is composed by two disconnected sets (two-band chaotic
segments in the cross section of the blue BS with the line q = 0.03) is presented in Figure 9b).
If one approaches the zero value of q such as q = 0.005, for [x0, y0] = [−0.01,−0.01] one
obtains another chaotic attractor (Figure 9c) which resembles with the IO counterpart
(Figure 1).

The numerical experiments show that for q ∈ (0, 0.06), all BSs give birth hidden
chaotic (for q ∈ (0, 0.06)), or periodic-like (for q ∈ (0, 1)), attractors.

As mentioned in Q2 it is difficult to specify the real number of these hidden attractors.

Figure 9. Hidden chaotic attractors of the DLMFO with broken-symmetry. (a) q = 0.03 and [x0, y0]5 =

[0.1,−0.7]. (b) q = 0.03 and [x0, y0]3 = [0.01, 0.01]; (c) q = 0.01, and [x0, y0] = [−0.01,−0.01].
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7. Symmetry Broken by the Fractional Order

Another interesting property of this system, which probably is due to the fractionality
is the fact that, compared with its counterpart IO map, the considered chaotic attractors in
Figures 9a–c, present a dihedral D3 symmetry-broken.

Consider first the DLM of IO with the typical chaotic attractor depicted in Figure 1
and the reflection (mirror) lines through the center (origin), (a), (b), (c). As can be seen,
due to the slow convergence, almost every point can be considered as the mirror of some
other point with respect one of the axes, or obtained with a rotation.

For example, consider the clear visible point A in Figure 1 with coordinates xA = 0.3216,
yA = 0 and rotate it counterclockwise around the origin O with 120◦ (red arrow), i.e., R1 (1).

The new point B will have the coordinates(
xB
yB

)
= R1 · A =

1
2

(
−1 −

√
3

√
3 −1

)(
0.3216

0

)
=

(
−0.1606
0.2781

)
,

with a good approximation of the graphically determined coordinates.
The same point B can be also obtained with the symmetry S1 (2) across the line (b)

(red dotted line) which makes an angle π/3 with the horizontal axis(
xB
yB

)
= S1 · A =

1
2

(
−1

√
3

√
3 1

)(
0.3216

0

)
=

(
−0.1606
0.2781

)
.

Actually one can consider that all points of the IO attractor are generated by rotations
or symmetries.

The next result regards the symmetries of the DLMFO.

Theorem 3. Attractors of the DLMFO have not D3 symmetries.

Proof. Consider first the IO and the symmetry with respect the horizontal axis (symmetry
axis (a)), i.e., S0. Applied to some point (x, y) one has

S0(x, y) = S0

(
x
y

)
=

(
1 0
0 −1

)(
x
y

)
=

(
x
−y

)
= (x,−y), (15)

and due to the parity of functions f1,2(x, y) in (5) ( f1 and f2 are even and odd, respectively),
from (3) one obtains:

f (S0(x, y)) = f (x, y)|(x,y)=(x,−y) =(
−1.8040 xn−1 + x3

n−1 + xn−1y2
n−1 + 0.5 x2

n−1 − 0.5 y2
n−1

−1.8040 (−yn−1) + (−yn−1)x2
n−1 + (−yn−1)

3 − xn−1(−yn−1)

)
=

(
f1(x, y)

− f2(x, y)

)

On the other side:

S0( f (x, y)) = S0 f (x, y) =
(

1 0
0 −1

)(
f1(x, y)
f2(x, y)

)
=

(
f1(x, y)
− f2(x, y)

)
.

Therefore, f (S0(x, y)) = S0( f (x, y)). The second condition (3) can be proved similarly.
Consider next the FO case and denote the map of the right hand side of (12) as

F(x, y) =
(

x0 + F1(x, y)
y0 + F2(x, y)

)
, (16)

where

F1(x, y) =
1

Γ(q)

n

∑
i=1

Γ(n− i + q)
Γ(n− i + 1)

(−1.804 xi−1 + x3
i−1 + xi−1y2

i−1 + 0.5 x2
i−1 − 0.5 y2

i−1),
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and

F2(x, y) =
1

Γ(q)

n

∑
i=1

Γ(n− i + q)
Γ(n− i + 1)

(−1.804 yi−1 + yi−1x2
i−1 + y3

i−1 − xi−1yi−1),

where, for the sake of simplicity, the parameter n and index i in F1,2 are omitted.
Following the way used to verify the symmetry for the IO case, by using the parity

properties of F(x, y) defined in (16) and following (15) one obtains:

F(S0(x, y)) = F(x, y)|(x,y)=(x,−y) =

(
x0 + F1(x, y)
y0 − F2(x, y)

)
. (17)

On the other side:

S0(F(x, y)) =
(

1 0
0 −1

)(
x0 + F1(x, y)
y0 + F2(x, y)

)
=

(
x0 + F1(x, y)
−y0 − F2(x, y)

)
, (18)

and, therefore, F(S0(x, y)) 6= S0(F(x, y)).

Actually, the explanation of this result lies in the mentioned time history of numerical
methods for continuous and also discrete systems of FO. This symmetry broken is also
presumably due to the influence of the fractional order q and seems to be more powerful as
the q increases. As can be seen from (17) and (18), if y0 = 0, the influence of y0 disappears
and symmetry should maintains. However, for y0 = 0, yn = 0 for all n and the attractors
starting from [x0, 0] collapse on the axis Ox, case which is not considered here. Thus,
while for the hidden chaotic attractors in Figure 7a,b obtained for q = 0.03 the symmetry
destroyed, the attractor in Figure 7c with q = 0.01 resembles with the its IO counterpart in
Figure 1, but is still non-symmetric.

8. Discussion

In this paper, one of Golubitsky’s maps of IO (dihedral logistic map) has been consid-
ered in the FO discrete form. The IO variant presents dihedral D3 symmetry which is lost
in the FO variant. It is shown that only few hundreds iteration are not enough to discard
transients and to obtain accurate results. As in some previous studied discrete systems
of FO [3], the bifurcation diagram seems to be composed by several different sets, called
bifurcative sets, one for each initial condition, which indicate attractors coexistence. In other
words, the bifurcative sets depend sensibly on initial conditions, but in a different sense for
the classical meaning of the sensitive dependence on initial conditions of an orbit. Probably
due to the convergence of the integration method, for smaller values of q (close to 0), the
differences between the bifurcative sets are significant, while for q tending to 1, these sets
seem to tend one to each other. The instability of the system (due to the instability of fixed
points) and the existence of several bifurcative sets could be considered ingredient to find
hidden attractors. However, finding their exact number is a difficult if not an impossible
task due to the dependence of the bifurcative sets on the initial conditions. Additionally, the
numerical approach of this system (and probably of other discrete systems of FO) indicates
that the tools like bifurcation diagram, or hidden attractors require much more attention.
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40. Čermak, J.; Gyǒri, I.; Nechvátal, L. On explicit stability conditions for a linear fractional difference system. Fract. Calc. Appl. Anal.

2015, 18, 651–672.
41. Wang, Y.; Liu, S.; Li, H. On fractional difference logistic maps: Dynamic analysis and synchronous control. Nonlinear Dyn. 2020,

102, 579–588.
42. Prousalis, A.D.; Volos, C.K.; Bocheng, B.; Meletlidou, E.; Stouboulos, I.N.; Kyprianidis, I.M. Chapter 6—Extreme Multistability in

a Hyperjerk Memristive System with Hidden Attractors. In Emerging Methodologies and Applications in Modelling, Recent Advances
in Chaotic Systems and Synchronization; Boubaker, O., Jafari, S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 89–103.

43. Guckenheimer, J. Sensitive dependence on initial conditions for one-dimensional maps. Commm. Math. Phys. 1979, 70, 133–160.


	Introduction
	D3 Dihedral Logistic Map of IO 
	Dihedral Logistic Map of FO
	Stability of Fixed Points
	Bifurcation Diagrams
	Hidden Attractors
	Symmetry Broken by the Fractional Order
	Discussion
	References

