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Abstract: In this study, we focus on invariant algebraic curves of generalized Liénard polynomial
differential systems x′ = y, y′ = − fm(x)y− gn(x), where the degrees of the polynomials f and g are
m and n, respectively, and we correct some results previously stated.
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1. Introduction and Statement of the Main Results

In this work, we study the generalized Liénard polynomial differential systems of the
following form:

x′ = y, y′ = − fm(x)y− gn(x), (1)

where the degrees of the polynomials f and g are given by the subscripts m and n, re-
spectively. These generalized Liénard systems are used to model different problems in
numerous areas of knowledge and have been intensively studied in the last decades (see
for instance [1,2] and references therein).

Consider F(x, y) = 0 an invariant algebraic curve of the differential system (1) where F(x, y)
is a polynomial, then there exists a polynomial K(x, y) such that the following is the case.

∂F
∂x

y +
∂F
∂y

(− fm(x)y− gn(x)) = KF (2)

The knowledge of the algebraic curves of system (1) allows studying modern Darboux
and Liouvillian theories of integrability (see [3] and references therein). In fact the existence of
invariant algebraic curves is a measure of integrability in such theories. Another problem is
finding a bound on the degree of irreducible invariant algebraic curves of system (1). This
problem goes back to Poincaré for any differential system and is known as Poincaré problem.

In 1996, Hayashi [4] stated the following result.

Theorem 1. The generalized Liénard polynomial differential system (1) with fm 6≡ 0 and m + 1 ≥ n
has an invariant algebraic curve if and only if there is an invariant curve y− P(x) = 0 satisfying
gn(x) = −( fm(x) + P ′(x))P(x), where P(x) or P(x) + F(x) is a polynomial with a degree of at
most one, such that F(x) =

∫ x
0 f (s)ds.

Given P and Q polynomials, an algebraic curve of the form (y + P(x))2 −Q(x) = 0
is called hyperelliptic curve (see for instance [5–8]). In such works, hyperelliptic curves are
used to determine the algebraic limit cycles of generalized Liénard systems (1).

Theorem 1 is also announced in [9], where the author seems to not be aware that
the theorem is false. Theorem 1 is not correct as the following proposition shows. More
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precisely, it shows the existence of hyperelliptic invariant algebraic curves for generalized
Liénard systems (1).

Proposition 1. Under the assumptions of Theorem 1, the generalized Liénard polynomial differen-
tial system (1) has the following hyperelliptic invariant algebraic curves:

(a) F(x, y) = −(b + ax)λ + (y− b− ax)2 = 0 for f0(x) = −3a/2 and g1(x) = a(b + ax−
λ)/2 with a 6= 0;

(b) F(x, y) = −Ax2 + (y− ax)2 for f0(x) = −2a and g1(x) = (a2 − A)x with aA 6= 0;

(c) F(x, y) = −bc/(2a)− cx− acx2/(2b)+ (b+ ax− y)2 = 0 for f0(x) = −2a and g1(x) =
(2ab− c)(b + ax)/(2b) with ab 6= 0.

Proposition 1 is proved in Section 2.
In fact, the correct statement of Theorem 1 is the following.

Theorem 2. The generalized Liénard polynomial differential system (1) with fm 6≡ 0 and m + 1 ≥ n
has the invariant algebraic curve y− P(x) = 0 if gn(x) = −( fm(x) + P ′(x))P(x), being P(x)

or P(x) + F(x) a polynomial of degree at most one, where F(x) =
∫ x

0
f (s)ds.

Theorem 2 is proved in Section 2.
Note that the mistake in the statement of Theorem 1 is the claim that unique invariant

algebraic curves are of the following form y− P(x) = 0.
Demina in [10] also detected that Theorem 1 was not correct. She found counterexam-

ples to Theorem 1 with invariant algebraic curves of degree 2 and 3 in the variable y.
Singer in [11] found the characterization of systems that are Liouvillian integrable.

Christopher [12] rewrote this result stating that if a polynomial differential system in R2

has an inverse integrating factor of the following form:

V = exp
(

D
E

) p

∏
i=1

Fαi
i , (3)

where D, E and Fi are polynomials in C[x, y] and αi ∈ C, then this differential system is
Liouvillian integrable. For a definition of (inverse) integrating factor, see for instance Section 8.3
of [3].

We say that exp(g/h), with g and h ∈ C[x, y], is an exponential factor of the polynomial
differential system (1) if there exists a polynomial L(x, y) of a degree with at most d where
d = max{m, n− 1} such that the following is the case.

∂ exp(g/h)
∂x

y +
∂ exp(g/h)

∂y
(− fm(x)y− gn(x)) = K exp(g/h).

More information on exponential factors can be found in Section 8.5 of [3].
The existence of an inverse integrating factor (3) for a polyomial differential system

in R2 is equivalent to the existence of λi and µi ∈ C is not all zero such that ∑
p
i=1 λiKi +

∑
q
j=1 µjLj = div(P, Q), where Ki and Li are the cofactors of some invariant algebraic curves

and exponential factors of the given polynomial differential system, respectively. See, for
more details, statement (iv) of Theorem 8.7 of [3].

We remark that the two kinds of invariant algebraic curves mentioned in Theorem 2
can appear simultaneously in some generalized Liénard polynomial differential systems (1)
as the following example shows, which already appeared in [13].

The generalized polynomial Liénard differential system of the following:

x′ = y, y′ = −ex3 − e2/3x− (3x2 + 4e/3)y, (4)
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has invariant algebraic curves f1 = y + ex/3 = 0 and f2 = y + x3 + ex/3 = 0. Moreover,
system (4) is Liouvillian integrable because it has an inverse integrating factor V = f1 f 1/3

2 .
Let U be an open subset of R2. A C1 function H : U → R is a first integral of system (1)

if it is constant on the orbits of the system contained in U, or equivalently if the following
is the case.

dH
dt

=
∂H
∂x

y +
∂H
∂y

(− fm(x)y− gn(x)) = 0 on U. (5)

Consider W as an open subset of R2 × R. A C1 function I : W → R is a Darboux
invariant of system (1) if it is constant on the orbits of the system contained in W, or
equivalently if the following is the case.

dI
dt

+
∂I
∂x

y +
∂I
∂y

(− fm(x)y− gn(x)) = 0 on W. (6)

Moreover, given λi and µi ∈ C that is not all zero such that ∑
p
i=1 λiKi +∑

q
j=1 µjLj = −s

for some s ∈ C \ {0}, then the (multivalued) function of the following:

I =
p

∏
i=1

Fαi
i

q

∏
j=1

(
exp

(
gj

hj

))µj

exp(st) (7)

is a Darboux invariant of the differential system (see for more details statement (vi) of
Theorem 8.7 of [3]).

Under the assumptions of Theorem 2, there are generalized Liénard polynomial
differential systems (1) that are Liouvillian integrable, as it is shown in the next result.

Proposition 2. Under the assumptions of Theorem 2, if the generalized Liénard polynomial differ-
ential system (1) has an invariant algebraic curve y− P(x) = 0, then the following statements hold:

(a) If P(x) = −F(x) + ax + b, then system (1) has the Darboux invariant (y− P(x))eat;
(b) If P(x) = b, then system (1) is Liouvillian integrable with the first integral H = ey+F(x)(y−

b)b if b 6= 0, and the first integral H = y + F(x) if b = 0.

Proposition 2 is proved in Section 2.
We note that Proposition 2 shows that Theorem 2 of [13] and Theorem 4 of [14] are not

correct because their proofs are based on the incorrect Theorem 1.

Proposition 3. Consider the generalized Liénard polynomial differential system (1). Let P(x)
be a polynomial, then y− P(x) = 0 is an invariant algebraic curve of system (1) if and only if
gn(x) = −( fm(x) + P ′(x))P(x).

Proposition 3 is proved in Section 2. In fact, the statement of Proposition 3 already
appears in [8] without proof.

Note that, in Proposition 3, there are no restrictions on the degrees of the polynomials
fm, gn and P(x).

The Liouvillian integrability of the generalized Liénard polynomial differential system
has been studied by several authors. The main result of [15] is that under restriction
2 ≤ n ≤ m, system (1) has a Liouvillian first integral if and only if gn(x) = a fm(x), where
a ∈ C (see also [16] for a shorter proof). Later on, the Liouvillian integrability of differential
systems (1) having hyperelliptic curves of the form (y + Q(x)P(x))2 − Q(x)2 = 0 was
studied (see [17]).

In summary, the Liouvillian integrability in the case where n > m is still open. In
fact, the characterization of the invariant algebraic curves of system (1) for this case is not
complete. Recently, cases m = 1 and n = 2 have been solved (see [18]).

Case n = m + 1 is the still the objective of several recent works. Thus, for instance
in [10,19], some particular cases for m = 2 and n = 3 have been solved.
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2. Proofs

Proof of Proposition 1. Assume that system (1) has an hyperelliptic invariant curve F =
(y + P(x))2 − Q(x) = 0. Then, from (2), denoting by K = K(x, y) the cofactor of F = 0,
we obtain the following.

2gn(x)P(x) + K(−P(x)2 + Q(x))

+ y(−2gn(x) + 2P(x)(K + fm(x) + P ′(x))−Q ′(x))

− y2(K + 2 fm(x) + 2P ′(x)) = 0.

From this equality, we observe that K = K(x) = −2( fm(x) + P ′(x)):

fm(x) = −P ′(x)− P(x)Q ′(x)
2Q(x)

, and gn(x) = −1
2

Q ′(x) +
P2(x)Q ′(x)

2Q(x)
,

where f m(x) and gn(x) must be polynomials.
If we assume that deg P = p and deg Q = q, we obtain deg fm = p− 1 and deg gn =

max{q− 1, p2 − 1}. Since m + 1 ≥ n, we obtain p ≥ max{q− 1, p2 − 1}, which implies
p = 1. Consequently, 1 ≥ q− 1, which implies q = 1, 2.

If q = 1, then P(x) = ax + b with a 6= 0 and Q(x) must be proportional to P(x); that
is, Q(x) = λP(x). Thus, fm = −3a/2 and gn = a(ax + b− λ)/2, and F = (b + ax− y)2 −
(b + ax)λ. Thus, statement (a) follows.

If q = 2, then we have P(x) = ax + b and Q(x) = Ax2 + Bx + C with aA 6= 0, and
since fm must be a polynomial, we obtain fm = −2a; moreover, in order for gm to be a
polynomial, we obtain either b = B = C = 0 or A = aB/(2b) and C = (bB)/(2a) with
ab 6= 0.

If b = B = C = 0, then gn = (a2 − A)x and F = −Ax2 + (y − ax)2. Therefore,
statement (b) is proven.

If A = aB/(2b) and C = (bB)/(2a), then g(x) = (2ab − B)(b + ax)/(2b) and
F(x, y) = −bB/(2a)− Bx − aBx2/(2b) + (b + ax − y)2. By renaming B by c, we obtain
statement (c).

Proof of Proposition 2. We have system (1) with gn(x) = −( fm(x) + P′(x))P(x) and
the invariant algebraic curve y − P(x) = 0 is P(x) = −F(x) + ax + b. Then, by using
Equation (2), we obtain the result where the cofactor of the invariant algebraic curve
y− P(x) = 0 is K = −a. Consequently, system (1) has the Darboux invariant (7), which
in our case becomes I = (y− P(x))eat. Hence, statement (a) is proved. Assume now that
P(x) = b. Therefore, g(x) = −b f (x), and the differential system becomes ẋ = y and
ẋ = −(y + b) f (x), which has the Darboux first integral H = ey+F(x)(y− b)b if b 6= 0, and
the Darboux first integral H = y + F(x) if b = 0, as it is easy to verify using (6).

Proof of Proposition 3. First, we suppose that gn(x) = −( fm(x) + P ′(x))P(x), and we
shall prove that y− P(x) = 0 is an invariant algebraic curve. From Equation (7), we have
the following.

−P ′(x)y− y fm(x)− gn(x) = K(y− P(x)).

By substituting gn(x), we obtain the following.

−P ′(x)(y− P(x))− fm(x)(y− P(x)) = K(y− P(x)).

Dividing the previous equality by y− P(x), we obtain K = −P ′(x)− fm(x), which is
a cofactor of degree p− 1+ m of system (1). Note that the degree of the polynomial Liénard
differential system is the degree of, i.e., the maximum of m + p and 2p− 1.

Now, we assume that y − P(x) is an invariant algebraic curve of system (1) with
cofactor K. Then, from (7), we obtain

−P ′(x)y− y fm(x)− gn(x) = K(y− P(x)).
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From this equality, we obtain K = K(x); then, we have

(K(x) + fm(x) + P′(x))y = K(x)P(x)− gn(x).

Therefore, K(x) = −( fm(x) + P′(x)) and gn(x) = K(x)P(x). Hence, gn(x) = −( fm(x)
+P ′(x))P(x), and the proposition is proved.

Proof of Theorem 2. By Proposition 3, we only need to prove that P(x) or P(x) + F(x)
are polynomials with a degree of at most one. Since m + 1 ≥ n and n are the maxima of
m + p and 2p− 1 where p is the degree of the polynomial P(x), we have m + 1 ≥ m + p;
consequently, p ≤ 1, and the theorem is proved.
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