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Abstract: Image segmentation technology is dedicated to the segmentation of intensity inhomoge-
neous at present. In this paper, we propose a new method that incorporates fractional varying-order
differential and local fitting energy to construct a new variational level set active contour model.
The energy functions in this paper mainly include three parts: the local term, the regular term and
the penalty term. The local term combined with fractional varying-order differential can obtain
more details of the image. The regular term is used to regularize the image contour length. The
penalty term is used to keep the evolution curve smooth. True positive (TP) rate, false positive (FP)
rate, precision (P) rate, Jaccard similarity coefficient (JSC), and Dice similarity coefficient (DSC) are
employed as the comparative measures for the segmentation results. Experimental results for both
synthetic and real images show that our method has more accurate segmentation results than other
models, and it is robust to intensity inhomogeneous or noises.

Keywords: fractional calculus; varying-order differential; active contour; image segmentation;
intensity inhomogeneous image

1. Introduction

The fractional-order PDE (partial differential equation) is an important branch of
mathematical analysis, but it is little known by engineering scholars. The fractional order
differential has the characteristics of increasing the high frequency component of the signal
while preserving the low frequency component of the signal nonlinearly. Most images have
rich local features such as texture and detail, and the gray values between pixels in the
neighborhood have great similarity. Traditional integer-order differential operations have
overall properties to matrix functions such as images. Directly performing an integer-order
differential correlation algorithm on images can cause images to appear as blocks or ladders,
so it cannot get satisfactory results. Therefore, we think that the fractional order differential
can be used to enhance the detailed features of complex texture in two-dimensional image
signals. Recently, some scholars have started the application of fractional order differential
in image segmentation. Li et al. proposed a novel active contour model based on an
adaptive fractional order differential to solve the impact of noise on the image in the
process of segmentation [1]. Ren presented a new adaptive active contour model based on
fractional order differential [2]. Chen et al. proposed an adaptive-weighting active contour
model, which incorporates image gradient, local environment and global information
into a framework [3]. Mathieu et al. used a fractional derivative to detect the image
edges [4]. On the basis of fractional order differential and our application to other image
processing algorithms [5–7], we proposed a fractional varying-order differential, which can
simultaneously perform different fractional orders differential operations on each element
function of a matrix function, i.e., the differential orders of different parts of the image can
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be variable. Thus, we can gain more detailed image information so that we can process
it conveniently.

Active contour methods can be divided into edge-based model and region-based
model. The curve evolution of edge-based active contour models generally uses image
gradient information. It can locate the edge accurately by detecting the gradient of boundary.
However, weak edge of images cannot be detected because it depends on location of
initial curve. The representative model is geodesic active contour model [8], which is
improved on the basis of snake model [9]. The edge-based active contour models are
sensitive to noise due to local limitation and have difficulty in detecting weak boundary.
In recent years, many scholars have put forward various ideas to improve edge-based
model. For example, Feng proposed a selective binary Gaussian filter regularization level
set (SBGFRLS) method to obtain smoother contour [10]. Khadidos thought that energy
terms could be constructed using their relative importance in detecting boundaries [11].
Liu proposed a weighted edge level set method based on multi-local statistics by analyzing
the defects of constant length, region coefficient and traditional edge stop function in noise
image segmentation [12]. Region-based active contour model uses local information of
image to evolve curve. The initial contour can be placed anywhere in the image and if
the image information is rich, the internal contour can be detected automatically. The
most famous region-based active contour model is the CV model, which assumes that each
region of the image is statistically uniform and has been successfully applied to binary
phase segmentation [13]. However, since the CV model assumes that the intensity in
the foreground and background regions is always constant, this method is not suitable
for images with intensity inhomogeneous. Researchers have proposed many methods to
overcome the difficulty of image segmentation with intensity inhomogeneous. For instance,
Vese et al. and Tsai et al. proposed a piece-by-piece smoothing (PS) model to solve the
problem of intensity inhomogeneous images by minimizing MS functional and replacing the
piece-by-piece constant intensity with piece-by-piece smoothing intensity [14–16]. These
models can deal with the intensity inhomogeneity to some extent, but the calculation cost
is high and the segmentation effect is not good. Then, Li et al. constructed a LBF model
by adding the kernel function to the variational formula to define the local binary fitting
energy, but the model was greatly affected by the initial contour [17]. Zhang et al. proposed
a level set method using local image region statistics to segment images with intensity
inhomogeneous [18]. Liu and Peng proposed a CV model based on local regions considering
local features of images [19]. Wang et al. proposed another LCV model using differential
image information [20]. Ma et al. used mean matrix plus variable deviation matrix to fit the
non-uniform strength, and this fitting term can approach local intensities more closely [21].
Peng built the Gaussian distribution of each region intensity with spatially varying mean
and variance to deal with the images with intensity inhomogeneous [22]. To sum up, it is
still challenging to obtain accurate and robust segmentation for image segmentation with
intensity inhomogeneous in complex environment.

This paper presents a new medical image segmentation model based on fractional
varying-order differential. Firstly, we calculate fractional differential order mask according
to image gradient. Then, by using frequency-domain fractional differential we carry out
differential operations of different orders for pixel points with different gray values. Finally,
adding this mask to the original image, so we can gain a new image pixel characteristic
matrix. The local term combined with fractional varying-order differential can describe the
original image more accurately and is robust to noise. The length term is used to regularize
the image contour length. The penalty term is used to avoid reinitialization [23]. TP rate,
FP rate, P rate, JSC and DSC are employed as the comparative measures for the segmented
results. The evolution of the level set function results in a gradient flow that minimizes the
global energy functional. Experimental results on synthetic images and real images show
that this method has good performance.

The rest of this paper is organized as follows. In Section 2, we briefly introduce some
related methods. In Section 3, we describe our proposed image segmentation model and
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in Section 4, we compare the experimental results on real images and synthetic images
with other models. The Section 5 discusses the experimental results of the Section 4 and
explains them from the perspective of previous studies and working hypotheses. Finally,
the conclusion is drawn in Section 6.

2. Materials and Methods
2.1. LBF Model

LBF model can obtain local statistical information by introducing kernel function to
solve the shortcoming of CV model based on global information [17]. It can control the
mean intensity information as much as possible getting in the vicinity of the pixel. After
introducing the level set method, they defined the energy functional as follows:

ELBF(φ, f1, f2) = λ1
∫
[
∫

Kσ(x− y)|I(y)− f1(x)|2H(φ(y))dy]dx
+λ2

∫
[
∫

Kσ(x− y)|I(y)− f2(x)|2(1− H(φ(y)))dy]dx
+µ
∫

Ω
1
2 (|∇φ(x)| − 1)2dx + ν

∫
Ω δ(φ(x))|∇φ(x)|dx

(1)

where I : Ω→ <d is an image, Ω→ <d is the image domain, and d > 1 is the dimension
of this image vector I(x). x is the center point and y is the point around x. Kσ is the
Gaussian kernel function with standard deviation σ, λ1 > 0, λ2 > 0, µ > 0 and ν > 0 are
fixed parameters. H(φ) is the Heaviside function. Assuming z is the input of the function,
δ(z) is the Dirac function defined as the derivative of Heaviside function:

H(z) =
{

1 , z ≥ 0
0 , z < 0

, δ(z) =
d
dz

H(z) =
{

0 , z 6= 0
+∞ , z = 0

(2)

In practice, the H(z) and δ(z) can approximated by a smooth function Hε(z), δε(z):

Hε(z) =
1
2
(1+

2
π

arctan(
z
ε
)), δε(z) =

1
π

ε

ε2 + z2 (3)

Keep the level set functionφ unchanged, and minimize the energy functional Equation (1)
for the local center f1 and f2, we can obtain:

f1(x) =
Kσ(x) ∗ [Hε(φ(x)) I(x)]

Kσ(x) ∗ Hε(φ(x))
, f2(x) =

Kσ(x) ∗ [(1− Hε(φ(x))) I(x)]
Kσ(x) ∗ [1− Hε(φ(x))]

(4)

Although the LBF model can effectively segment inhomogeneous images, it is sensitive
to the initial contour.

2.2. LIC Model

According to the LIC model [24], an observed image of the real-world I can be
modeled as

I = bJ + n (5)

where J is the true image, which is an intrinsic physical property of the objects being
imaged, thus it can be approximately assumed to be piecewise constant; b is the intensity
inhomogeneous component, which is referred to as a bias field (or shading image), and n is
additive noise, which can generally be assumed to be zero-mean Gaussian noise. Therefore,
they made the true image J approximately take N distinct constant values c1, · · · , cN into
disjoint regions Ω1, · · · , ΩN and {Ωi}N

i=1 constitutes a partition of the image domain, i.e.,
Ω = ∪N

i=1Ωi and Ωi ∩Ωj = ∅ for i 6= j. They defined a circular neighborhood of radius ρ,

where each point y ∈ Ω is the center of the circle, defined by ϑy
∆
=: {x : |x− y| ≤ ρ} and

the center point x. The partition {Ωi}N
i=1 of the entire domain Ω induces a partition of ϑy.

Then, the image model in Equation (5) can be redefined by:

I(x) ≈ b(y)ci ≈ b(y)ci + n(x) f or x ∈ ϑy ∩Ωi (6)
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where n(x) is additive zero-mean Gaussian noise.
Then, the two-phase energy functional after introducing the level set method

as follows:

F(φ, c, b) =
∫ N

∑
i=1

(
∫

K(y− x)|I(x)− b(y)ci|2dy)Mi(φ(x))dx

+ν
∫
|∇H(φ)|dx + µ

∫
p(|∇φ|)dx

(7)

where the membership functions defined by:

M1(φ) = H(φ), M2(φ) = 1− H(φ) (8)∫
|∇H(φ)|dx is the length term used to calculate the arc length of the zero level contour of

φ.
∫

p(|∇φ|)dx is the penalty term, which smooths the contour by penalizing the arc length
and p(s) = (1/2)(s− 2)2 [23].

With respect to c, we can obtain the follow equation:

ĉi =

∫
(b ∗ K)Iuidy∫
(b2 ∗ K)Iuidy

, i = 1, · · · , N (9)

with ui(y) = Mi(φ(y)). Equally, with respect to b, we can obtain the follow equation:

b̂ =
(I J(1)) ∗ K

J(2) ∗ K
(10)

where J(1) = ∑N
i=1 ciui and J(2) = ∑N

i=1 c2
i ui.

This model can segment images with intensity inhomogeneous and more robust to
contour initialization. Moreover, this model is much more efficient than the LBF model.

2.3. The Fractional Order Differential

The commonly used definitions of fractional derivatives include: Grünwald–Letnikov
derivative, Riemman–Liouville fractional derivative, Caputo fractional derivative, Laplace-
domain fractional derivative, frequency-domain (Fourier domain) fractional derivative. As
the fast discrete Fourier transform is easy to calculate numerically, fractional derivatives in
frequency domain are used in this paper.

For a given function of a single variable g(t), its Fourier transform can be defined as:

G(ω) =
∫

R
g(t)e−jωtdt (11)

where j is the imaginary number, t is the time variable, ω is the frequency variable, g(t)
is the original function, and the function G(ω) is called the image function of the Fourier
transform. Using the differential properties of the Fourier transform, compute the n−th
derivative:

F(gn(t)) = (jω)nG(ω) (12)

where n is a non-negative integer, F is the Fourier transform operator. The Fourier domain
expression for any order differential can be obtained directly:

Dαg(t) = F−1( (jω)αG(ω)), α ∈ <+ (13)

where <+ is the set of positive real number, α is a positive real number and F−1 is the
inverse Fourier transform operator. Thus, the fractional order partial differential of the
two-dimensional function g(x, y) can be defined as follows:{

Dα
x g(x, y) = F−1((jω1)

αG(ω1, ω2))
Dα

y g(x, y) = F−1((jω2)
αG(ω1, ω2))

(14)
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where G(ω1, ω2) is the Fourier transform of g(x, y). Dα
x means the α-th order differential of

the variable x.
By using the translation property of two-dimensional DFT, the central difference

scheme of the first order derivative in Fourier domain is obtained:{
Dα

x g(x, y) = F−1((1− exp (−2π jω1/m)α exp(π jαω1/m)G(ω1, ω2))
Dα

y g(x, y) = F−1((1− exp (−2π jω2/m)α exp(π jαω2/m)G(ω1, ω2))
(15)

The fractional order differential has the characteristics of increasing the high frequency
component of the signal while preserving the low frequency component of the signal
nonlinearly. Therefore, fractional order differential has gained more and more attention
and application in the field of image processing. At present, the fractional order differential
operation in image processing is performing the same-order differential operation on
the whole image, which is inconsistent with the characteristics of different pixel values
in different texture details of the image, so the texture details are partially damaged or
smoothed out when the image is performed same-order differential operation, which will
seriously affect the quality of the image and its effect on further analysis and understanding.

3. The Proposed Model

The traditional image processing methods based on fractional order differential use
a constant-order differential, in other word, it is the same differential order for a whole
image. Due to the characteristics of the pixel values, the actual image has different texture
details in different parts. When the same order fractional order differential operation was
carried out on the whole image, some parts of the texture that should not be processed at
this order will be damaged or smoothed, seriously affecting the quality of image. It will
influence the further analysis and understanding. Therefore, we hope to use an operation to
make pixels at different positions carry out differential order operations according to their
own characteristics. We will use the matrix structure of a new fractional order differential
operator, allows us to apply different differential order to the different parts of image, then
we can get a more detailed image information so that we can process it conveniently.

3.1. Fractional Varying-Order Differential

Supposing u(x, y) is a two-dimensional image, firstly we calculate the gradient in-
formation of the image, because the edge of the image exists in the gradient information.
Then, we suppose A is a n×m matrix, and its value is obtained by the following operation
after obtaining the image gradient information:

A = a · (|∇u |+ 1)
|∇u|+ 0.8

(16)

where a is adapting weight, we defined:

a =

{
4 gray value ≥ 130
0.0001 gray value < 130

(17)

The order of fractional differential can be adaptively adjusted according to the local
statistical information and structural characteristics of the image, so that it can be satisfied
that it has a large differential order at the strong edge of the image, and a small differential
order at the weak edge and texture of the image. In this paper, the value of a is the optimal
value obtained through experimental tests. We regard A as the order matrix calculated
from the image gradient. Additionally, then the fractional order differential operation is



Mathematics 2022, 10, 206 6 of 20

carried out according to the order matrix. The fractional varying-order differential operator
with different orders of each pixel point is obtained by:

DA =


DA11 DA12 · · · DA1m
DA21 DA22 · · · DA2m

...
...

. . .
...

DAn1 DAn2 · · · DAnm

 (18)

thus, the corresponding fractional varying-order partial derivatives are{
DAxu(x, y) = F−1(jω1)

AU(ω1, ω2)

DAyu(x, y) = F−1(jω2)
AU(ω1, ω2)

(19)

the corresponding A-order differential of image u can be updated to:

DAu = (DAxu, DAyu), |DAu| = |DAxu|+ |DAyu| (20)

As fractional derivative is a linear operator, the modulus value obtained after square
and extraction of square root is obviously not linear, but the linear change of gray scale
can be retained after absolute value operation, so the absolute value is used instead of the
square operation.

3.2. Energy Formulation

The energy functional in our proposed model mainly consists of three parts: the local
term EL, the length (or regulation) term ER, and the penalty term EP. The local term
combined with the fractional varying-order differential to gain more image information.
For a given image vector u(x), x is a two dimensional vector, represented by x(x, y). The
fractional varying-order gradient magnitude is defined by:

mag(DAu(x)) = |DAxu|+ |DAyu| (21)

then a new difference image I(x) is constructed:

I(x) = u(x) + mag(DAu(x)) (22)

finally, the proposed local energy fitting is defined as follows:

EL =
∫

(
N

∑
i=1

∫
K(y− x)|I(x)− b(y)ci|2dx)dy (23)

when the image domain Ω is divided into two disjoint regions Ω1 and Ω2, the two regions
are represented by the level set function φ:

Ω1 = {x : φ(x) ≥ 0}, Ω2 = {x : φ(x) < 0} (24)

the regions Ω1 and Ω2 can be represented by the membership function defined in Equation (8).
Thus, for the two-phase case, the energy in Equation (23) can be expressed as the following
level set formulation:

EL(φ, c, b) =
∫
(

N
∑

i=1

∫
K(y− x)|I(x)− b(y)ci|2Mi(φ(x))dx)dy

=
∫ N

∑
i=1

(
∫

K(y− x)|I(x)− b(y)ci|2dy)Mi(φ(x))dx
(25)

for fixed φ and b, we can still get Equations (9) and (10).
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In the three-phase case, we can use:

M1(φ1,φ2) = H(φ1)H(φ2)
M1(φ1,φ2) = H(φ1)(1− H(φ2))
M1(φ1,φ2) = 1− H(φ1)

(26)

The proposed local term has two features. Firstly, the fractional order differential has
good performance in preserving and enhancing low frequency information and we use
matrix operation to apply diverse differential orders to the different parts of the image.
Thus, we can gain more detailed image information and improve the performance of
segmenting intensity inhomogeneous images. Secondly, the fractional order differential
has a filtering effect. After fractional order differential operation, the image is smoother
than the original image, and the contrast is also improved, therefore, the noise immu-
nity can be improved to a certain extent, and more accurate segmentation results can be
obtained effectively.

ER and EP are the same with the LIC model:

ER =
∫
|∇H(φ)|dx, EP =

∫
p(|∇φ|)dx (27)

The final energy functional can be described as:

E = EL + νER + µEP

=
∫ N

∑
i=1

(
∫

K(y− x)|I(x)− b(y)ci|2dy)Mi(φ(x))dx

+ν
∫
|∇H(φ)|dx + µ

∫
p(|∇φ|)dx

(28)

defining ei(x) =
∫

K(y− x)|I(x)− b(y)ci|2dy and utilizing variational strategy to minimize
the energy functional, the corresponding energy functional gradient descent flow can
be obtained:

∂φ

∂t
= − ∂E

∂φ
= −δ(φ)(e1 − e2) + νδ(φ)div

∇(φ)
|∇φ| + µ(div(dp(|∇φ|))∇(φ)) (29)

where ∂E
∂φ is the Gâteaux derivative [25], ∇ is the gradient operator, div() represents the

divergence operator, and the function dp is:

dp(s) =
p′(s)

s
(30)

Gradient descent flow of the multiphase energy functional are:

∂φ1
∂t = −

N
∑

i=1

∂Mi(φ)
∂φ1

ei + νδ(φ1)div∇(φ1)
|∇φ1|

+ µ(div(dp(|∇φ1|))∇(φ1))

...
∂φk
∂t = −

N
∑

i=1

∂Mi(φ)
∂φk

ei + νδ(φk)div∇(φk)
|∇φk |

+ µ(div(dp(|∇φk|))∇(φk))

(31)

3.3. Implementation and Algorithm

The implementation and algorithm of this model consists of the following steps:

1. Set up the initial required parameter value and iteration number, calculate frac-
tional order differential order mask according to image gradient and add it to the
original image.

2. Initialize the level set function φ to a function φ0 (φ0 is the initialize level set function).
Then, construct the initial contour C.

3. Update φk+1
i,j = φk

i,j + ∆t · A(uk
ij), where A(uk

ij) is the right side of the Equation (29).
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4. Update ĉi, b̂i by Equations (9) and (10).
5. Check if the set number of iterations is reached. If not, return to step 2.

4. Results

In this section, we have carried out various experiments of synthetic and real image
segmentation of different types of contours and shapes. We also compare results of our
model with the CV model, the LBF model, the LIC model, the ALFB model [21] and
fractional order differentials with fixed orders of 1.5 and 0.5. In addition, we use TP rate, FP
rate, P rate, JSC, and DSC to measure the pros and cons of the image segmentation results,
which defined by:

DSC = 2(S1∩S2)
S1+S2

, TP = |S1∩S2|
|S2|

, FP = |S1∩S2−S2|
|S2|

P = TP
TP+FP

, JSC = |S1∩S2|
|S1∪S2|

(32)

where S1 and S2 represent the output binary image and ground binary image after seg-
mentation, respectively. The value of ground truth is obtained by selecting the appropriate
threshold through the imbinarize function in the MATLAB software. The closer the values
of DSC, TP, P and JSC are to 1, and the values of FP is to 0, the better the segmentation
effect. All the experiments are carried out by Matlab(R2017b) in a Lenovo laptop with an
Intel(R) Core (TM) i3-4030U CPU @ 1.90GHz processer. The parameters are set as follows:
λ1 = λ2 = 1, ν = 0.001× 2552, µ = 1, ∆t = 0.1 (the time step), The default value of σ is 10,
and the default value of the initial contour is [40:100, 50:100] (Except for Section 4.1). In the
following experiments, we will also prove whether our model is affected by the value of σ
and the initial contour.

4.1. Performance on Different Initial Contours

Firstly, we apply our method to an image to quantitatively evaluate the performance
of our method under different initial contours. We set 20 different initial contours to obtain
the corresponding experimental data. Figure 1 shows any 5 segmentation results of these 20
different initial contours, we can see that these different initial contours can finally capture
the boundary of the objects from these figures. It confirms that our model cannot be affected
by different initial contours. Figure 2 shows the evaluation index values corresponding to
20 different initial contour segmentation results.
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contours, (d) the corresponding segmentation results of (c); (e) original image with initial contours; 
(f) the corresponding segmentation results of (e); (g) original image with initial contours; (h) the 
corresponding segmentation results of (g); (i) original image with initial contours; (j) the corre-
sponding segmentation results of (i). 
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Figure 2. The corresponding evaluation index values of 20 different initial contours.

4.2. Performance under Different Levels of Noise

Next, in order to prove that our segmentation results are more robust, we use our
model on Figure 3 to segment images under different noise conditions and compare with
the CV model, the LBF model, the LIC model, and fractional order differentials with fixed
orders of 1.5 and 0.5. We use MATLAB’s imnoise function to obtain two kinds of noise with
variance values of 0.01 and 0.02, respectively. The variance noise of the first row is 0.01, and
the noise of the second row is 0.02. It can be seen from Figure 3e,g that the added noise with
a variance of 0.01 has a bad influence on the LBF model and the 0.5-order segmentation
results. For the LIC model (see Figure 3c,d), the addition of noise with a variance of 0.01
has a slight impact on the segmentation results, but the addition of noise with a variance
of 0.02 has a very obvious impact on the segmentation results. When the fractional order
is 1.5 (see Figure 3i,j), adding noise with variance of 0.01 has an impact on the internal
segmentation results of the image, and adding noise with variance of 0.02 has more effect
on the segmentation result than other models. Compared with other models, our model
can withstand part of the influence of noise and obtain better segmentation results.
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Figure 3. Segmentation results after adding noise. (a) The result of adding noise with variance of
0.01 to our model; (b) the result of adding noise with variance of 0.02 to our model; (c) the results
of adding noise with variance of 0.01 to LIC model; (d) the results of adding noise with variance of
0.02 to LIC model; (e) the results of adding noise with variance of 0.01 to LBF model; (f) the results
of adding noise with variance of 0.02 to LBF model; (g) the results of adding noise with variance
of 0.01 to 0.5-order; (h) the results of adding noise with variance of 0.02 to 0.5-order; (i) the results
of adding noise with variance of 0.01 to 1.5-order; (j) the results of adding noise with variance of
0.02 to 1.5-order; (k) the results of adding noise with variance of 0.01 to CV model; and (l) the results
of adding noise with variance of 0.02 to CV model.
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4.3. Performance on Different Images and Comparison with Other Models

We demonstrated the effectiveness of our model by comparing the segmentation
results of our model with the CV model, LBF model, LIC model, ALFB model and fixed-
order differential (see Figures 4–6). In the figure, (a–c) are the original image, the original
image with the initial contour and the ground truth of the original image, respectively.
(d–f) are the segmentation results of our model, (g–i) are the segmentation results of LIC
model, (j–l) are the segmentation results of LBF model, (m–o) are the segmentation results
of 0.5-order fractional order differential, (p–r) are the segmentation results of 1.5-order
fractional order differential, (s–u) are the segmentation results of CV model, and (v–x) are
the segmentation results of ALFB model. The figure also shows the comparison map of
segmented regions (the red area represents the part that should be segmented compared
with the ground truth of the original image, but the actual result is not segmented, and the
green area represents the actual segmentation, but the part that should not be segmented is
compared with the ground truth of the original image) and the ground truth image of the
final segmentation result. The advantages of our model can be seen from the evaluation
index values of the segmentation results corresponding to each graph (see Table 1). In
addition, in order to further compare the two models, different σ values are also set for
comparison (see Figure 7).

Table 1. The corresponding evaluation index values of Figure 4.

Our LIC LBF 0.5-Order 1.5-Order CV ALFB

DSC 0.9665 0.9532 0.8941 0.8326 0.8716 0.9463 0.5465
TP 0.9889 0.9917 0.8654 0.7227 0.8366 1 0.3760
FP 0.0575 0.0892 0.0704 0.0132 0.0831 0.1135 1.7575 × 1−4

P 0.9450 0.9175 0.9248 0.9821 0.9096 0.8981 0.9995
JCS 0.9351 0.9105 0.8085 0.7133 0.7724 0.8981 0.3760

4.4. Performance on Abdominal CT Image

At the same time, we used abdominal CT images taken by one of the authors of this
paper during a hospital physical examination this year to compare the actual effectiveness
of these segmentation models, as shown in Figure 8. It can be clearly seen from (g) in
Figure 8 that the CV model cannot recognize the edge of the image because the initial
contour we set is far from the image. As can be seen from (c–f) in Figure 8, unnecessary
contours appear in the segmentation results of other models. However, our model still
maintains a good segmentation effect, which reflects the advantages of our model.

4.5. Performance on Multiphase Level Set Function

Finally, compared with the LIC model and the ALFB model, we tested the multiphase
level set function of the brain image (see Figures 9–11). We can see from Figure 9f,g,
Figure 10f,g and Figure 11f,g that the segmentation effect of the ALFB model is far inferior
to our model and the LIC model. Compared with the LIC model, our model is very sensitive
to the change of the image gray value. We can see that the red area in the figure is obviously
more than that of the LIC model, and the blue area also includes the areas not recognized by
the LIC model in some details. In addition, in the LIC paper, it is introduced that whether
the image quality is improved through comparing the original image and the histogram of
the bias correction image [24]. Due to the mixing of the intensity distribution caused by the
deviation, the original image cannot have well-separated peaks. However, the histogram of
our model (see Figures 9h, 10h and 11h) shows three well-separated peaks on the histogram
of the image after deviation-correction, which correspond to the target or background of
the image.
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Figure 4. Performance of our method, the LIC model, the LBF model, 0.5-order, 1.5-order, the CV
model and the ALFB model. (a) Original image; (b) the original image with the initial contour;
(c) the ground truth of the original image; (d) the segmentation result of our method; (e) the com-
parison map of our method; (f) the ground truth of our method; (g) the segmentation result of LIC
model; (h) the comparison map of LIC model; (i) the ground truth of LIC model; (j) the segmentation
result of LBF model; (k) the comparison map of LBF model; (l) the ground truth of LBF model;
(m) the segmentation result of 0.5-order; (n) the comparison map of 0.5-order; (o) the ground truth of
0.5-order; (p) the segmentation result of 1.5-order; (q) the comparison map of 1.5-order; (r) the ground
truth of 1.5-order; (s) the segmentation result of CV model; (t) the comparison map of CV model;
(u) the ground truth of CV model; (v) the segmentation result of ALFB model; (w) the comparison
map of ALFB model; and (x) the ground truth of ALFB model.
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model and the ALFB model. (a) Original image; (b) the original image with the initial contour; (c) 
the ground truth of the original image; (d) the segmentation result of our method; (e) the comparison 
map of our method; (f) the ground truth of our method; (g) the segmentation result of LIC model; 
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Figure 5. Performance of our method, the LIC model, the LBF model, 0.5-order, 1.5-order, the CV
model and the ALFB model. (a) Original image; (b) the original image with the initial contour;
(c) the ground truth of the original image; (d) the segmentation result of our method; (e) the com-
parison map of our method; (f) the ground truth of our method; (g) the segmentation result of LIC
model; (h) the comparison map of LIC model; (i) the ground truth of LIC model; (j) the segmentation
result of LBF model; (k) the comparison map of LBF model; (l) the ground truth of LBF model;
(m) the segmentation result of 0.5-order; (n) the comparison map of 0.5-order; (o) the ground truth of
0.5-order; (p) the segmentation result of 1.5-order; (q) the comparison map of 1.5-order; (r) the ground
truth of 1.5-order; (s) the segmentation result of CV model; (t) the comparison map of CV model;
(u) the ground truth of CV model; (v) the segmentation result of ALFB model; (w) the comparison
map of ALFB model; and (x) the ground truth of ALFB model.
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Figure 6. Performance of our method, the LIC model, the LBF model, 0.5-order, 1.5-order, the CV
model and the ALFB model. (a) Original image; (b) the original image with the initial contour;
(c) the ground truth of the original image; (d) the segmentation result of our method; (e) the com-
parison map of our method; (f) the ground truth of our method; (g) the segmentation result of LIC
model; (h) the comparison map of LIC model; (i) the ground truth of LIC model; (j) the segmentation
result of LBF model; (k) the comparison map of LBF model; (l) the ground truth of LBF model;
(m) the segmentation result of 0.5-order; (n) the comparison map of 0.5-order; (o) the ground truth of
0.5-order; (p) the segmentation result of 1.5-order; (q) the comparison map of 1.5-order; (r) the ground
truth of 1.5-order; (s) the segmentation result of CV model; (t) the comparison map of CV model;
(u) the ground truth of CV model; (v) the segmentation result of ALFB model; (w) the comparison
map of ALFB model; and (x) the ground truth of ALFB model.
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Figure 8. Performance of our method, the LIC model, the LBF model, 0.5-order, 1.5-order on
skeleton CT image, and the CV model. (a) Original image; (b) original image with initial contour;
(c) the results of our model; (d) the results of 0.5 order; (e) the results of LIC model; (f) the results of
1.5-order; (g) the results of LBF model; and (h) the results of CV model.
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ALFB model. (a) Original image; (b) the results of our model; (c) the ground truth of our model; (d) 
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Figure 9. Performance of multiphase level set function and compared with the LIC model and
the ALFB model. (a) Original image; (b) the results of our model; (c) the ground truth of our
model; (d) the result of LIC model; (e) the ground truth of LIC model; (f) the result of ALFB model;
(g) the ground truth of ALFB model; (h) the histogram of the original image and our model; and
(i) the histogram of the original image and LIC model.



Mathematics 2022, 10, 206 16 of 20Mathematics 2022, 10, x FOR PEER REVIEW 19 of 23 
 

 

(a)

(b) (d) (f)

(h)

(c) (e) (g)

(i)
 

Figure 10. Performance of multiphase level set function and compared with the LIC model and the 
ALFB model. (a) Original image; (b) the results of our model; (c) the ground truth of our model; (d) 
the result of LIC model; (e) the ground truth of LIC model; (f) the result of ALFB model; (g) the 
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histogram of the original image and LIC model. 

Figure 10. Performance of multiphase level set function and compared with the LIC model and
the ALFB model. (a) Original image; (b) the results of our model; (c) the ground truth of our
model; (d) the result of LIC model; (e) the ground truth of LIC model; (f) the result of ALFB model;
(g) the ground truth of ALFB model; (h) the histogram of the original image and our model; and
(i) the histogram of the original image and LIC model.
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the result of LIC model; (e) the ground truth of LIC model; (f) the result of ALFB model; (g) the 
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increases, as the number of negative classes are incorrectly predicted as positive classes 
decreases, the value of P will increase; however, from the corresponding values of TP and 
FP in Figure 2 when the abscissa is 9–10, as the number of positive classes correctly pre-
dicted as positive classes decreases, as the number of negative classes are incorrectly pre-
dicted as positive classes decreases, the value of P will also increase. In addition, we can 
see that the overall trend of DSC, P and JSC remains the same, and the change of JSC is 
greater than that of DSC and P, indicating that JSC is more sensitive to changes in pixel 
set classification than DSC and P. 

Figure 11. Performance of multiphase level set function and compared with the LIC model and
the ALFB model. (a) Original image; (b) the results of our model; (c) the ground truth of our
model; (d) the result of LIC model; (e) the ground truth of LIC model; (f) the result of ALFB model;
(g) the ground truth of ALFB model; (h) the histogram of the original image and our model; and
(i) the histogram of the original image and LIC model.

5. Discussion

The first experiment shows the performance of our model under different initial
contours. It has been proved that our model is not affected by the initial contour. TP
represents the number of positive classes that are correctly predicted to be positive, and FP
represents the number of negative classes that are incorrectly predicted to be positive. From
the corresponding values of TP and FP in Figure 2 when the abscissa is 7 or 11, it can be
seen that as the number of positive classes correctly predicted as positive classes increases,
as the number of negative classes are incorrectly predicted as positive classes decreases, the
value of P will increase; however, from the corresponding values of TP and FP in Figure 2
when the abscissa is 9–10, as the number of positive classes correctly predicted as positive
classes decreases, as the number of negative classes are incorrectly predicted as positive
classes decreases, the value of P will also increase. In addition, we can see that the overall
trend of DSC, P and JSC remains the same, and the change of JSC is greater than that of
DSC and P, indicating that JSC is more sensitive to changes in pixel set classification than
DSC and P.
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From the segmentation results of the CV model in Figures 4 and 6, it can be seen that
the CV model, as a classic image algorithm, can segment most regions, but the processing
of contour edges is very rough actually, and many details are not separated. In the segmen-
tation result of Figure 5, the CV model cannot segment the image because the gray values
are too close. This shows that the CV model cannot segment intensity inhomogeneous
images. The LBF model is easily affected by level set initialization. In the experiment, the
segmentation result obtained by the initial value of the initial contour set by us is not bad,
and the difference from other models is mainly reflected in the evaluation index. From
Tables 1–3, we can clearly see that the evaluation index of the segmentation result of the
LBF model is significantly lower than our model. As we have added the fractional varying-
order differential on the basis of the LIC model, inheriting the good characteristics of the
LIC model, and at the same time playing the advantages of the fractional varying-order
differential, we are more careful in processing the details of the image. We can see it from
the evaluation index of Tables 1–3.

Table 2. The corresponding evaluation index values of Figure 5.

Our LIC LBF 0.5-Order 1.5-Order CV ALFB

DSC 0.8227 0.8014 0.8103 0.8114 0.8065 0.4533 0.2373
TP 0.9208 0.912 0.9167 0.906 0.9308 0.6279 0.3298
FP 0.3177 0.364 0.3459 0.3271 0.3774 1.1424 1.45
P 0.7435 0.7147 0.7261 0.7347 0.7115 0.3547 0.1853

JCS 0.6988 0.6686 0.6811 0.6827 0.6758 0.2931 0.1346

Table 3. The corresponding evaluation index values of Figure 6.

Our LIC LBF 0.5-Order 1.5-Order CV ALFB

DSC 0.8819 0.8583 0.8316 0.8218 0.7460 0.8346 0.4426
TP 0.8082 0.7691 0.7399 0.7131 0.6059 0.7162 0.2864
FP 0.0246 0.023 0.0397 0.0225 0.0186 0 0.0081
P 0.9704 0.971 0.9491 0.9694 0.9702 1 0.9726

JCS 0.7888 0.7518 0.7117 0.6974 0.5948 0.7162 0.2842

As can be seen from the line chart of different indicators in Figure 7, our model is
superior to the LIC model in the values of four evaluation indicators DSC, FP, JCS, and FP.
In terms of TP evaluation indicators, our model is better than the LIC model at first, and
LIC is better than our model after the σ value is equal to 8, but the difference between them
is not more than 0.01. From the time required for algorithm iteration, see Figure 7d, the
CPU time increases as the value of σ increases. In the case of different σ values, after our
model undergoes the action of fractional varying order differential, the CPU time required
by the LIC model is basically the same, indicating that our model does not consume too
much algorithm iteration time. Judging from the 0.5-order and 1.5-order segmentation
results, the effect of using the same-order differential on the entire image is not as good as
the varying-order differential. The ALFB model uses the mean matrix to add a variable
deviation matrix to fit the inhomogeneous intensity. In experiments, we found that this
model is very dependent on the initial contour. The initial contour must enclose a large area
of the image to segment the target, and the convergence speed is extremely slow, which
easily leads to segmentation failure. In order to see the segmentation effect more clearly, we
divide the segmented image into a red-green contrast image and a binary image according
to the contour. As we use fractional derivatives of different orders in different intensity
parts, we can clearly see that our model can achieve finer edge contours than other models
compared with ground truth images. Our model can still distinguish regions with very
similar gray values in the image. For the expandable gray areas formed in the sulci and
gyrus in Figure 4, our method shows good robustness in processing these areas. We can see
that the edges are finer than these models and can handle some details better. At the same
time, it can also reflect the superiority of our model in evaluating index values.
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6. Conclusions

In this paper, we proposed a new method that incorporated fractional varying-order
differential and local fitting energy to construct a new variational level set active contour
model. We introduced an adapting weight a about image gradient information to get
diverse fractional orders. Application of fractional varying-order differential allows us to
have more details about the images, so our segmentation result is more delicate and closer
to the image boundary, so our model can segment images with intensity inhomogeneous.
Experimental results show that the model is robust to initialization. As can be seen from the
segmentation results of noise images, our model can resist the influence of noise compared
with CV model, LBF model, LIC model, ALFB model and fractional differential with fixed
order 1.5 and 0.5. At the same time, by comparing the segmentation results of actual images,
it can be clearly seen that our model can obtain finer edge contour.
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