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Abstract: Many countries, including China, have implemented supporting policies to promote the
commercialized application of green hydrogen and hydrogen fuel cells. In this study, a system
dynamics (SD) model is proposed to study the evolution of hydrogen demand in China from the
petroleum refining industry, the synthetic ammonia industry, and the vehicle market. In the model,
the impact from the macro-environment, hydrogen fuel supply, and construction of hydrogen facilities
is considered to combine in incentives for supporting policies. To further formulate the competitive
relationship in the vehicle market, the Lotka–Volterra (LV) approach is adopted. The model is verified
using published data from 2003 to 2017. The model is also used to forecast China’s hydrogen demand
up to the year of 2030 under three different scenarios. Finally, some forward-looking guidance is
provided to policy makers according to the forecasting results.

Keywords: hydrogen demand modeling; demand forecasting; vehicle market; system dynamics;
Lotka–Volterra analysis

1. Introduction

Hydrogen is a type of zero-carbon and high-efficiency energy under serious consid-
eration for many countries’ low-carbon transport, industrial decarbonization, and heat
provisions [1]. Hydrogen is widely used to produce synthetic ammonia, methanol, and
hydrogenation reactions in the petroleum refining process in China and globally. In addi-
tion, it is used in the electronic, metallurgical, and aerospace industries, as well as in food
processing, float glass, fine chemical synthesis, vehicle transportation, and other fields [2].
As shown in Figure 1, in recent years, around 33% of hydrogen usage has been in petroleum
refining, as well as 27% used for ammonia and 10% for methanol [3].

In China, hydrogen is currently mainly used as an intermediate product or raw ma-
terial of chemical synthesis. More than 80% of hydrogen is used for the production of
synthetic ammonia. The amount of hydrogen used in the petroleum refining industry
is second only to synthetic ammonia, which accounts for more than 10% of the total hy-
drogen demand [4]. With the improvement of policy support for green hydrogen and
hydrogen fuel vehicles, hydrogen energy vehicles may become a potential growth industry
of hydrogen demand in the future. According to China’s hydrogen energy and fuel cell
industry white paper of 2020, China’s annual demand for hydrogen will increase to about
130 million tons in 2060 with the development of hydrogen vehicles. Hydrogen can be
produced from different feedstocks and energy pathways. While substantial quantities
of hydrogen are currently used in industry, this is mainly made using fossil fuels with
high CO2 emissions [5]. However, the commercialization of hydrogen vehicles and the
environmental goal of carbon neutrality have promoted the development of green hydro-
gen. To incentivize the growth of green hydrogen and hydrogen fuel cells, the Korean
government has published a hydrogen strategy and roadmap [6]. In addition, countries and
regions such as Japan [7], Australia [8], the UK, and the European Union [1] are developing
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national hydrogen strategies to promote green hydrogen production and consumption. In
its 14th five-year plan, China proposed to vigorously develop hydrogen energy. Inspired
by the central government’s policies, more than 30 provinces have successively issued
several guidelines to promote the development of hydrogen energy. A list of the selected
hydrogen-related government policies announced in China since 2020 is shown in Table 1.
The International Energy Agency has argued that policies are needed to stimulate com-
mercial demand for hydrogen, mitigate risks, and promote research and development [3].
Well-designed government intervention requires an understanding of the efficacy of the
policy options available [9]. Therefore, the forecasting of hydrogen demand has to consider
the impact of policy efficacy.

The Future of Hydrogen Chapter 1: Introduction  
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In both ways, hydrogen has the potential to reinforce and connect different parts of the energy 
system. By producing hydrogen, renewable electricity can be used in applications that are 
better served by chemical fuels. Low-carbon energy can be supplied over very long distances, 
and electricity can be stored to meet weekly or monthly imbalances in supply and demand. 

 Global annual demand for hydrogen since 1975 Figure 1.

 

Notes: DRI = direct reduced iron steel production. Refining, ammonia and “other pure” represent demand for specific applications 
that require hydrogen with only small levels of additives or contaminants tolerated. Methanol, DRI and “other mixed” represent 
demand for applications that use hydrogen as part of a mixture of gases, such as synthesis gas, for fuel or feedstock.  
Source: IEA 2019. All rights reserved. 

Around 70 MtH2/yr is used today in pure form, mostly for oil refining and ammonia manufacture for 
fertilisers; a further 45 MtH2 is used in industry without prior separation from other gases. 

2019: A moment of unprecedented momentum for 
hydrogen 

Interest in hydrogen’s potential as a widespread, low-carbon energy carrier is not new. Over 
recent decades a wide range of experts has researched the potential for producing hydrogen 
from diverse sources, transporting and storing it, and using it to provide final energy services 
without emissions. The two previous major cycles of enthusiasm for hydrogen focused largely 
on the use of fuel cells in the transport sector (Box 1). What is new today is both the breadth of 
possibilities for hydrogen use being discussed and the depth of political enthusiasm for those 
possibilities around the world. Hydrogen is increasingly a staple of mainstream energy 
conversations in almost all regions, with a diverse group of countries and companies all seeing 
hydrogen as having a potentially valuable and wide-ranging part to play in the future of energy. 
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Figure 1. Global hydrogen demand from 1975 to 2018.

Table 1. Selected hydrogen-related government policies announced in China since 2020.

Area Announcements and Incentive Policies Since Year 2020

China

The General Office of the State Council issued the New Energy
Vehicle Industry Development Plan (2021–2035) to promote the
development of facilities and technologies of hydrogen energy
storage and transportation, hydrogenation stations, and on-board
hydrogen storage [10].

Shandong
Published the Development Plan of Hydrogen Industry (2020–2030)
to develop the production of green hydrogen, hydrogen storage, and
hydrogenation stations. Targets are set to the year 2030 [11].

Inner Mongolia

For 2024–2025, the production capacity of green hydrogen will reach
500,000 tons/year; cultivate and introduce 15–20 core enterprises
related to hydrogen energy; build 100 hydrogen refueling stations;
and promote more than 10,000 fuel cell vehicles [12].

Sichuan
Proposition to build Sichuan into a domestic and international well-
known hydrogen energy industry base; demonstrate application
on characteristic area and green hydrogen output bases [13].
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To assist decision makers in formulating policies accurately, it is necessary to predict
the medium- and long-term hydrogen demand in the future decades in combination with
changes to the macro environment, policies, and other factors. In order to solve this
problem, the system dynamics (SD) and Lotka-Vottera (LV) theory is used. SD is suitable
for analyzing the complex socioeconomic and biophysical systems with the forecasting
problems of long-term, periodic, and low-accuracy requirements. However, for a dynamic
feedback system with a fuzzy feedback relationship, SD model prediction has large error. To
discover the competition or substitution relationship of traditional, electric, and hydrogen
vehicles in the automotive market in the future with limited annual data, the LV approach
is adopted under the framework of SD, since LV is widely used in exploring interactions
between two or more diverse competitors in a competitive environment. Taking China
as an example, this paper forecasts China’s hydrogen energy demand by 2030. The main
contributions are as follows:

• First, we analyze the development of the industries related to hydrogen consumption,
including the petroleum refining industry, synthetic ammonia industry, and vehi-
cle industry to provide relevant countermeasures and suggestions for the scientific
hydrogen development path planning in China.

• Then, combining the impact of the supporting policies, the hydrogen fuel supply, and
the macro-environment, we construct a hydrogen demand model using an SD method.
To analyze the hydrogen demand from the vehicle market, the LV theory is combined
to construct the competition among traditional vehicles, electric vehicles, and the
new entry of hydrogen vehicles. In addition, for the petroleum refining industry and
synthetic ammonia industry, with sufficient training samples, the regression method
is used to fit the model parameters. For the newly developing hydrogen vehicle
market, grey forecasting and scenario analysis methods are adopted to determine the
parameters of the LV model.

• Finally, based on the forecasting results under different scenarios, suggestions are
made for the policies that incentivize the development of the hydrogen industry.

2. Literature Review

At present, the research conducted on the forecasting of hydrogen demand related to
this work mainly involves three aspects:

First, the forecasting of China’s annual hydrogen demand. With the support of the
policies, the development of hydrogen energy technology, and the growth of the population
and the macro-economy, it is necessary to discover the consumption potential of hydrogen
energy by the year 2030. In addition, it is essential to discuss the impact of supporting
policies on the demand for hydrogen energy. However, to our knowledge, there have
been few papers on the forecasting models of hydrogen energy demand in recent years. In
an early paper on the prediction of hydrogen energy consumption [14], the authors used
system dynamics (SD) to study the hydrogen energy consumption in China. They first
assumed the proportion of hydrogen energy consumption in the first, second, and third
sectors and then simulated the changes in energy consumption and hydrogen demand of
the three sectors under different conditions of China’s economic growth rate. However, in
their model, the development of the hydrogen vehicle industry and the impact of policy
incentives were not considered. Furthermore, China’s ‘3060’ carbon peak plan has greatly
changed the development of energy consumption industries.

Second, the forecasting of hydrogen demand from the vehicle market. In recent years,
scholars have paid more attention to the prediction research of hydrogen energy vehicles.
A computable general equilibrium (CGE) model was formulated in [15] to investigate
a vehicle portfolio scenario in California during 2010–2030. The authors estimated the
macroeconomic impacts of the advanced vehicle scenario on the economy of California.
Results indicated that conventional vehicles are expected to dominate the on-road fleet, and
gasoline is the primary transportation fuel over the next two decades. However, hydrogen
could play an increasingly important role in gasoline displacement. The authors of [16]
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developed a forecasting model for hydrogen fuel cell vehicles based on the generalized
Bass diffusion model and a simulation model using SD. The developed model forecasted
that the saturation of hydrogen vehicles in Korea could be moved up 12 years compared
with the US. An SD model of Iceland’s energy and transport systems was proposed in [17].
In the model, hydrogen and electricity transition pathways were simulated with the target
of a carbon-neutral transportation sector. To reach the results, fleet mix, fuel demand,
emissions reduction, and transition costs were analyzed. Additionally, a dynamic model of
the vehicle fleet, based on predator–prey concepts of the LV theory, was presented in [18].
The authors predicted the evolution of the hydrogen-based vehicle’s role in the UK’s
vehicle fleet and the sensitivity of this growth to the supply chain. According to review of
the literature relating to hydrogen energy vehicles, most studies focus on a competition
analysis of traditional vehicles versus hydrogen vehicles; few consider the relationship and
competition among traditional vehicles, electric vehicles, and hydrogen vehicles.

Third, forecasting problems of the power and energy industry. The reader can refer
to [19] for a comprehensive discussion on the forecasting research of electricity demand
and prices as well as wind and solar power generation. Load forecasting problems can be
categorized into short-term and long-term load forecasts. For the short-term, the forecast
horizon is up to two weeks and is primarily used in power systems operations, such as
unit commitment and economic dispatch. For long-term, the forecast horizon may range
from a few months to several decades and is primarily used in power systems planning
and financial planning [20]. Various techniques have been adopted for short-term load
forecasting, such as artificial neural networks and multiple linear regression [19]. In recent
years, various advanced artificial intelligence (AI) and machine learning (ML) techniques,
such as deep learning [21], reinforcement learning [22], and transfer learning [23], have
been adopted in short-term energy forecasting. Compared with short-term load forecasting
problems, long-term load forecasting problems have two major challenges: first, the limited
data history; second, the dynamic nature of the market. The challenges have limited
the validation of long-term load forecasting problems through field implementations. To
solve the challenges, in [24], regression analysis and survival analysis were applied to a
long-term retail energy forecasting problem. In a recent study, the Long-Range Energy
Alternative Planning system (LEAP) was used to forecast the future energy demand and
available energy mix in Pakistan [25]. The LEAP is a scenario-based energy environment
modeling tool. Scenario modeling can be valuable for assessing the effectiveness of energy
policies by modeling scenarios in which different approaches are imposed and measuring
the consequences using metrics such as technology uptake, costs, and environmental
impacts [26].

In summary, although there are many studies on energy forecasting by domestic and
foreign scholars with different perspectives, most of them have focused on the short-term
forecasting problems. For long-term forecasts, the demand for hydrogen energy is seldom
forecast, with forecasts focusing instead on the prediction of the development of hydrogen
energy vehicles. To clearly reflect the major differences between this paper and the exist-
ing literature, Table 2 briefly summarizes the literature review and the characteristics of
this paper.

The rest of the paper is organized as follows. In Section 3, the SD and LV approaches
are introduced. A detailed analysis of the framework of the proposed system and the
model is introduced in the third section. In Section 4, we discuss and analyze the results of
the model. Finally, in Section 5, the paper is concluded with a short summary.
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Table 2. Major differences between representative references and this paper.

No. Prediction Subject Time Methodology Impact Factors

[14] Hydrogen Long-term SD
Macroeconomic growth rate
development trend of first,
second, and third industries

[15] Vehicles Long-term CGE model
Macroeconomic impacts,
policy incentives, and
technology development

[16,17] Vehicles Long-term SD

Macroeconomic impacts,
policy incentives, technology
development, and electricity
transition pathways

[18] Vehicles Long-term LV Policy incentives, fuel supply,
technology development

[21–23] Load Short-term AI/ML Historical load

[24] Retail energy Long-term Regression,
survival analysis

Customer attrition and
load per customer

[25] Load and
energy Long-term LEAP Macroeconomic impacts,

energy policies, energy supply

This
paper Hydrogen Long-term SD, LV,

scenario analysis

Macroeconomic growth rate,
population, policy incentives,
development of hydrogen
consumption industries, and
hydrogen fuel cell technology

3. Methodology

The quantitative analysis of hydrogen demand must be based on an accurate and
comprehensive qualitative analysis. Therefore, in this study we used a combination of
qualitative and quantitative methods; that is, the system theory was used as a guide and
system dynamics were used to build a dynamic model of the hydrogen demand system.

SD is a system modeling and dynamic simulation method for analyzing the emotional
complexity of socioeconomic and biophysical systems with long-term, periodic, and low-
accuracy requirements. By analyzing the complicated relationship among the system
elements, SD establishes a relatively effective model that can achieve the predetermined
goals and meet the requred conditions [27]. For understanding the hydrogen demand
from multiple interactive industries over a long time period with uncertain policy effects,
macro-environment, technology development levels, and limited training samples, the
traditional statistical approaches become unsuitable.

SD is a discipline of research into system feedback structures and behaviors. SD uses
computer simulations to simulate the structure and the dynamic behavior of economic,
social, and ecological systems. It is widely used in the analysis of economy–energy systems.
The authors in [28] used the system dynamics method to analyze the energy–environment–
economy (3E) system and clearly discussed the economic, energetic, and environmental
interactions and influencing factors. The authors in [27] constructed an SD model to
discover the influence relationships and dynamic cycle process between specific factors
in the electricity market and the tradable green certificates market, in order to discover
the quantitative transfer process of the industries with complex time-varying influence
variables. Based on the principles of system thinking and feedback control theory, SD helps
understand the time-varying behavior of complex systems [27]. Therefore, we adopted SD
as the system framework of the hydrogen demand model.
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SD model is suitable for a static feedback system with a clear feedback relationship;
however, for a dynamic feedback system with a fuzzy feedback relationship, SD model
prediction has large error. Before constructing the SD model, we first need to combine the
qualitative studies to screen influence factors and sort out the causality diagram among
variables. For the comparatively mature petroleum and synthetic ammonia industries [29],
there are sufficient references that studied the factors affecting the development of the
industries and the technology of the sustainable development of ammonia production
using hydrogen [30]. It is difficult to intuitively judge the competition or substitution
relationship of traditional, electric, and hydrogen vehicles in the automotive market in
the future with limited annual data. According to [31], the construction of hydrogenation
facilities, hydrogen costs, technology, and policies of hydrogen energy vehicles will af-
fect the competitiveness and development potential of hydrogen energy vehicles in the
automotive market.

The LV model (also known as a predator–prey model) was originally used in pop-
ulation ecology to model the process of survival of the fittest in fish stocks. It has been
adopted to explore interactions between two or more diverse competitors in a competitive
environment [32] and is also widely used in the transportation area [33], where the primary
objectives of the LV model are to project future vehicle market development paths and
analyze strategies for specific policy targets [34]. With the development of green energy, the
LV model has also been used to analyze the co-evolution of the market shares of different
drivetrain technologies in relation to Germany, Austria, and Switzerland by the authors
of [35]. In addition, the time-varying characteristics of LV theory and the ability to quantify
the changing variable relationship make up for the disadvantages of the SD model. In a
recently published paper, the authors of [36] formulated a combined SD and LV model.
Based on the economy–population–transportation framework of the SD model, the authors
used LV theory to determine the mutual influence and evolution relationships of water
transportation, road transportation, and air transportation. Similarly, to solve the hydrogen
demand forecasting problem, under the framework of the SD model, the LV theory could
be adopted to build a model of vehicle market so as to discover the interactive relationships
among traditional, electric, and hydrogen vehicles.

3.1. Structural Analysis of a Hydrogen Demand System

In this study, hydrogen demand mainly comes from the synthetic ammonia industry,
the petroleum industry, and the hydrogen vehicle transportation industry. In addition, the
development of the sectors is impacted by the macro-environment. The influence relation-
ship and dynamic cycle process between specific factors in GDP, population, industrial
development, and the corresponding hydrogen demand are shown in Figure 2. In causality,
positive feedback (“+”) is defined as a facilitation relationship between factors; negative
feedback (“−”) is defined as an inhibition relationship between elements; and the vehicle
system, which is a feedback loop with unknown relationship, is determined through the
LV model.

In Figure 2, four causality cycles are included:

1. Grain yield per unit area→ grain yield→ synthetic ammonia demand. The grain
yield per unit area and synthetic ammonia demand cycle is a positive feedback loop.
However, since GDP→ employed rural population→ grain yield per unit area is
a negative feedback loop, with the increase in GDP, the hydrogen demand of the
ammonia industry should be inhibited.

2. Hydrogen vehicle volume→ hydrogen demand→ quantity of hydrogen refueling
stations. The hydrogen vehicle volume–quantity of hydrogen refueling station cycles
is a positive feedback loop.

3. Hydrogen vehicle volume→ electric vehicle volume→ fossil fuel vehicle volume.
The type of the vehicle volume’s feedback loop is unknown. An increase in hydrogen
vehicles will influence the volume of fossil fuel and electric vehicles and then further
affect the demand for hydrogen and petroleum fuels. The inner relationship could be
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one of competition, substitution, or promotion. To determine the relationship, the LV
theory was adopted.

4. Fossil vehicle volume → demand of petroleum products → hydrogen demand of
petroleum refining→ hydrogen demand. The fossil vehicle volume–hydrogen de-
mand cycle is affected by the vehicle volume feedback loop, and the relationship is
determined by the result of the LV model.

As for the four causality cycles, cycle (1) is a relatively independent positive feedback
subsystem. Cycle (2) and cycle (4) are influenced by cycle (3). The hydrogen demand
between causality cycles represented in Figure 2 is interactive. Specifically, the factor of
GDP as an exogenous variable of the hydrogen demand system impacts the hydrogen
demand from both the petroleum refining cycle and the vehicle cycle. On the one hand,
the production of diesel and gasoline from the petroleum refining industry will affect the
fuel supply of fossil fuel vehicles in the vehicle market and then affect the competitiveness
of traditional energy vehicles; on the other hand, the competitive volume of traditional,
electric, and hydrogen energy vehicles in the vehicle market will also affect the production
of the petroleum refining industry. To sum up, the operation of the economy–industry–
hydrogen demand is a dynamic cycle process. Therefore, an SD model is constructed in
this paper.

Figure 2. Interaction between macro-economy, industry development, and hydrogen demand.

The SD model is mainly composed of three subsystems: the synthetic ammonia
subsystem, the petroleum refining subsystem, and the vehicle subsystem. This paper will
explain the operation mechanism and specific formula of the SD model from the above
three subsystems. The following assumptions exist in the construction process of the
SD model:

Hypothesis 1. There is no speculation in the market, and all market participants are rational
economic men.

Hypothesis 2. The scope of the study is limited to the three hydrogen demand industries, namely
the synthetic ammonia industry, the petroleum refining industry, and the vehicle market, regardless
of cross-border transactions of hydrogen demand industries.

Before the introduction of the detailed formulation, we first list the symbols and their
explanations in Table 3.
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Table 3. Variables and explanations.

Variables Unit Explanation

Synthetic ammonia subsystem

Ht m3 Hydrogen demand of the t-th year

Hs,t m3 Hydrogen demand of synthetic ammonia
production in year t

Qas,t ton Demand of synthetic ammonia for agricultural
use in year t

Qis,t ton Demand of synthetic ammonia in year t
for industrial use

αs m3/ton Unit hydrogen consumption of synthetic
ammonia production

Qg,t ton Grain annual yield of the t-th year

γc f - Auxiliary binary variable of zero-growth
of chemical fertilizer policy

At mu Cultivated area in year t
qg,t ton/mu Grain yield per unit area

γrl - Auxiliary binary variable of the red line
policy of farmland area policy

Np,t 10 million Employed rural population in year t

Petroleum refining subsystem

Hp,t m3 Hydrogen demand for petroleum production
in the t-th year

Hdr,t m3 Hydrogen demand for diesel refining in year t
Hgr,t m3 Hydrogen demand for gasoline refining in year t
Hkr,t m3 Hydrogen demand for kerosene refining in year t
Hnr,t m3 Hydrogen demand for naphtha refining in year t
Qdr,t 104 ton Diesel output in year t
Qgr,t 104 ton Gasoline output in year t
Qkr,t 104 ton Kerosene output in year t
Qnr,t ton Naphtha output in year t
αdr m3/ton Unit hydrogen consumption of diesel refining
αgr m3/ton Unit hydrogen consumption of gasoline refining
αkr m3/ton Unit hydrogen consumption of kerosene refining
αnr m3/ton Unit hydrogen consumption of naphtha refining
GDPt - Gross domestic product in year t

Vehicle subsystem

Nv,t 104 The number of fossil vehicles in year t
Nh,t 104 The number of hydrogen vehicles in year t
Ne,t 104 The number of electric vehicles in year t
−γv - The growth rate of fossil vehicles
−γh - The growth rate of hydrogen vehicles
−γe - The growth rate of electric vehicles
µv - The available resource for fossil vehicles
µh - The available resource for hydrogen vehicles
µe - The available resource for electric vehicles
α1 - The attack rate of hydrogen vehicles
α2 - The attack rate of electric vehicles
ε1 - The efficiency rate of hydrogen vehicles
ε2 - The efficiency rate of electric vehicles
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3.2. Synthetic Ammonia Subsystem

Since synthetic ammonia is mainly used for nitrogen fertilizer production and chemical
products in China [4], we simplify the demand of synthetic ammonia into agricultural
synthetic ammonia demand and synthetic ammonia for industrial use. To simplify the
model, we assumed the proportion of agricultural use and industrial use to be 80% and
20%, respectively, according to the statistical data in [4]. The simplified model structure is
shown in Figure 3.

Figure 3. Model of synthetic ammonia subsystem.

The hydrogen demand of the synthetic ammonia industry in the t-th year is as follows:

Hs,t = (Qas,t + Qis,t)× αs (1)

where Hs,t represents the hydrogen demand of synthetic ammonia production. Qas,t and
Qis,t are the demand of synthetic ammonia for agricultural use and for industrial use. αs
is the unit hydrogen consumption of synthetic ammonia production. The demand for
synthetic ammonia for agricultural use consists of the grain yield and the policy of zero-
growth of chemical fertilizers [37]. The zero-growth of chemical fertilizers aims to reduce
the growth rate of chemical fertilizer use and strive to achieve zero growth of chemical
fertilizer use by 2020. To reveal the quantitative relationship between the variables of
Qas,t, Qg,t, and the influence of zero-growth of chemical fertilizer policy, based on the
empirical data of the years 2003–2019 from the national bureau of statistics of China and
using regressive analysis, the equation is presented as follows:

Qas,t = πQ1 + πQ2 ·Qg,t + πQ3 · γc f (2)

where πQ1, πQ2, and πQ3 are regression coefficients. We define γc f as an auxiliary binary
variable. When the zero-growth policy is implemented, γc f is 1; otherwise, γc f is 0. Annual
grain yield is determined by cultivated area and grain yield per unit area. Through
regressive analysis, cultivated area is influenced by the time series factor and the red line
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of farmland policy [38]. The policy emphasizes the importance of ensuring the national
farmland area and defines a red line of 1.8 billion mu.

Qg,t = At × qg,t (3)

At = πA1 + πA2 · At−1 + πA3 · γrl (4)

πA1, πA2, and πA3 are regression coefficients. γrl is an auxiliary binary variable; when
γrl = 1, the red line of farmland policy is implemented, otherwise γrl = 0.

qg,t = πq1 + πq2 · Np,t + πq3 · eπq4·Qas,t−1 (5)

where the grain yield per unit area is influenced by the employed rural population and
the nitrogen fertilizer demand of the t − 1 year. πq1, πq2, πq3, and πq4 are regressive
coefficients. The relationship between employed rural population and GDP is described by
the Cobb–Douglas production function, and according to [39], the function is as follows:

GDPt = 1.948 ∗ 10−8 ∗ K0.355
t ∗ N3.756

p,t ∗ A0.022
t (6)

Kt and At represent the input of capital and the impact of technology development.
Using the ordinary least squares (OLS) method, the regression models of Equations (2),

(4) and (5) were fitted to the year data from 2003 to 2017. The estimated parameters are
shown in Table 4. The comparison between the simulated data and real data and the
calculation results of hydrogen demand in the synthetic ammonia subsystem are presented
in Section 4.

Table 4. The estimated parameters of the synthetic ammonia subsystem.

Variables Coefficient Estimates Standard Deviation p-Value

Equation (2)
Qas,t 0.05 3.694 0.003
γc f −1059.5 −4.087 0.001
Constant πQ1 1234 1.485 0.06
Coefficient of determination: 0.55, F-test p-value: 0.003
Adjusted coefficient of determination: 0.62

Equation (4)
At−1 −0.3688 0.32 0.003
γrl 2.3541 0.68 0.002
Constant πA1 25.52 8.68 0.08
Coefficient of determination: 0.60, F-test p-value: 0.002
Adjusted coefficient of determination: 0.66

Equation (5)
Np,t −0.056 −5.79 0.0001
Qas,t−1 0.00013 0.00004 0.0001
e0.00013Qas,t−1 42.51 0.25 0.09
Constant πq1 4353.8 4.72 0.0008
Coefficient of determination: 0.83, F-test p-value: 4.69× 10−5

Adjusted coefficient of determination: 0.86

3.3. Petroleum Refining Subsystem

In the petroleum refining industry, hydrogen is mainly used for naphtha hydrodesul-
furization and diesel hydrodesulfurization. Hydrogen is also used for kerosene hydrodesul-
furization and hydrocracking of gasoline production. Hydrocracking is a catalytic process
in the presence of hydrogen. In the petroleum refining industry, hydrogen consumption is
determined by raw materials and processing technology [4]. According to the production
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proportion of petroleum refining products of Sinopec (China’s largest supplier of refined
oil and petrochemical products and the world’s largest oil refining company), gasoline
accounts for 31%, diesel accounts for 48%, kerosene accounts for 10%, naphtha accounts for
10%, and the rest are other products. The model structure of the petroleum industry subsys-
tem refers to the major product composition of Sinopec as shown in Figure 4. The hydrogen
demand for petroleum production in the t-th year is affected by the hydrogen demand of
diesel refining, gasoline refining, kerosene refining, and naphtha refining as follows:

Figure 4. Model of petroleum refining subsystem.

Hp,t = Hdr,t + Hgr,t + Hkr,t + Hnr,t (7)

Hdr,t = Qdr,t × αdr (8)

Hgr,t = Qgr,t × αgr (9)

Hkr,t = Qkr,t × αkr (10)

Hnr,t = Qnr,t × αnr (11)

where the hydrogen demand for diesel refining in the t-th year is made up of the output
of diesel in the year t and the unit hydrogen consumption. Additionally, the hydrogen
demands of gasoline refining, kerosene refining, and naphtha refining in year t are made
up of the output of gasoline, kerosene, naphtha, and the unit hydrogen consumption,
correspondingly. There is a power function relation between the output of diesel and the
number of fossil vehicles, and a linear relation with GDP. The equation is as follows:

Qdr,t = πdr1 + πdr2 · πdr3 · N
πdr4
v,t + πdr5 · GDPt (12)

where πdr1, πdr2, πdr3, πdr4, and πdr5 are regression coefficients. The relationship between
the output of gasoline and the number of fossil vehicles is represented as follows:

Qgr,t = πgr1 · N
πgr2
v,t (13)
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where πgr1 and πgr2 are regression coefficients. There is a linear relationship between
the output of kerosene and GDP, and the output of naphtha is also linear with GDP. The
equations are as following:

Qkr,t = πkr1 + πkr2 · GDPt (14)

Qnr,t = πnr1 + πnr2 · GDPt (15)

where πkr1 and πkr2 are the regression coefficients of Equation (14), and πnr1 and πnr2 are
the regression coefficients of Equation (15).

Using ordinary least squares (OLS), the regression models of Equations (12)–(15)
were fitted to the year data from 2003 to 2017. The estimated parameters are shown in
Table 5. To calculate the hydrogen demand for petroleum production, the unit hydrogen
consumption of diesel, gasoline, kerosene, and naphtha was taken from [4], and the values
of the parameters and the calculation results are shown in Section 4.

Table 5. The estimated parameters of the petroleum refining subsystem.

Variables Coefficient
Estimates Standard Deviation p-Value

Equation (12)
N f ,t 0.2448 0.024 2.86× 10−7

N0.2448
f ,t 1604 35.41 0.0007

1604× N0.2448
f ,t 3.881 0.938 0.0016

GDPt −0.0317 0.01 0.01
Constant πdr1 −27,590 89.87 0.01
Coefficient of determination: 0.949, F-test p-value: 7.77× 10−8

Adjusted coefficient of determination: 0.939

Equation (13)
N f ,t 0.5178 0.02 5.16× 10−11

Constant πgr1 70.78 15.81 0.0008
Coefficient of determination: 0.940, F-test p-value: 3.52× 10−6

Adjusted coefficient of determination: 0.941

Equation (14)
GDPt 0.0033 1.7× 10−4 2.94× 10−10

Constant πkr1 353.6 8.92 0.0018
Coefficient of determination: 0.967, F-test p-value: 2.94× 10−10

Adjusted coefficient of determination: 0.964

Equation (15)
GDPt 0.0025 4.2× 10−4 0.002
Constant πnr1 1317 27.9 0.005
Coefficient of determination: 0.87, F-test p-value: 0.002
Adjusted coefficient of determination: 0.85

3.4. Vehicle Subsystem

For the vehicle subsystem, the architecture of the LV model is illustrated in Figure 5.
In the LV model, fossil fuel vehicles play as prey, and electric and hydrogen vehicles play
as predators in the vehicle market.
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Figure 5. The architecture of the LV model.

The predator–prey interaction consists of a pair of first-order autonomous ordinary
differential equations as follows. The evolution of the number of preys is modeled by:

Ṅv,t = Nv,t(γv − α1Nh,t − α2Ne,t) (16)

where Ṅv,t = dNv,t/dt. The amount of prey, Nv,t, increases with its own growth rate γv,
and decreases with the attacks of predators, which are hydrogen vehicles and electric
vehicles. This decrease depends on the amount of predators Nh,t, Ne,t, the attack rate α1,
α2 of the predators, and the amount of available preys. The unit of the rate of attack is
time−1predator−1. The number of predators evolves similarly:

Ṅh,t = Nh,t(ε1Nv,t − γh) (17)

Ṅe,t = Ne,t(ε2Nv,t − γe) (18)

where Ṅh,t = dNh,t/dt, Ṅe,t = dNe,t/dt. Prey is replaced by predators in the system with
efficiencies ε1 and ε2, correspondingly. The unit of the efficiency is time−1prey−1. It simply
means that the growth rate is mostly driven by the available food supply (the preys).
However, predators compete for the supply; a negative sign is associated with the growth
rates γh and γe, correspondingly.

For the traditional predator–prey LV model above, the growth rate was modeled as
linear. This means the vehicles are expected to grow without a cap. However, in reality, the
growth is expected to eventually decline due to several factors: (i) the availability of fuel;
(ii) the maturity of the technology; (iii) the introduction of more desirable and sustainable
alternatives [18]. Considering the supply of fuel, without the relationship description
with other vehicles in the market (refer to the reduction of Maryam [18]), Equation (16) is
modified to:

Ṅv,t = − ṁi
mi

Nv,t +
ṁ
mi

= −γvNv,t + µv (19)

where m is the total mass of fuel used by the fossil vehicles, per year, ṁ = dm/dt. mi is the
fuel used by per fossil vehicle, ṁi = dmi/dt, and

m = Nv,t ×mi (20)
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and we note γv =
ṁi
mi

and µv =
ṁ
mi

. The quantity γv is the mass of fuel used annually

by a car divided by the mass of fuel consumed by a car, which corresponds to a growth
rate, and it can be approximated by a constant without a breakthrough in technology. The
quantity µv is the mass of fuel used annually divided by the mass of fuel consumed by
a car. Then, we combined Equation (19) with Equations (16)–(18), and the modified LV
models are represented as follows:

Ṅv,t = Nv,t(−γv − α1Nh,t − α2Ne,t) + µv
Ṅh,t = Nh,t(ε1Nv,t − γh) + µh
Ṅe,t = Ne,t(ε2Nv,t − γe) + µe

(21)

where µv, µh, and µe represent the maximum number of new vehicles that can be sustained,
on a yearly basis, by the supply chain of fuel. The attack rates α1, α2 and efficiency rates ε1,
ε2 rates translate how the policies influence the number of vehicles. Since the development
of hydrogen vehicles is still in its initial stage, the current market share of hydrogen vehicles
is very limited. Under the current vehicle market share without considering the hydrogen
vehicles, the LV model of Equation (21) is transformed to:{

Ṅv,t = Nv,t(−γv − α2Ne,t) + µv
Ṅe,t = Ne,t(ε2Nv,t − γe) + µe

(22)

To estimate the unknown parameters of the modified LV model, a GM(1,1) model of
the grey forecasting method was constructed. The GM(1,1) model is the most common grey
prediction model, which has been successfully applied for LV model estimation [34,40].
The grey method has gained an important role in making accurate predictions for uncertain
systems with small samples and incomplete information [41,42]. The main purpose of the
theory is to predict the behavior of systems that cannot be detected with stochastic or fuzzy
methods with limited data [43]. Therefore, with limited sample data regarding hydrogen
and electric vehicles, in order to analyze the predator–prey behavior that is revealed by the
LV model, the grey method was adopted.

GM(1,1) is based on the following essential steps [44]:

(1) Accumulated generating operation (AGO): First, discretize the time series data
achieved from Equation (21) as follows:

Ṅi = (Ṅi,1, Ṅi,2, ..., Ṅi,n), {t = 1, 2, ...n, n ≥ 4} (23)

where Ni is an Ṅi one-order accumulated generating operation (AGO) sequence,
that is,

Ni =
n

∑
t=1

Ṅi,t, {t = 1, 2, ...n, n ≥ 4} (24)

(2) Grey modeling: Form GM(1,1) model by establishing a first-order grey differential
equation:

Ṅi,t + aZi,t = b (25)

where

Zi,t = (Ni,t + Ni,t−1)/2 (26)
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In Equation (25), a is called the development coefficient and b is called the driving co-
efficient. Combining with the GM(1,1) model, the discrete equations of (21) are transferred
as follows:

Nv,t − Nv,t−1 = −γv
Nv,t+Nv,t−1

2 − α1(
Nv,t+Nv,t−1

2 )

(
Nh,t+Nh,t−1

2 )− α2(
Nv,t+Nv,t−1

2 )(
Ne,t+Ne,t−1

2 ) + µv
(27)

Nh,t − Nh,t−1 = −γh
Nh,t+Nh,t−1

2 + ε1(
Nv,t+Nv,t−1

2 )

(
Nh,t+Nh,t−1

2 ) + µh
(28)

Ne,t − Ne,t−1 = −γe
Ne,t+Ne,t−1

2 + ε2(
Nv,t+Nv,t−1

2 )

(
Ne,t+Ne,t−1

2 ) + µe
(29)

Applying the least squares method, the coefficients can be estimated as:

Ai =

[
a
b

]
=
(

BT
i Bi

)−1
BT

i Yi,n (30)

where

Yv,n = [(Nv,2 − Nv,1)
···(Nv,t − Nv,t−1)]

T , (31)

Av =
[
−γv −α1 −α2 µv

]T , (32)

Yh,n = [(Nh,2 − Nh,1)
···(Nh,t − Nh,t−1)]

T , (33)

Ah =
[
−γh ε1 µh

]T , (34)

Ye,n = [(Ne,2 − Ne,1)
···(Ne,t − Ne,t−1)]

T , (35)

Ae =
[
−γe ε2 µe

]T (36)

Hence, the AGO grey prediction model can be obtained. The growth rate parameters
−γv, −γh, and −γe are related to the settling time. It describes the dynamics of the
organic growth of the vehicles driven by the available resources. The efficiency and attack
rates ε1, ε2, α1, and α2 are mathematically related to the interactions between the vehicles.
Practically, it translates the incentive of switching from a type of vehicle to another type of
vehicle. According to the value rage of the efficiency (α1 and α2) and attack rates (ε1 and
ε2), four situations are summarized. We take α1 and ε1 as an example.

(1) When α1 > 0, ε1 > 0, fossil fuel vehicles and hydrogen vehicles are in the stage of
mutual competition;

(2) When α1 > 0, ε1 < 0, hydrogen vehicles are replacing fossil fuel vehicles;
(3) When α1 > 0, ε1 < 0, fossil fuel vehicles are replacing hydrogen vehicles;
(4) When α1 < 0, ε1 < 0, fossil fuel vehicles and hydrogen vehicles are promoting the

development of each other.

4. Analysis
4.1. Data

To ensure the accuracy and authenticity of the model simulation and enable it to better
simulate China’s hydrogen demand from the synthetic ammonia industry, petroleum
industry, and the vehicle industry, in this paper we set the training data sample of the
synthetic ammonia subsystem and petroleum subsystem of the model as 2003–2017, the
training data sample of the vehicle subsystem as 2010–2017, and the running step length
as one year. The mean absolute percentage error (MAPE) and the root mean square error
(RMSE) are used to test the forecast accuracy between a data point Yi and a point produced
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by the model E(Yi) since they are considered as the best-known predictive accuracy indices
for non-seasonal time series [45].

MAPE =
∑N

i=1
N

∣∣∣∣Yi − E(Yi)

Yi

∣∣∣∣; RMSE =

√
∑N

i=1(Yi − E(Yi))2

N

Data resources of exogenous variables and the training data of endogenous variables
are listed in Table 6. The setting of parameters is as follows: For synthetic ammonia
production, according to [29], 0.331 mg of hydrogen is consumed for every 1.875 mg of
produced ammonia. The values of the parameters of unit hydrogen consumption in the
petroleum subsystem are αdr = 73.8 (kg hydrogen per ton diesel), αgr = 26.7 (kg hydrogen
per ton gasoline), αkr = 7.12 (kg hydrogen per ton kerosene), and αnr = 49.84 (kg hydrogen
per ton naphtha). According to the trial operation data of hydrogen energy passenger
cars in Sichuan Province, the average hydrogen consumption per 100 kilometers is 3.4 kg.
Assuming that the annual operating kilometers of hydrogen energy buses are 41,000 (data
source: China urban passenger transport development report), each hydrogen energy bus’s
average yearly hydrogen consumption is 1.394 tons.

Table 6. Data resources of exogenous and endogenous variables.

Exogenous Variable Data Resource

GDP National Bureau of Statistics
Employed rural population National Bureau of Statistics
Zero-growth of chemical
fertilizer policy China’s Department of Agriculture

Red line policy of farmland
area

China’s Ministry of Land and
Resources

Endogenous Variable Data Resource

Cultivated area China’s Ministry of Land and
Resources

Grain yield per unit area National Bureau of Statistics
Agricultural synthetic ammonia
demand National Bureau of Statistics

Diesel output, gasoline output,
kerosene output, and naphtha output National Bureau of Statistics

Number of fossil fuel vehicles National Bureau of Statistics
Number of electric vehicles iimedia data (data.iimedia.cn,

15 December 2021)

4.2. Scenarios

Because the development of the hydrogen industry is still in its initial stage and the
application of hydrogen vehicles is limited, there are not enough sample data of the number
of hydrogen vehicles at present. To examine the future influence of hydrogen vehicles on
the system, three scenarios are defined considering the influence of policy implementation
and technology development as follows:

(1) Benchmark scenario: Without considering the hydrogen vehicles, the simplified LV
model refers to Equation (22). To estimate the values of the parameters, we use the
historical data of the number of fossil fuel vehicles and the number of electric vehicles
from the years 2010 to 2017. The values of parameters are estimated as γv = −0.0795,
α2 = 0.0001, µv = 840.8 of fossil vehicles and γe = −1.006, ε2 = −0.000023, µe = 1.613
of electric vehicles.

(2) Competition scenario: Hydrogen vehicles enter market competition, while other
internal and external factors remain unchanged. Under the competition scenario, we
set −γh = 0.5, ε1 = −0.00002, µh = 0.3, and α1 = 0.00001.

data.iimedia.cn
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(3) Fossil fuel vehicles exit scenario: Fossil vehicles generally exit the market, policy
support benefits the development of electric vehicles and hydrogen vehicles, and
other internal and external factors remain unchanged. Under the fossil fuel vehicles
exit scenario, we set −γh = 1, −γv = 0.01, ε1 = −0.00004, and µh = 0.3.

4.3. Results and Discussions
4.3.1. Analysis of Vehicle Subsystem

Under the benchmark scenario, without considering the influence of hydrogen ve-
hicles, α2 > 0 and ε2 < 0, which means that under the benchmark scenario, the electric
vehicles replace fossil fuel vehicles. The comparison between the real data and simulated
data from years 2010 to 2018 of the benchmark scenario is shown in Figures 6 and 7. The
MAPE and RMSE of electric vehicles are 9.03% and 14.38, respectively; the MAPE and
RMSE of fossil fuel vehicles are 0.15% and 224.75, respectively. The results indicate that the
developed simulation model captures the growth of the vehicles.
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Figure 6. Compare the number of electric vehicles with real data and simulated data.
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Figure 7. Compare the number of fossil fuel vehicles with real data and simulated data.

The volumes of vehicles under different scenarios are shown in Figure 8–10. In
Figure 8, the base year is 2010, and the end year is 2030. In Figures 9 and 10, the base year
is 2018, and the end year is 2030.
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Figure 8. Number of fossil fuel vehicles and electric vehicles under the benchmark scenario.
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Figure 9. Number of vehicles under the competition scenario.
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Figure 10. Number of vehicles under the fossil fuel vehicles exit scenario.

According to the results under the three scenarios, we found:

• Under the benchmark scenario, the number of fossil fuel vehicles will reach a peak
of nearly 350 million in the year 2025. With a quick flow of fossil fuel vehicles after
2025, electric vehicles will rapidly rise around 2028. The intersection point of fossil
fuel vehicles and electric vehicles will arrive in 2030. At that time, the amount of fossil
fuel and electric vehicles will be 99.03 million and 139.79 million, respectively.

• Under the competition scenario, the number of fossil fuel vehicles will also reach a
peak of 350 million around 2025. However, compared with the benchmark scenario,
the increase and decrease in fossil fuel vehicles have slowed. The entrance of hydrogen
vehicles reduces the growth of electric vehicles. By the year 2030, the number of
fossil fuel, electric, and hydrogen vehicles will be 193.35 million, 77.64 million, and
0.03 million, respectively.

• Under the fossil fuel vehicle exit scenario, the peak time of fossil fuel vehicles is
advanced to the year 2022 as 251.65 million, and the intersection point of fossil
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fuel vehicles and electric vehicles is advanced to the year 2026. The automotive
market will be dominated by electric vehicles. Compared to the competition scenario,
the number of hydrogen vehicles has increased. By the year 2030, the amount of
fossil fuel, electric, and hydrogen vehicles will be 3.12 million, 470.25 million, and
0.34 million, respectively.

• In general, under the current hydrogen technical and infrastructure level, the scale
of hydrogen vehicles will still be limited in 2030. The scale of fossil fuel vehicles will
grow smaller after 2025, and electric vehicles will gradually monopolize the market.

4.3.2. Analysis of Petroleum Refining Subsystem

To verify the simulation model of the petroleum industry subsystem, we compared
the empirical data and simulated data of the diesel refining volume, gasoline refining
volume, and kerosene refining volume from the years 2004 to 2017 in Figure 11. Due to
limited statistical data, the data of naphtha refining volume used in Figure 12 are from the
years 2011 to 2017. The MAPE values of diesel refining volume, gasoline refining volume,
kerosene refining volume, and naphtha refining volume are 3.4%, 4.62%, 6.36%, and 5.3%,
respectively, and the RMSE values are 578.19, 372.46, 128.78, and 257.93, respectively,
because the evolution of fossil fuel vehicles directly influences the fuel demand of diesel
and gasoline. Combing the output results of the competitive scenario of the vehicle
subsystem, the simulated refining volume of the petroleum industry from 2004 to 2030 is
shown in Figure 13.

The simulated results reveal that the production volume of diesel is locating in a
downward path since the year 2016, and the decline will accelerate from the year 2028;
the production volume of gasoline will reach the peak value around the year 2025; the
kerosene and naphtha production volumes will keep rising with the increase in GDP.
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Figure 11. Compare the volume of diesel refining, gasoline refining, and kerosene refining with real
data and simulated data.
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Figure 12. Compare the volume of naphtha refining with real data and simulated data.
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Figure 13. Refining volume of petroleum industry simulated until the year 2030.

4.3.3. Analysis of Synthetic Ammonia Subsystem

To verify the simulation model of the synthetic ammonia industry subsystem, we
compared the empirical data and simulated data of synthetic ammonia production volume
from the years 2004 to 2017, as shown in Figure 14. The MAPE is 3.96%, and the RMSE
is 245.01. The simulated synthetic ammonia production from 2004 to 2030 is shown in
Figure 15.
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Figure 14. Comparison of the production volume of synthetic ammonia with real data and
simulated data.

The production volume of synthetic ammonia shows an inflection point in the year
2016. A possible reason is that the zero-growth of the chemical fertilizer policy has affected
the usage of ammonia fertilizers. Although the zero-growth policy has reduced the demand
for ammonia fertilizers, the red-line of farmland area policy has led to a necessary fertilizer
demand. There will be a slow rise in the production volume of synthetic ammonia in the
next ten years.
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Figure 15. Synthetic ammonia production volume simulated until the year 2030.
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4.3.4. Analysis of Hydrogen Demand

Based on the simulated production volume of synthetic ammonia and petroleum
products, and considering the development of vehicle transportation simulated in the
vehicle subsystem under the three scenarios, we can estimate the hydrogen demand by
2030. The hydrogen demand in the next ten years is presented in Figure 16. Under scenario
(1), the maximum hydrogen demand volume appears in 2023 as 10.01 million tons and
then generally reduces to 9.46 million tons. Under scenario (2), the maximum volume of
hydrogen demand appears in 2028 as 10.32 million tons and then reduces to 10.07 million
tons by the year 2030. Under scenario (3), the maximum hydrogen demand volume appears
in 2022 as 9.82 million tons and then reduces. However, the inflection point from decrease
to increase occurs in 2028, and the minimum volume is 9.45 million tons. By the year 2030,
the volume comes to 9.7 million tons. Under scenario (3), hydrogen demand will increase
by the year 2029. As the reduction of the number of traditional vehicles will increase in the
next decade, the development momentum of hydrogen vehicles will gradually rise after
the year 2029.

• The decrease in fossil fuel vehicles will lead to a reduction in hydrogen demand.
Although the development of hydrogen vehicles will promote the increase in hydrogen
demand, the high cost, immature technology, and inadequate charging facilities of
hydrogen vehicles have restrained the rapid growth of hydrogen vehicles. Without
substantial policy support, the demand for hydrogen from hydrogen energy vehicles
will remain limited in the next ten years. If policymakers accelerate the withdrawal of
fossil energy vehicles from the market, the demand for hydrogen is expected to usher
in an upward path around 2029.

• Although the change of hydrogen demand in the petroleum refining and vehicle
industries has a specific impact on the total hydrogen demand, the minimum hydrogen
demand can be guaranteed at 9.4 million tons, a difference of 870,000 tons from
the maximum need. This is because the hydrogen demand for the production of
synthetic ammonia accounts for a large proportion. Affected by the rigid demand for
agricultural production, the demand for ammonia fertilizer will hardly decline on a
large scale.
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Figure 16. Hydrogen demand simulated until the year 2030.

5. Conclusions

This paper proposed a nationwide hydrogen demand simulation model combining
system dynamics and the Lotka–Volterra approach. In the model, the hydrogen demand
from traditional hydrogen consumption industries of synthetic ammonia and petroleum re-
fining and the newly developing hydrogen vehicle market were discussed. The exogenous
variables of population, macro-economy, and the impact of support policies were consid-
ered to analyze the evolution of hydrogen demand. In addition, to verify the impact from
supporting policies, the scenarios of hydrogen vehicles entering market competition and
fossil fuel vehicles exiting the market are analyzed compared with the current benchmark
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scenario. The simulation results demonstrate the effectiveness of the proposed model and
provide some useful forward-looking guidance for the policy makers.

• China’s population and agricultural production scale determine the rigid demand for
ammonia fertilizer products. The hydrogen demand in ammonia fertilizer production
will reach 8.8 million tons by 2030.

• Policy orientation plays a vital role in promoting the development of hydrogen energy
in the petroleum refining and vehicle market. However, it will still be challenging for
hydrogen energy to become the mainstream energy by 2030 because of the competition
from electric vehicles, even if traditional energy vehicles gradually withdraw from
the market. The obstacles come from the supply capacity and production cost of
green hydrogen, the development level of hydrogen fuel cell technology, and the
construction level of facilities.

In future research, to forecast the hydrogen demand more comprehensively, more
hydrogen consumption industries need to be considered in the model, such as methanol
production and steel smelting, etc. In addition, the evolution of the fully competitive vehicle
market is affected by complex internal and external factors. This paper has made some
hypotheses and simplifications, and more influencing factors and variable relationships
should be expanded upon.
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