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Abstract: This paper discusses consensus control of nonlinear coupled parabolic PDE-ODE-based
multi-agent systems (PDE-ODEMASs). First, a consensus controller of leaderless PDE-ODEMASs
is designed. Based on a Lyapunov-based approach, coupling strengths are obtained for leaderless
PDE-ODEMASs to achieve leaderless consensus. Furthermore, a consensus controller in the leader-
following PDE-ODEMAS is designed and the corresponding coupling strengths are obtained to ensure
the leader-following consensus. Two examples show the effectiveness of the proposed methods.

Keywords: consensus; PDE-ODEs; MASs; leader-following; coupling strengths

1. Introduction

Consensus in multi-agent systems (MASs) is to achieve a common group objective
when agents have different initial states [1–4]. It has received great attention in the past
decade as a result from its wide applications in flocking of mobile robots [5], opinion
dynamics in social networks [6], formation of unmanned vehicles [7–9], microgrid energy
management [10], traffic flow [11], etc.

In a pioneering contribution, many important control methods were proposed for
consensus of MASs, focusing on models based on ordinary differential equations [12–20].
Actually, there are many practical cases in nature and discipline fields with spatio-temporal
characteristics, modeled by coupled partial differential equations (PDEs) [21–25]. Ap-
plied to overhead cranes [26], hormonal therapy [27], traffic flow [28], etc., another class
of spatio-temporal models is based on coupled partial differential equations—ordinary
differential equations (PDE-ODEs) [29–31]. Therefore, it is important to research consen-
sus control of PDE-based coupled MASs (PDEMASs) or coupled PDE-ODE-based MASs
(PDE-ODEMASs).

More recently, there have been many important results related to PDEMASs. Ref. [32]
studied a distributed adaptive controller of uncertain leader-following parabolic PDEMASs;
ref. [33] studied consensus control for parabolic and second-order hyperbolic PDEMASs;
ref. [34] studied distributed P-type iterative learning for PDEMASs with time delay;
refs. [35,36] studied iterative learning control for PDEMASs without and with time delay;
ref. [37] studied boundary control of 3-D PDEMASs with arbitrarily large boundary input
delay; refs. [38,39] studied consensus and input constraint consensus of nonlinear PDE-
MASs using boundary control. However, consensus control for PDE-ODEMASs has not
been addressed yet, which is a new challenge.
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Motivated by the above, this paper studies consensus control of nonlinear coupled
parabolic PDE-ODEMASs with Neumann boundary conditions. First, dealing with the
leaderless case, a consensus controller of leaderless PDE-ODEMASs is designed. The
leaderless consensus error system is obtained and one Lyapunov functional candidate is
given. Using Wirtinger’s inequality and matrix properties, coupling strengths are obtained
for leaderless PDE-ODEMASs to achieve cluster consensus. Furthermore, dealing with
the leader-following case, a consensus controller of leader-following PDE-ODEMASs is
designed. The leader-following consensus error system is obtained and another Lyapunov
functional candidate is given. The corresponding coupling strengths are obtained to ensure
leader-following consensus.

The remainder of this paper is organized as follows. The problem formulation is given
in Section 2. Section 3 presents a consensus control design of the leaderless PDE-ODEMAS
and Section 4 gives that of the leader-following PDE-ODEMAS. An example to illustrate
the effectiveness of the proposed method is presented in Sections 5 and 6 offers some
concluding remarks.

Notations: λmax(·), λ2(·) stand for the maximum eigenvalue and smallest nonzero
eigenvalue of ·, respectively. ⊗ is a Kronecker product of matrices. The identity matrix of n
order is denoted by In. ||·|| denotes the Euclidean norm for vectors in Rn or the induced
2-norm for matrices in Rm×n.

2. Problem Formulation

Consider a nonlinear PDE-ODEMAS as

ẋi(t) = f (xi(t)) +
∫ 1

0
w(yi(ξ, t))dξ + ui(t),

∂yi(ξ, t)
∂t

= α
∂2yi(ξ, t)

∂ξ2 + p(yi(ξ, t))

+ q(xi(t)) + Ui(ξ, t),

(1)

such that

∂yi(ξ, t)
∂ξ

∣∣∣∣
ξ=0

= 0,
∂yi(ξ, t)

∂ξ

∣∣∣∣
ξ=1

= 0,

xi(0) = x0
i , yi(ξ, 0) = y0

i (ξ),

(2)

where (ξ, t) ∈ [0, 1] × [0, ∞), respectively, mean the spatial variable and time variable;
xi(t), yi(ξ, t) ∈ Rn are the states; ui(t), Ui(ξ, t) ∈ Rn are the control inputs; x0

i , y0
i (ξ)

are bounded and y0
i (ξ) is continuous; α is a positive scalar; i ∈ {1, 2, · · · , N}; and

f (·), w(·), p(·), q(·) ∈ Rn are sufficiently smooth nonlinear functions.

Defineconsensuserror ei(t)
∆
= xi(t)− 1

N ∑N
j=1 xj(t) and εi(ξ, t) ∆

= yi(ξ, t)− 1
N ∑N

j=1 yj(ξ, t).

Definition 1. For the leaderless PDE-ODEMAS (1), (2) with any initial conditions, if

lim
t→∞

ei(t)→ 0, lim
t→∞

εi(ξ, t)→ 0, (3)

for any i ∈ {1, 2, · · · , N}, then the leaderless PDE-ODEMAS (1), (2) achieves consensus.

Lemma 1 ([40]). Let κ be a differentiable function with κ(0) = 0 and κ(1) = 0, then∫ 1

0
κT(s)κ(s)ds ≤ π−2

∫ 1

0
κ̇T(s)κ̇(s)ds. (4)

Lemma 2 ([41]). For an undirected connected graph with Laplacian matrix L, and x ∈ Rn such
that 1T

N x = 0, then
λ2(L)xTx ≤ xT Lx. (5)
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If Laplacian matrix L ∈ RN×N is symmetric, then 0 = λ1(·) < λ2(·) ≤ · · · ≤
λN(·). The smallest nonzero eigenvalue of λ2(·) is known as the algebraic connectivity of
graphs [41].

Assumption 1. Assume f (·), p(·), q(·), w(·) satisfy the Lipschitz condition, i.e., for any ν1 and
ν2 ∈ Rn, there exist scalars γ1, γ2, γ3, γ4 > 0 such that

| f (ν1)− f (ν2)| ≤ γ1|ν1 − ν2|,
|p(ν1)− p(ν2)| ≤ γ2|ν1 − ν2|,
|q(ν1)− q(ν2)| ≤ γ3|ν1 − ν2|,
|w(ν1)− w(ν2)| ≤ γ4|ν1 − ν2|.

(6)

3. Consensus Control of the Leaderless PDE-ODEMAS

To achieve consensus of the leaderless PDE-ODEMAS (1), the consensus controller is
designed as:

ui(t) = d
N

∑
j=1

aij(xj(t)− xi(t)),

Ui(ξ, t) = k
N

∑
j=1

bij(yj(ξ, t)− yi(ξ, t)),

(7)

where d and k are the coupling strengths to be determined, i ∈ {1, 2, · · · , N}. Assume that
the topological structure A = (aij)N×N is defined as: aij = aji > 0(i 6= j) if the agent i
connects to j, otherwise aij = 0(i 6= j); aii = 0. The topological structure B = (bij)N×N is
defined the same as A.

The consensus error system can be obtained from (1), (2), and (7) that

ėi(t) = f (xi(t))−
1
N

N

∑
j=1

f (xj(t)) +
∫ 1

0
w(yi(ξ, t))dξ − 1

N

N

∑
j=1

∫ 1

0
w(yj(ξ, t))dξ

+ d
N

∑
j=1

aij(xj(t)− xi(t)),

∂εi(ξ, t)
∂t

= α
∂2εi(ξ, t)

∂ξ2 + p(yi(ξ, t))− 1
N

N

∑
j=1

p(yj(ξ, t)) + q(xi(t))

− 1
N

N

∑
j=1

q(xj(t)) + k
N

∑
j=1

bij(yj(ξ, t)− yi(ξ, t)),

(8)

such that
∂εi(ξ, t)

∂ξ

∣∣∣∣
ξ=0

= 0,
∂εi(ξ, t)

∂ξ

∣∣∣∣
ξ=1

= 0,

ei(0) = e0
i (ξ), εi(ξ, 0) = ε0

i (ξ),

(9)

where e0
i

∆
= x0

i −
1
N ∑N

j=1 x0
j and ε0

i (ξ)
∆
= y0

i (ξ)−
1
N ∑N

j=1 y0
j (ξ).

Theorem 1. Under Assumption 1, assume the graphs A and B are connected. Using the controller
(7), the leaderless PDE-ODEMAS (1), (2) achieves consensus if

d >
γ1 +

1
2 γ2

3 +
1
2

λ2(La)
,

k > max{
γ2 +

1
2 γ2

4 +
1
2 − απ2

λ2(Lb)
, 0}.

(10)
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Proof. Consider the following Lyapunov function as

V1(t) =
1
2

N

∑
i=1

eT
i (t)ei(t) +

1
2

N

∑
i=1

∫ 1

0
εT

i (ξ, t)εi(ξ, t)dξ. (11)

We have

V̇1(t) =
N

∑
i=1

eT
i (t)ėi(t) +

N

∑
i=1

∫ 1

0
εT

i (ξ, t)
∂εi(ξ, t)

∂t
dξ

=
N

∑
i=1

eT
i (t)[ f (xi(t))−

1
N

N

∑
j=1

f (xj(t))]

+
N

∑
i=1

eT
i (t)[

∫ 1

0
w(yi(ξ, t))dξ − 1

N

N

∑
j=1

∫ 1

0
w(yj(ξ, t))dξ]

+
N

∑
i=1

eT
i (t)d

N

∑
j=1

aij(ej(t)− ei(t)) +
N

∑
i=1

∫ 1

0
εT

i (ξ, t)Θ
∂2εi(ξ, t)

∂ξ2 dξ

+
N

∑
i=1

∫ 1

0
εT

i (ξ, t)(p(yi(ξ, t))− 1
N

N

∑
j=1

p(yj(ξ, t)))dξ

+
N

∑
i=1

∫ 1

0
εT

i (ξ, t)(q(xi(t))−
1
N

N

∑
j=1

q(xj(t)))dξ

+
N

∑
i=1

∫ 1

0
εT

i (ξ, t)k
N

∑
j=1

bij(ε j(ξ, t)− εi(ξ, t))dξ.

(12)

According to the matrix property,

N

∑
i=1

eT
i (t)d

N

∑
j=1

aij(ej(t)− ei(t))

=− deT(t)(La ⊗ In)e(t)

≤− dλ2(La)eT(t)e(t),

(13)

and

N

∑
i=1

∫ 1

0
εT

i (ξ, t)k
N

∑
j=1

bij(εi(ξ, t)− ε j(ξ, t))dξ

=− k
∫ 1

0
εT(ξ, t)(Lb ⊗ In)ε(ξ, t)dξ

≤− kλ2(Lb)
∫ 1

0
εT(ξ, t)ε(ξ, t)dξ,

(14)

where λ2(·) denotes the smallest nonzero eigenvalue of ·, La,ij = −aij when i 6= j, La,ii =

N
∑

j=1
aij, Lb,ij = −bij when i 6= j, Lb,ii =

N
∑

j=1
bij. Therefore, La, Lb are Laplacian matrices.

Using Lemma 1, for α > 0,
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∫ 1

0

N

∑
i=1

εT
i (ξ, t)αεi,ξξ(ξ, t)dξ

=− α
∫ 1

0
εT

ξ (ξ, t)εξ(ξ, t)dξ

≤− απ2
∫ 1

0
εT(ξ, t)ε(ξ, t)dξ.

(15)

Using Assumption 1, owing to
N
∑

i=1
eT

i (t)( f ( 1
N ∑N

j=1 xj(t))− 1
N ∑N

j=1 f (xj(t))) = 0 and

N
∑

i=1
εT

i (ξ, t)( f ( 1
N ∑N

j=1 p(yi(ξ, t)))− 1
N ∑N

j=1 p(yi(ξ, t)) = 0, we have

N

∑
i=1

eT
i (t)( f (xi(t))−

1
N

N

∑
j=1

f (xj(t))) ≤ γ1

N

∑
i=1

e2
i (t), (16)

and

N

∑
i=1

∫ 1

0
εT

i (ξ, t)(p(yi(ξ, t))− 1
N

N

∑
j=1

p(yj(ξ, t)))dξ ≤ γ2

∫ 1

0
ε2

i (ξ, t)dξ. (17)

In the same way,

N

∑
i=1

∫ 1

0
εT

i (ξ, t)(q(xi(t))−
1
N

N

∑
j=1

q(xj(t)))dξ

=
N

∑
i=1

∫ 1

0
εT

i (ξ, t)(q(xi(t))− q(
1
N

N

∑
j=1

xj(t)))dξ

≤1
2

N

∑
i=1

∫ 1

0
εT

i (ξ, t)εi(ξ, t)dξ +
1
2

N

∑
i=1

∫ 1

0
(q(xi(t))− q(

1
N

N

∑
j=1

xj(t)))2dξ

≤1
2

N

∑
i=1

∫ 1

0
εT

i (ξ, t)εi(ξ, t)dξ +
1
2

γ2
3

N

∑
i=1

e2
i (t),

(18)

and

N

∑
i=1

eT
i (t)

∫ 1

0
(w(yi(ξ, t))− 1

N

N

∑
j=1

w(yj(ξ, t)))dξ

=
N

∑
i=1

eT
i (t)

∫ 1

0
(w(yi(ξ, t))− w(

1
N

N

∑
j=1

yj(ξ, t)))dξ

≤1
2

N

∑
i=1

[eT
i (t)ei(t)dξ +

∫ 1

0
(w(yi(ξ, t))− w(

1
N

N

∑
j=1

yj(ξ, t)))2dξ]

≤1
2

N

∑
i=1

eT
i (t)ei(t) +

1
2

N

∑
i=1

γ2
4

∫ 1

0
ε2

i (ξ, t)dξ.

(19)

Substituting (13)–(19) into (12),

V̇1(t) ≤− ρ1eT(t)e(t)− ρ2

∫ 1

0
ε2(ξ, t)dξ

≤− 2ρV(t),
(20)
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where e ∆
= [eT

1 , eT
2 , · · · , eT

N ]
T , ε

∆
= [εT

1 , εT
2 , · · · , εT

N ]
T , ρ1

∆
= −γ1 − 1

2 γ2
3 −

1
2 + dλ2(La), ρ2

∆
=

−γ2 − 1
2 γ2

4 −
1
2 + απ2 + kλ2(Lb), and ρ

∆
= min{ρ1, ρ2}.

Taking d and k as (10) yields,

ρ1 > 0, ρ2 > 0. (21)

It follows from (20) and (21) that V1(t) ≤ V1(0) exp{−2ρt}, which implies ei(t) → 0
and εi(ξ, t)→ 0 as t→ ∞ This completes the proof.

4. Consensus Control of the Leader-Following PDE-ODEMAS

The leader agent is supposed to be

ẋ0(t) = f (x0(t)) +
∫ 1

0
w(y0(ξ, t))dξ,

∂y0(ξ, t)
∂t

= α
∂2y0(ξ, t)

∂ξ2 + p(y0(ξ, t)) + q(x0(t)),
(22)

such that

∂y0(ξ, t)
∂ξ

∣∣∣∣
ξ=0

= 0,
∂y0(ξ, t)

∂ξ

∣∣∣∣
ξ=1

= 0,

x0(0) = x0
0, y0(ξ, 0) = y0

0(ξ),

(23)

where x0
0, y0

0(ξ) are bounded and y0
0(ξ) is continuous.

The leader-following consensus controller is designed as:

ui(t) = d[
N

∑
j=1

aij(xj(t)− xi(t)) + δi(x0(t)− xi(t))],

Ui(ξ, t) = k[
N

∑
j=1

bij(yj(ξ, t)− yi(ξ, t)) + ρi(y0(ξ, t)− yi(ξ, t))],

(24)

where δi > 0 if xi can obtain the information of x0; otherwise, δi = 0; and ρi > 0 if yi can
obtain the information of y0; otherwise, ρi = 0.

Let ẽi(t) = xi(t)− x0(t) and ε̃i(ξ, t) = yi(ξ, t)− y0(ξ, t). The leader-following consen-
sus error system is obtained as

˙̃ei(t) = f (xi(t))− f (x0(t)) +
∫ 1

0
w(yi(ξ, t))dξ

−
∫ 1

0
w(y0(ξ, t))dξ − d

N

∑
j=1

gij ẽj(t),

∂ε̃i(ξ, t)
∂t

= α
∂2 ε̃i(ξ, t)

∂ξ2 + p(yi(ξ, t))− p(y0(ξ, t))

+ q(xi(t))− q(x0(t))

− k
N

∑
j=1

hij ε̃ j(ξ, t),

(25)

such that
∂ε̃i(ξ, t)

∂ξ

∣∣∣∣
ξ=0

= 0,
∂ε̃i(ξ, t)

∂ξ

∣∣∣∣
ξ=1

= 0,

ẽi(0) = ẽ0
i (ξ), ε̃i(ξ, 0) = ε̃0

i (ξ),

(26)
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where G = [gij] = LA + diag{δi}, H = [hij] = LB + diag{ρi}, ẽ0
i

∆
= x0

i − x0
0 and ε̃0

i (ξ)
∆
=

y0
i (ξ)− y0

0(ξ).

Definition 2. For the leader-following PDE-ODEMAS (22), (23) with any initial conditions, if

lim
t→∞

ẽi(t)→ 0, lim
t→∞
||ε̃i(ξ, t)|| → 0, (27)

for any i ∈ {1, 2, · · · , N}, then the leader-following PDE-ODEMAS (22), (23) achieves consensus.

Theorem 2. Under Assumption 1, assume the graphs A and B are connected. Using the controller
(26), the leader-following PDE-ODEMAS (1) achieves consensus if

d >
γ1 +

1
2 γ2

3 +
1
2

λmin(G)
,

k > max{
γ2 +

1
2 γ2

4 +
1
2 − απ2

λmin(H)
, 0}.

(28)

Proof. Consider the Lyapunov functional candidate as

V2(t) =
1
2

N

∑
i=1

ẽT
i (t)ẽi(t) +

1
2

N

∑
i=1

∫ 1

0
ε̃T

i (ξ, t)ε̃i(ξ, t)dξ. (29)

One has

V̇2(t) =
N

∑
i=1

ẽT
i (t) ˙̃ei(t) +

N

∑
i=1

∫ 1

0
ε̃T

i (ξ, t)
∂ε̃i(ξ, t)

∂t
dξ

=
N

∑
i=1

ẽT
i (t)( f (xi(t))− f (x0(t)))

+
N

∑
i=1

ẽT
i (t)[

∫ 1

0
w(yi(ξ, t))dξ −

∫ 1

0
w(y0(ξ, t))dξ]

−
N

∑
i=1

ẽT
i (t)d

N

∑
j=1

gij ẽj(t)

+
N

∑
i=1

∫ 1

0
ε̃T

i (ξ, t)α
∂2 ε̃i(ξ, t)

∂ξ2 dξ

+
N

∑
i=1

∫ 1

0
ε̃T

i (ξ, t)(p(yi(ξ, t))− p(y0(ξ, t)))dξ

+
N

∑
i=1

∫ 1

0
ε̃T

i (ξ, t)(q(xi(t))− q(x0(t)))dξ

−
N

∑
i=1

∫ 1

0
ε̃T

i (ξ, t)k
N

∑
j=1

hij ε̃ j(ξ, t)dξ.

(30)

Since G and H are symmetric positive definite matrices,

−
N

∑
i=1

ẽT
i (t)d

N

∑
j=1

gij(ẽj(t))

=− dẽT(t)(G⊗ In)ẽ(t)

≤− dλmin(G)ẽT(t)ẽ(t),

(31)
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and

N

∑
i=1

∫ 1

0
ε̃T

i (ξ, t)k
N

∑
j=1

hij ε̃ j(ξ, t)dξ

=− k
∫ 1

0
ε̃T(ξ, t)(H ⊗ In)ε̃(ξ, t)dξ

≤− kλmin(H)
∫ 1

0
ε̃T(ξ, t)ε̃(ξ, t)dξ,

(32)

where ẽ ∆
= [ẽT

1 , ẽT
2 , · · · , ẽT

N ]
T , ε̃

∆
= [ε̃T

1 , ε̃T
2 , · · · , ε̃T

N ]
T , λmin(·) denotes the smallest nonzero

eigenvalue and G, H are symmetric positive definite matrices.
Considering (13)–(19), and substituting (31)–(32) into (30),

V̇2(t) ≤(γ1 +
1
2

γ2
3 +

1
2
− dλmin(G))ẽT(t)ẽ(t) + (γ2 +

1
2

γ2
4

+
1
2
− απ2 − kλmin(H))

∫ 1

0
ε̃T(ξ, t)ε̃(ξ, t)dξ.

(33)

In a similar way to the analysis in Theorem 1, the proof can be completed.

Remark 1. Many papers have investigated stabilization control methods for PDE-ODE
systems [29–31,42], while this paper investigates consensus control for PDE-ODE-based MASs,
considering control based on coupling.

Remark 2. Many significant results were obtained for consensus control modeled by
PDEMASs [32–39]. Different from PDEMASs, this paper investigates consensus control methods
for PDE-ODEMASs, as well as considering leaderless and leader-following models.

5. Numerical Simulation

Example 1. Consider the leaderless PDE-ODEMAS (1) and (2) with coefficients as

α = 0.8, f (·) = w(·) = p(·) = q(·) = tanh(·),
aij = bij = 1, and i 6= j, for i, j = 1, 2, 3, 4,

n = 2,

(34)

and with random initial conditions.
It is obvious that f (·), p(·), q(·), and w(·) satisfy the Lipschitz condition with γ1 = γ2 =

γ3 = γ4 = 1.
With Theorem 1, according to (10), d > 0.50 and k > 0 are obtained. Therefore, we take

d = 0.51 and k = 0.01. It can be seen in Figures 1 and 2 that the leaderless PDE-ODEMAS
achieves consensus with control gains d = 0.51 and k = 0.01.

From another point of view, d = 0.49 and k = 0 do not satisfy (10). It can be seen in Figures 3 and 4
that the leaderless PDE-ODEMAS cannot achieve consensus with control gains d = 0.49 and
k = 0.
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Figure 1. ei(t) withthe control gains d = 0.51 and k = 0.01 in Example 1.

Figure 2. εi(ξ, t) with the control gains d = 0.51 and k = 0.01 in Example 1.

Figure 3. ei(t) with the control gains d = 0.49 and k = 0 in Example 1.
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Figure 4. εi(ξ, t) with the control gains d = 0.49 and k = 0 in Example 1.

Example 2. Consider a nonlinear leader-following PDE-ODEMAS composed of 1 leader agent
(22) and (23) and 4 following agents (1) and (2) with coefficients the same as Example 1. In the
same way, γ1 = γ2 = γ3 = γ4 = 1 are obtained. Choose δi = ρi = 1. With Theorem 2, according
to (28), d > 2.0 and k > 0 are obtained. Therefore, we take d = 2.1 and k = 0.1. It can be seen
in Figures 5 and 6 that the leader-following PDE-ODEMAS achieves consensus.

Figure 5. ẽi(t) with the control gains d = 2.1 and k = 0.1 in Example 2.
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Figure 6. ε̃i(ξ, t) with the control gains d = 2.1 and k = 0.1 in Example 2.

From another point of view, d = 1.9 and k = 0 do not satisfy (28). It can be seen
in Figures 7 and 8 that the leader-following PDE-ODEMAS cannot achieve consensus with control
gains d = 0.49 and k = 0.

Figure 7. ẽi(t) with the control gains d = 1.9 and k = 0 in Example 2.
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Figure 8. ε̃i(ξ, t) with control gains d = 1.9 and k = 0 in Example 2.

6. Conclusions

This paper has studied consensus control of the PDE-ODEMASs. First, a consensus
controller of the leaderless PDE-ODEMASs was designed. We have shown that the cluster
consensus behavior can be reached for the given coupling strengths for the leaderless
PDE-ODEMASs. Then, a consensus controller in the leader-following PDE-ODEMASs was
designed. Leader-following consensus behavior can be arrived at for the given coupling
strengths for the leader-following PDE-ODEMASs. In numerical simulations, it shows the
obtained gains according to the proposed methods can ensure consensus of both leaderless
and leader-following PDE-ODEMASs. On the contrary, the control with gains a little bit
less than those according to the proposed methods cannot achieve consensus. There are
often a great number of agents in the real world and, in future, pinning consensus, only
controlling a few agents of the PDE-ODEMASs, will be studied, as well as time delays.
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