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Abstract: In this paper, the utility grid is integrated with hybrid photovoltaic (PV)/wind/fuel cells to
overcome the unavailability of the grid and the single implementation of renewable energy. The main
purpose of this study is smart management of hydrogen storage tanks and power exchange between
the hybrid renewable energy and the grid to minimize the total cost of the hybrid system and load
uncertainties. PV and wind act as the main renewable energy sources, whereas fuel cells act as
auxiliary sources designed to compensate for power variations and to ensure continuous power
flow to the load. The grid is considered a backup system that works when hybrid renewable energy
and fuel cells are unavailable. In this study, the optimal size of the components of the hybrid
energy system is introduced using two methods: the marine predators’ algorithm (MPA) and the
seagull optimization algorithm (SOA). The optimal sizing problem is also run accounting for the
uncertainty in load demand. The results obtained from the proposed optimization are given with and
without uncertainty in load demand. The simulation results of the hybrid system without uncertainty
demonstrate the superiority of the MPA compared with SOA. However, in the case of load uncertainty,
the simulation results (the uncertainty) are given using the MPA optimization technique with +5%,
+10%, and +15% uncertainty in load, which showed that the net present cost and purchase energy are
increased with uncertainty.

Keywords: energy system; PV; wind; fuel cell; optimization; hybrid renewable energy

MSC: 49K35; 49K45; 93E20

1. Introduction

The use of fossil fuels causes tremendous increases in environmental pollution and
harmful emissions [1]. In 2020, the pollution in the world decreased by 5.9% compared to
that in 2019 because of the corona virus pandemic, which significantly reduced the world
energy consumption [2]. Consequently, the world started paying more attention to hybrid
renewable energy systems (HRES), the definition of which includes single or multiple
sources of renewable energy (RE). For example, wind, solar, fuel cells (FCs), hydropower,
biomass, and biogas energy are being used to increase the efficiency of the system and
improve the power supply reliability. Moreover, FCs are used as a backup storage system
with efficiencies higher than those of batteries [3–7]. Most HRESs are used either standalone
or are combined with an electrical grid. Standalone systems are used to cover consumption
in isolated regions [8]. Meanwhile, combined systems are used in regions with uncertain
atmospheric conditions to overcome the unreliability of the utility grid [9–17].
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Nowadays, many studies explain and evaluate the modeling, optimal sizing, and
simulation of hybrid systems including RE with FCs and those connected to a grid using a
proposed optimization technique for enhancing the reliability as well as minimizing the
energy cost of the system [17–22]. Several optimization algorithms for attaining the optimal
solution to HRES have been presented in the literature review. Particle swarm optimization
(PSO) was combined with branch bound algorithm (BBA) for the optimal sizing of HRESs
in connection with a grid under uncertainty [23]. The optimal solution for a photovoltaic
(PV)/wind/diesel was shown through the deployment of the strength Pareto evolutionary
algorithm for reducing the CO2 emissions and obtaining the minimum total cost of a hybrid
system [24]. In another study, the genetic algorithm (GA) method was applied for the
optimum design of a solar (PV)/wind, with a storage battery bank for minimizing the
loss of power supply probability (LPSP) and the system total cost [25]. Also, the optimal
design for a PV/wind turbine/battery hybrid system was implemented using gray wolf
optimization (GWO) to obtain the minimum total cost per annum and improve system
reliability [26]. This research presents the various hybrid energy system configurations to
meet the power requirements of the electric vehicle charging station (EVCS) situated in
the northwest region of Delhi, India. Moreover, modified salp swarm algorithm (MSSA) is
used to minimize the total net present cost and levelized cost of energy [27].

The aim of Ref. [28] is to find the sizing of the HRES components taking into consider-
ation uncertainties of PV, wind systems and load demand through the use of an improved
crow search algorithm (ICSA). The results of the system proved the superiority of the ICSA
in comparison with PSO and crow search algorithm. Also, the simulation results showed
that the cost of the system is increased and that its reliability is improved. In a previous
study [29], the uncertainty of wind energy systems is determined by Monte Carlo simula-
tion according to the wind speed variation. Due to the uncertainty of renewable energies, a
probability undetermined scenario-based sizing model (PUSS model) is applied for optimal
sizing of HRES comprising wind generators, solar photovoltaic panels, energy-storage
devices, and diesel generators [30]. The effect of the uncertainty on load demand was
also studied in another piece of research [31]. Also, a method to estimate the PV power
uncertainty is explained in a previous study [32].

The main reason for using new optimization methods in power systems is that op-
timization techniques many times are complex, might require high computational time,
and/or recognized for less convergence speed, being trapped in local optima, and inaccu-
rate results. Because of the fluctuation and unpredictability of renewable power generation
and the continuous variations in the load demand, hybrid systems should be implemented
considering generation and load uncertainty to achieve precise costs and reliability. Many
advanced approaches for estimating uncertainty have been presented in previous studies,
including distance-based analysis, robust optimization (RO), probabilistic method (PM),
feasibility method, information gap decision theory (IGDT), and hybrid possibility proba-
bility method (HPP) [33,34]. One paper analyzed the methods for delivering electricity in
remote locations and mentioned the benefits and drawbacks of each solution [35]. The crit-
ical issue in such research was the desalination of water in remote areas at low cost and
without any pollution, and desalination units were supplied by renewable energy sources
(wind/solar/FCs) for improving the performance of the system and its efficiency [36]. More
studies have demonstrated the optimization of grid integration with hybrid renewable en-
ergy, with FCs as backup storage systems. A combination of either PV/FC or PV/FC/grid
has been analyzed to feed the load with low-cost energy in remote areas. Results indicate
that grid-integrated HRES are more economic and perform better than off-grid systems [37].
The seagull optimization technique has been aaplied to get the optimal design of the
grid-connected renewable energy system, composed of PV panels, wind turbines, inverter,
rectifier, electrolyzer, and fuel cell for minimizing the energy cost [17].

Over the last few years, FCs started gaining more attention as storage systems and
played important roles in HRES for delivering continuous power to load [38]. FCs have
many benefits in comparison with batteries; for instance, they have no harmful emissions,
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high efficiencies, and low temperatures [39]. In this paper, if the power of solar PV and
wind energy is larger than the load consumption, the excess power feeds an electrolyzer
system for producing hydrogen, which is kept in tanks for later use to supply FCs to
generate electricity. When the level of the hydrogen tank gets to the maximum (top), the
power extracted from the PVs and wind system is sold to the grid. However, if the power
generated from PVs, wind, and FCs does not meet the load demand, the shortage in power
is compensated from the main grid. Also, for the optimal sizing, the numbers of PV arrays,
wind turbines, hydrogen tanks mass, the rated power of electrolyzers, inverters, and FCs
should be optimized. This is in addition to optimizing the power between the RES and
the utility, which is determined by two elements (selling and purchasing coefficients) [40].
The most critical issues in this study are the modeling of the hybrid system components
to satisfy the load requirements, attaining the maximum system reliability and attaining
the minimum generated energy cost. Because of the complexity of the optimization of
the hybrid system, new techniques were discovered to solve optimization problems, such
as the marine predator’s algorithm (MPA) and the seagull optimization algorithm (SOA).
Moreover, the proposed optimization techniques have been comprehensively compared in
terms of the best solution. The south of Egypt has been used as a case study to confirm the
feasibility of the proposed techniques by calculating the hourly wind speed, solar radiation,
and temperature.

Installation Description

Figure 1 displays a diagram of an RES connected to a grid consisting of solar PV cells,
wind energy, a utility grid, bidirectional converters, FCs, electrolyzers, hydrogen tanks, and
a certain load. FCs act as backup storage systems, whereas solar and wind energy work as
the primary source. The power grid serves as a secondary (auxiliary) source to meet the
required power.

Figure 1. This is a figure of a hybrid renewable energy system connected to a grid.
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2. Mathematical Modeling

This section focuses on the mathematical model of the hybrid system components,
and electrical power exchange (selling and purchasing) is explained. Then, hydrogen
management, objective constraints, and power management strategies are analyzed to
reach the optimal configuration of every component in the hybrid system.

The lifetimes of wind energy, solar PV cells, and FCs are considered as 20, 25, and
15 years, respectively, and the lifetime of the system is taken as 25 years. According to the
lifetime of the case of study, two methods are proposed for minimizing the total energy
cost and sizing of the components of the hybrid system.

2.1. Modeling PV System

The PV output power of PV modules is proportional to solar radiation, temperature,
and geographical locations [41]. The amount of power can be calculated as follows [40]:

Ppv(t) = Prpvnpvηpvηwire
I(t)
1000

(
1− λT

(
Tam +

(NOCT− 20)
800

Iam(t)− 25
))

(1)

where npv, Pr_pv, and Ppv(t) are the number of PV cells, the maximum power of the PV
cells, and the output power produced from solar PV cell, respectively. ηwire and ηpv are
the wiring efficiency and the efficiency of the PV cells, respectively. λT is the temperature
coefficient of the solar PV modules, and Iam(t) is the ambient of solar radiation.

The total output power produced from solar PV cells is calculated as follows:

Ptot_pv(t) = Npv × Ppv(t) (2)

2.2. Modeling Wind Turbine System

The wind speed and hub height characteristics are the most important factors in
generating output power from wind turbines, which can be determined using the following
equation [42,43]:

V2 = V1

(
H2

H1

)βWT

(3)

where V1 and V2 are the wind speed at a reference point at (H1) and hub height (H2), and
βWT indicts to the friction coefficient, and its value is 0.143 [44].

The following equation is applied to estimate the output power produced from the
wind turbines (WTs) [44].

Pw(t) =


nwηwPr_w ∗

(V2(t)−V2
cin)

(V2
r−V2

cin)
Vc_in < V(t) < Vr

nwηwPwr Vr < V(t) < Vc_off
O V(t) < Vc_in or V(t) < Vc_off

 (4)

where Pw(t) is the output power produced from WTs, nw, ηw, and Pr_w are the number of
WTs, the WTs efficiency, and the maximum power of the WTs, respectively.

The total output power produced by a group of wind turbines is calculated as follows:

Ptot_w = Nw × Pw(t) (5)

2.3. Modeling Grid System

The HRES can be integrated into the grid through a common coupling point because
the utility grid is considered a bidirectional source that can either purchase energy from
the grid when the power generation from PV, wind, and FCs cannot satisfy the required
consumption, or sell energy to the grid in case the power produced from the HRES is greater
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than the load demand and when the hydrogen tank reaches full charge. The purchasing
cost of energy from the network can be evaluated by:

Cgp
= £p_pur ×

8760

∑
t=1

Pgp
(6)

where £p_pur is the Egyptian price for purchasing power from the exterior grid, $/kWh
is 0.08 $/kWh, and Ppur_g refers to (indicates) the power bought from the electric grid.

The following equation is used to estimate the proceeds from selling power to the
utility grid:

Cgs
= £Psell ×

8760

∑
t=1

Pgs
(7)

where Csell_g is the proceeds from the sold power to the grid, and P sell_g is the selling
power into the external grid. £P_sell is the Egyptian price (tariff rate) of selling power, which
is equal to 0.2 $/kWh.

2.4. Modeling Electrolyzers

The excess energy generated from PVs and wind sources is utilized to feed the elec-
trolyzer for the generation of hydrogen by separating water into oxygen (from the cathode
side) and hydrogen (from the anode side) by passing a direct current (DC) through two
electrodes (See Equation (8)) [45]. Then, the produced hydrogen is stored in tanks with
high pressure [46].

Electricity + H2O = H2 +
1
2

O2 (8)

The power output delivered from the electrolyzer to the tank of the hydrogen is
illustrated as follows [45]:

Pele−H2t = Pren_ele × ηele (9)

where Pele−H2t is the electrolyzer output power (kw), Pren_ele is the electrolyzer input power
(kw), and ηele is the efficiency of the electrolyzer assigned a constant value.

2.5. Modeling H2 Tank

During peak periods, if the power produced from the PVs and wind sources is low, the
necessary amount of hydrogen is used to feed FCs to compensate for the leakage (shortage)
in the required power. The hydrogen energy at any (t) is illustrated as follows:

EH2t(∆t) = EH2t(t− 1) +
(

Pele−H2t −
PH2t−fc(t)
ηst_t

)
× ∆t (10)

where EH2t(∆t) and EH2t(t− 1) are the amounts of energy kept in the tank at times t and
(t − 1), respectively. PH2t−fc(t) is the power supplied to the FCs. ηst_t is the hydrogen tank
efficiency, which is taken as 95% for all operations.

The mass of the hydrogen produced from the electrolyzes can be estimated as fol-
lows [45]:

MH2t(∆t) =
EH2t(∆t)
HHVH2

(11)

where HHVH2 is the higher heating value of the hydrogen and is set to 39.7 kWh/m2.

2.6. Modeling FC

An FC is a device employed to convert chemical energy to electrical DC energy using
an electrolyzer [47–49], and is composed of two electrons (anode and cathode) and an
electrolyte that lies in between. It has more advantages compared with batteries such as its
simplicity, low maintenance, and high efficiency, and it also causes no pollution (i.e., is a
green energy source) [47].
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The generated power from FC can be determined by Equation (12) as follows:

Pfc−inv = PH2t−fc × ηfc (12)

where PH2t−fc is the FC input power, and ηfc is the efficiency of the FCs.

2.7. Modeling DC/AC Converter

The power produced from the PVs and wind turbines is needed for a conversion of
DC power to alternating current (AC) power as the consumed power by the loads is AC.
The output power generated from the inverter is calculated through Equation (13):

Pinv−AC = (Pfc−inv × Pren−inv) ηinv (13)

where Pfc−inv is the FC output power, Pren−inv is the output power produced from RES,
and ηinv is the the inverter’s efficiency assumed constant (90%).

2.8. Economical Evaluation of the Optimization Parameters
2.8.1. Loss of Power Supply Probability

The loss of power supply probability (LPSP) is a criterion used for evaluating the
reliability of the proposed energy system, the LPSP is constrained to not increase to about
εLP [43]. The below equation is used for calculating the value of the LPSP.

LPSP =
∑8760

t=1 (Pld(t)− Pw(t)− Ppv(t)− Pfc(t))

∑8760
t=1 Pld(t)

(14)

2.8.2. Fluctuation of the Power Sold to the Grid

The fluctuation rate (Fgs
) of the power supplied to the grid can be estimated as follows:

Fgs
=

(
Pgs_max − Pgs_min

)
∆t

(15)

where Pgs_max and Pgs_min are considered the maximum and minimum surplus power
delivered to the main utility, respectively. The value of the fluctuation rate should not
exceed a predefined value (εfl) [50].

2.8.3. Cost of Energy (COE)

The total annual cost of the hybrid system is equal to the overall cost of each component
in the proposed system (PV, wind turbine, FCs, electrolyzer, H2 tank, converters, and cost
of purchasing and selling of energy to the grid).

Can_total = Can_cap + Can_rep + Can_o&m + Cpen + Cgp
−Cgs

(16)

where Can_total is the overall annual cost in the hybrid system, Can_cap, Can_rep, and Can_o&m
are the annual capital cost for every component in the system, the annual replacement cost,
and annual cost for operation and maintenance cost for each component in the system,
respectively.Cgp

and Cgs
represent the annual cost of purchasing from and selling energy

to the grid, respectively.
Annual capital cost: It can be calculated as follows:

Can_cap = Can_cap_pv + Can_cap_wt + Can_cap_fc + Can_cap_ele + Can_cap_H2t + Can_cap_con (17)
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The annual capital cost of each component in the overall system is illustrated as shown
in (18): 

Cann_cap_wt = Ccap_wt ×CRF(i, nwt)
Cann_cap_fc = Ccap_fc ×CRF(i, nfc)

Cann_cap_ele = Ccap_ele ×CRF(i, nele)
Can_cap_H2 = Ccap_H2t ×CRF

(
i, nH2t

)
Can_cap_pv = Ccap_pv ×CRF

(
i, npv

)
Can_cap_con = Ccap_con ×CRF(i, ncon)

 (18)

where Ccap_wt, Ccap_fc, Ccap_ele, Ccap_H2t, Ccap_pv, and Ccap_con are the initial capital costs of
the wind turbine module, FC, hydrogen tanks, electrolyzers, PV module, and converter,
respectively. nwt, nfc, nele, nH2t, npv, and ncon are the lifetime of the WTs, FCs, hydrogen
tanks, electrolyzers, PV module, and converter, respectively. i represents the annual interest
rate (%).

Capital Recovery Factor (CRF) is involved for converting the investment cost to the
capital cost. Equation (19) is considered to determine CRF.

CRF(i, ni) =
i(1 + i)ni

(1 + i)ni − 1
(19)

where ni is the lifespan for each subsystem.

• Annual replacement cost: this cost appears when the lifetime of the components is
shorter than the project lifetime.

Can_rep = Crep_i ×
(N− ni)

N
(20)

• Annual operation and maintenance cost: This refers to the cost either required to
operate a component of the hybrid system or used when any component needs repair.

Ctot_o&m = Can_o&m_pv × tpv + Can_o&m_wt × twt + Can_o&m_fc × tfc + Can_o&m_ele × tele + Can_o&m_h2t × th2t + Can_o&m_con × tcon (21)

where Can_o&m_pv, Can_o&m_wt, Can_o&m_fc, Can_o&m_ele, Can_o&m_h2t, and Can_o&m_con are
the operation and maintenance cost of PVs, WTs, FC, hydrogen tanks, electrolyzers, and
converter, respectively, whereas tpv, twt, tfc, tele, th2t, and tcon are the operating hours for
solar PV, WTs, FC, hydrogen tanks, electrolyzers, and converter, respectively.

• Penalty cost: This appears when the values of the fluctuation rate and LPSP exceed
the predefined value. It is evaluated as follows:

Cpen = Cpen1
× (LPSP− εLP)×

8760

∑
t=1

Pld(t) + Cpen2
×

Fgs
− εfl

εfl
∗ 100 (22)

where Cpen1
and Cpen2

are the penalty costs of the shortage and supply fluctuation, respectively.

• Annual purchasing cost of the main network: tit is the cost of power purchased from
the grid and calculated using Equation (6).

• Annual cost of selling energy to the grid: it is the cost of the power sold to the electric
grid and can be calculated using Equation (7).

The net present cost (NPC) of the hybrid renewable energy sources can be obtained
using Equation (23):

NPC =
Can_tot

CRF
(23)
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The COE of the hybrid power systems is formulated using the following equation:

COE =
Can__tot

∑8760
t=1 Pld(t)

=
NPC

∑8760
t=1 Pld(t)

×CRF (24)

3. Energy Management Strategy (Operation)

An energy management strategy is employed for controlling and managing the pro-
duced energy from the hybrid energy systems to cover the required load. The shortage
in load can be satisfied by two sources: the first is the renewable energy sources, which
act as the main sources, and the second is the grid as an auxiliary source. An FC is taken
as a backup storage system. Moreover, it is used to determine the generated hydrogen by
the electrolyzer, the power produced by the FC from hydrogen tanks, and the selling and
purchasing power.

The optimization program is used to determine the energy balance (Eb):

Eb = Pren − Pld (25)

Pren_e = PPV + PW (26)

In this regard, there are three cases in this study.
Case 1: Eb = 0. This case occurs when the consumption of the loads equals the

generated power from RES.
Case 2: Eb > 0. When the amount renewable energy output power (Pren) is higher

than the load requirement, the extra energy is supplied to the electrolyzers to generate
hydrogen that would be stored in high-pressure tanks, and the surplus power would be
sold to the grid.

Case 3: Eb < 0. During peak periods, if the generated power from RES cannot satisfy
the load requirement, the unmet energy is covered by the FC, which is supplied from the
hydrogen tanks. If the amount of stored hydrogen in H2 tanks is not sufficient to feed the
FC, the energy needed to cover the unmet load demand is bought from the electric grid.
Figure 2 describes this strategy for the hybrid energy system.
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Figure 2. Management strategy for the hybrid energy system.

3.1. Constraints

The components of the power system have to operate under certain constraints ac-
cording to the following equation to balance the power generated from the system at
any time.

Pld = Ppv + Pw + Pfc ± Pg (27)

The generated power must be constrained to avoid charging problems from the
electrolyzer and discharging by the FC device.

MH2t_min ≤ MH2t(t) ≤ MH2t_max (28)
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where MH2t_max denotes the full capacity of the H2 tanks, and MH2t_min is the minimum of
the hydrogen tanks capacity.

The LPSP must be constrained for evaluating the hybrid power system reliability.
LPSP ≤ εLP, where εLP = 5%.

3.2. Objective Function

In this work, minimizing the COE and LPSP is considered the main objective of the
hybrid system, and it can be determined as follows:

minyof = min (j1 COE + j2 LPSP ) (29)

4. Optimization Techniques

In this study, optimization algorithms (SOA and MPA) are applied to design renewable
energy systems for the optimal configuration of the HRES.

4.1. Seagull Optimization Algorithm (SOA)

Seagulls are sea birds which have different lengths and weights. They eat eggs,
insects, earthworms, fish, and reptiles. These birds are very intelligent in searching for
food. They use pieces of bread to attack and hunt fish or create rain sounds with their
feet for attacking unseen (hidden) earthworms. These agents can drink both saltwater and
freshwater because they have two glands on the top of the head, which are designed to
dispose of the extra salt. In general, seagulls can live in colonial (groups), and they use their
intelligence in migration and hunting their prey. Their migration behavior is described
seagulls’ movement from one location to alternative location seasonally to obtain the most
plentiful food sources [17,51].

The Mathematical Model

1. Migration (exploration)

During migration, seagulls should meet three conditions that can be described as follows:

• Preventing collisions: collisions between other seagulls is avoided by updating their
place using an additional parameter Mb

Pnew(y) = Mb × Pinitial(y) (30)

where Pnew(y) and Pinitial(y) represent the new position of the candidates after preventing
the collision and the seagull’s initial position, respectively. y denotes the present iteration,
and Mb is the motion of the agents in the searching space and can be calculated as follows:

Mb = w−
(

w× y
ymax

)
(31)

where y = (0, 1 . . . . . . . . . , ymax), and ymax is the maximum number of iterations. w
decreases linearly to 0, and the value of Mb starts at w and ends at 0 when ymax is reached.

• Movement to the best position: after preventing collisions with other individuals, the
seagull moves toward the direction of the best search space. This can be explained
as follows:

Ptobest(y) = A× (Pbest(y)− Pinitial(y)) (32)

where Pto_best(y) is the position toward the best search seagull, and Pbest(y) is the better
location in the searching space at iteration y. A is a parameter to balance the local and
global searches and can be calculated as follows:

A = 2× B× B× ran (33)
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where ran represents a random element [0–1].

• Remaining close to the best search candidate: after the seagull moves toward the best
position, its position can be updated to reach the new best position.

Pcbest(y) = |Pnew(y) + Ptobest(y)| (34)

where Pc_best(y) is the best-fit search agent.

2. Attack of seagulls (exploitation)

During a seagull attack, a seagull can change its speed and angle of the attack toward
the prey in spiral 3D motion using X, Y, and Z as an indication of their motion behavior:

X = k× cos(θ) (35)

Y = k× sin(θ) (36)

Z = k× θ (37)

k = γ× eθl (38)

where k is the spiral radius, γ and l are constants of the spiral movement, and θ denotes
the angle that is randomly between 0 and 2π.

The position of seagulls can be updated through Equation (39):

Pinitial(y) =
(
X× Y× Z× Pcbest(y)

)
+ Pbest(y) (39)

where Pinitial(y) keeps the best result and updates the location of other seagulls. Figure 3
Illustrate the SOA optimization algorithm.

Figure 3. Description of SOA optimization algorithm.

4.2. Marine Predators Algorithm (MPA)

In this optimization technique, both predator and prey are searching agents. This is
due to the fact that the prey is also looking for its food at the same time that a predator is
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trying to find its prey [52]. The initial solution is of uniform distribution over the searching
space based on the following formula:

Y0 = Ymin + rand(Ymax − Ymin) (40)

where Y0 is the initial value of the parameters, and Ymin and Ymax are the minimum and
maximum bounds on each variable. rand is a random element between 0 and 1. Then, the
theory of the survival of the fittest is used to calculate the MP fitness. The fittest solution is
a top MP, used to construct an elite matrix [53].

Elite =


Y1

1,1 Y1
1,2

Y1
2,1 Y2

2,2
. . . . . . . .
Y1

n,1 . . . .

. . . . Y1
1,d

. . . . Y1
2,d

. . . . . . . .

. . . . Y1
n,d

 (41)

Then, another matrix called prey is used to update the position of the predator and
has the same dimensions as the elite matrix.

prey =


Y1,1 Y1,2
Y2,1 Y2,2
. . . . . . . .
Yn,1 . . . .

. . . . Y1,d

. . . . Y2,d

. . . . . . . .

. . . . Yn,d

 (42)

The movement of the predator and prey in MPA optimization consists of three main
phases of optimization, specified by a period of iteration. In the first phase, the predator
does not move at all, whereas it moves in Brownian motion in the second phase. In the third
phase, it shows a Levy behavior. The MPA optimization algorithm is shown in Figure 4.

Figure 4. MPA optimization algorithm.
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4.2.1. Exploration Phase

This phase happens in the initial iteration (one-third of iterations) of the optimization
when the step size or the motion’s speed is high (V ≥ 10) for high exploring ability
iter < 1

3 maxiter.

stepsizej = KB
⊗(

Elitej −KBPreyj

)
j = 1, . . . . . . , n (43)

Preyj = Preyj + P.K
⊗

stepsizej (44)

where iter is the recent iteration, and maxiter is the maximum number of iterations, respec-
tively, KB and K are vectors that contain random numbers. The first vector is based on the
nominal distribution introducing Brownian motion, but the second vector is in the range of
[0–1].

⊗
represents the entry wise multiplications. P is considered a constant value (0.5).

4.2.2. Intermediate Phase

This phase happens in the unit velocity ratio (V~1), when both predator and prey
move at the same pace.

1
3

maxiter < iter <
2
3

maxiter

The population in this phase is divided into two parts: the first half for exploration
and the second for exploitation.

• The first half of the population:

The prey is the explorer and is moving in Levy steps. The updates in prey’s position
are as per the predator’s movement in Brownian motion.

stepsizej = KL
⊗(

Elitej −KLPreyj

)
j = 1, . . . . . . , n/2 (45)

stepsizej = KB
⊗(

KB
⊗

Elitej − Preyj

)
j = 1, . . . . . . , n/2, n (46)

where KL is the Levy flight behavior.

• The second half of the population

The predator is responsible for exploitation and moves in Brownian motion.

stepsizej = KB
⊗(

KB
⊗

Elitej − Preyj

)
j = 1, . . . . . . , n (47)

Preyj = Elitej + P.CF
⊗

stepsizej (48)

where CF is defined as an adaptive parameter for controlling the predator’s step size and
can be calculated as follows:

CF = (1− iter
max_iter

)2 iter
max_iter (49)

4.2.3. Exploitation Phase

This phase occurs in a low-velocity ratio (V = 0.1) when the predator’s movement is
faster compared to the prey’s movement, and this is described as follows:

iter <
2
3

maxiter

stepsizej = KL
⊗(

KL
⊗

Elitej − Preyj

)
j = 1, . . . . . . , n (50)

Preyj = Elitej + P.CF
⊗

stepsizej (51)
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5. Case Study

“Marsa Alam” is located in the south east of Egypt, situated on the western coast of the
Red Sea. This city covers an area of about 38,433 km2. It is positioned at latitude 25.5◦ N,
longitude 36.7◦ E, and 60 m above the seawater level. The town is about 274 km south of
Hurghada, 134 km south of Kosseir, and about 170 km east of the Nile Valley. Marsa Alam
has a population of approximately 11,497 people.

The superior renewable energy projects are concentrated in south Egypt as a result of
its high solar radiation and high wind speed. Figures 5 and 6 display the wind speed and
the solar radiation spectra for the region (Marsa Alam). The data of the study area were
obtained over one year (8760 h). As shown in Figure 7, this region promised to implement
solar PV and WTs. Figure 8 shows the average annual variation of the load demand for the
study area.

Figure 5. Egypt’s wind energy map.

Figure 6. Egypt’s solar radiation intensity.
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Figure 7. Average annual variation of wind speed and solar radiation for the study area.

Figure 8. Average annual variation of the load demand for the study area.

6. Simulation Results of the Hybrid System

In this study, the specifications of each element utilized in HRES are illustrated in
Table 1. The system’s lifetime was taken as 25 years, the interest rate was taken 6%, and the
lifetime of FC was taken 5 years.

Table 1. Economic specifications of the system components.

Parameters Wind
Turbine PV Array Elctrolyzer Hydrogen

Tank Fuel Cell Inverter

Capital
cost

(US$/unit)
118, 412 136, 912 52, 311 17, 004 71, 219.2 12, 387

Replacement
cost

(US$/unit)
52, 500 −−− 22, 500 9000 50, 000 7500

O&M cost
(US$/unit-

yr)
5250 5000 7500 2250.4 17, 500 1203.02

Lifetime(year) 20 25 20 20 5 15
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The simulation results were obtained using MATLAB software program. In addition,
the maximum number of iterations and the highest number of searching agents are 50 and
30, respectively.

In this paper, the optimization process is implemented without and with uncertain
load to find the optimal solution for each element, such as the number of solar PVs panel,
the number of WTs, the electrolyzer’s rated power, the mass of the H2 tanks, and the rated
power of the FC and inverter. The economic specifications of the system components have
been listed in Table 1.

Case 1: Results of the HRES without uncertain load (optimal case)
The simulation results of the proposed optimization for the two techniques are in-

troduced in Table 2. Figure 9 illustrates the convergence curves for the PSO, SOA and
MPA optimization methods, that proved the superiority of the MPA compared with SOA.
As shown in Figure 9, MPA reached the optimum solution of 1.0102 after five iterations,
whereas SOA reached the optimum solution of 1.0169 after three iterations. According to the
results of the optimization algorithms, it is concluded that the MPA predicts the best COE of
0.3044 $/kWh, with the least NPC of 7.350895 × 106 $ and LPSP of −4.883 × 10−18. Finally,
SOA estimates 0.3115 $/kWh for the COE, which results in an NPC of 7.523017 × 106 and
LPSP of −9.7063 × 10−19, which agree with the defined value (<0.05). While the PSO has
been applied for comparison purposes with one of the most conventional optimization
algorithms, as expected, the results of PSO algorithm are not satisfactory when comparing
with other optimization algorithms of MPA and SOA. The analyses of the results of PSO
show that an increase in the NPC results in increasing the sold power to the grid and
increasing renewable energy sources. The reset discussion will be focused on the MPA and
SOA as their superior performance against PSO.

Table 2. Results of the optimization parameters based on MPA, SOA, and PSO.

Items
Optimal Solution

MPA SOA PSO

Best objective function 1.0102 1.0169 1.46433350572227

n _PVs 250 250 500
n _WT 70 70 70

Electrolyzer rated power (kW) 300 300 442.6293
Mass of the H2 tanks (kg) 150 150 135.7179

FC rated power kW) 100 100 250
Inverter rated power (kW) 150 150 510.4037

Number of iterations to attain an
optimal solution 5 3 PSO does not reach to the optimum.

COE ($/kWh) 0.3044 0.3115 0.5176

LPSP −4.883 × 10−18 −9.7063 × 10−19 −3.461 × 10−15

NPC ($) 7.350895 × 106 7.523017 × 106 1.2498 × 107

Sold power to the grid (PgS
) 27.82 × 103 27.821 × 103 5.0515 × 104

Purchased power from the grid (Pgp
) 14.22 × 103 27.737 × 103 2.7878 × 103
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Figure 9. Convergence curves when deploying the optimization algorithms (MPA, SOA and PSO).

The comparison is clearly presented in Figure 10, in which the components of the
objective function for each optimization method are presented.

Figure 10. Comparison of the optimization parameters of MPA and SOA.

The results of MPA optimization algorithms proved that the COE is minimum at the
proposed location. The optimal sizing of the system is determined to be 250 PV arrays, 70
wind turbine, electrolytes with rates power of 300 kw, 150 kg for the maximum mass of H2
tanks, the FC with rated power of 100 KW and also, inverter with rated power of 150 KW.

Figure 11 shows the variability in the power generation per hour for the elements of
the HRES at the optimal scenario for MPA. The simulation results illustrated in this figure
are the load demand (Pld), power produced from PV ( Ppv), power generated from the WT
(Pw), difference among the load and the overall power generated from PVs and WTs (Pdiff),
rated power consumed by the electrolyzer (Pele), power produced by fuel cell (Pfc), mass of
the hydrogen tanks (PH2t), rated power of the inverter (Pinv) and lastly the power exchange
with the electrical network, which displays the sell and purchase power during the period
of operation (EgS

and Egp
).
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Figure 11. Results of the optimal solution for MPA at 8760 h.

As a matter of the designed constraints, it is really hard to obtain the mandates of the
optimization techniques while assuring no energy is exchanged with the external power
grid. It is obviously observed that almost enough energy would be flowing to/from an
exterior utility to satisfy the load.

Depending on the status of the power generation of RES, the following three cases
are presented:

If the generated energy from RES and the power consumed by the load demand are
equal, there is no need for any external source to satisfy the load.

If the power generation from the RES is high, the electrolyzer is used to absorb the
surplus energy to produce hydrogen, and the latter is collected in its tanks. After the
hydrogen tank reaches its maximum limit, the excess power is sold to the electrical grid.
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During the hours of low power generation, the lack of energy is compensated by
producing energy from the FC. Moreover, when the FC power generation is not sufficient
to satisfy the requirements of the load, then the remaining energy demand is obtained
from the exterior grid. During the hours of low power generation, the lack of energy is
compensated by producing energy from the FC. Moreover, when the FC power generation
is not sufficient to satisfy the requirements of the load, then the remaining energy demand
is obtained from the exterior grid.

Figure 12 shows the results of the HRES for one day at the optimum case of operation
using the MPA algorithm. As seen in Figure 12, at night times as well as at early hours,
the power produced from PV and the wind turbine reached its minimum value; thus,
the unmet load is covered by the FC. It is observed from this figure that, after 04:00 am,
the wind speed apparently reaches its maximum value, and the output power from the
WTs have increased. In this case, the electric energy over the load demand is utilized to
operate the electrolyzer to produce hydrogen to be stored in tanks. The stored hydrogen is
supplied to the FC for the generation of electricity to feed the load in case of low power
generation, and the remaining power is sold to the external utility. During the daytime,
the difference between the load and the renewable energy increases. If the hydrogen tank
is not full, the extra energy is changed into hydrogen. Meanwhile, if the hydrogen tank
is at its maximum, the excess energy will be sold to the main network. Finally, there are
several benefits for using SOA and MPA such as simplicity, low computational time, and
high convergence speed. Also, the proposed techniques provided high accuracy and better
performance compared to GA and PSO. But particle swarm optimization algorithm (PSO)
and genetics algorithm (GA) suffer from partial optimization and high computation time
and are inefficient for large and complex systems.

Figure 12. Results of the optimal solution using MPA for one day when operating in summer.
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Case 2: Results of the hybrid system with uncertain load (+5%, +10%, and +15%).
In this case, the results of the HRES are implemented using the MPA technique, consid-

ering generation and uncertainty in load demand. Table 3 presents the optimum solution
of the optimization parameters based on MPA with +5%, +10%, and +15% uncertainty
in the load demand. According to the simulation results in Table 3, considering the load
uncertainty, it can be seen that the values of COE are equal to 0.2918$ with +5% uncertainty,
0.2821$ with +10% load uncertainty, and 0.2731$ with +15% load uncertainty. Also, the
convergence curve of the optimization algorithm (MPA) with load uncertainty is presented
in Figure 13. The comparison is clearly presented in Figure 14, in which the components of
the objective function for each optimization method are presented. The results in Figure 15
proved the increase in the total cost of energy as a matter of the consideration of the uncer-
tainty in load demand. Also, the amount of purchased power from the grid is increased to
cover the remaining power and decreased in selling power to the grid.

Table 3. Results of the optimization parameters based on MPA with load uncertainty.

Items
Load Uncertainty

+5% +10% +15%

Best objective function 1.0102 1.0102 1.0102

n_PVs 250 250 250
n_WT 70 70 70

Electrolyzer rated power of (kW) 300 300 300
Mass of the H2 tanks (kg) 150 150 150

FC rated power kW) 100 100 100
Inverter rated power (kW) 150 150 150

Number of iterations to attain an optimal solution 7 4 9

COE ($/kWh) 0.2918 0.2821 0.2731

LPSP −4.285 × 10−18 −5.328 × 10−18 −5.6198 × 10−18

NPC ($) 7.399616 × 106 7.495652 × 106 7.586028 × 106

Sold power to the grid (PgS
) 25.321 × 103 23.005 × 103 20.893 × 103

Purchased power from the grid (Pgp
) 15.585 × 103 20.729 × 103 25.568 × 103

Figure 13. Convergence curves of the optimization algorithm (MPA) with load uncertainty.
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Figure 14. Comparison of the optimization parameters for MPA in case load uncertainty.

Figure 15. Results of the optimization technique MPA of a certain day of operation in summer with
uncertainty in load (+5%, +10%, and +15%).
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7. Conclusions

In this paper, the optimal sizing of the hybrid renewable energy connected to the grid
in Marsa Alam, Egypt, is performed using MPA in MATLAB. This system consists of PV
panels, wind turbines, FC, an electrolyzer, a hydrogen tank, and a converter. The main goal
of this work is to satisfy the load demand of the proposed location with the minimum COE,
while ensuring high power supply reliability and low fluctuations in the energy exchange
with the external grid. A comprehensive comparison between MPA and SOA is presented
to obtain the optimal case. The simulation results ensure the superiority of MPA in solving
the optimization problem and reaching the best optimum solution of the objective function
of 0.3044, which represents the minimum values of the COE of 0.3044 $/kWh and LPSP
of 4.883 × 10−18, which agree with the predefined values. Moreover, load uncertainty is
applied in this study to minimize the total cost of a PV/wind/FC hybrid system and to
optimize the system against possible changes in load. The future work should include
other formulation of the optimization problem with studying it considering multi-objective
function in order to improve the results of the optimal design of the energy systems.
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Abbreviations

PV Photovoltaic.
MPA Marine Predators’ algorithm.
SOA Seagull optimization algorithm.
HRES Hybrid Renewable Energy Systems.
RES Renewable Energy System.
FCs Fuel cells.
PSO Particle Swarm Optimization.
BBA Branch-Bound Algorithm.
GA Genetic algorithm.
ICSA Improved crow search algorithm.
RO Robust optimization.
PM Probabilistic method.
IGDT Information gap decision theory.
HPP Hybrid possibility probability method.
Ppv(t) and Pw(t) The generated power by solar PV cell and WT respectively.
WTs Wind turbines.
Ptot_w and Ptot_pv(t) The total output power generated by a group of wind. turbines and

solar PV cells respectively.
Pld The load demand power.
Pfc−inv The generated power by FC.
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Pr_pv The maximum power of PV modules.
npv and nw The number of solar PV cells and WTs.
ηwireand ηpv The wiring efficiency and the efficiency of the solar PV cells.
nw and ηw The number of WTs and the WTs efficiency.
Pr_w The maximum power of the WTs.
λT The temperature coefficient of the PV modules.
Iam(t) The ambient of solar radiation.
£p_pur The Egyptian price for purchasing power from the utility, $/kWh.
Ppur_g The purchasing power from the electric grid.
Csell_g The proceeds from selling power.
Psell_g The power sold to the grid.
£P_sell The Egyptian price (tariff rate) of selling power.
Pele−H2t The electrolyzer output power(kw).
Pren_ele The electrolyzer input power(kw).
ηele The efficiency of the electrolyzer.
EH2t(∆t) The amount of energy kept in the tank at time t
and EH2t(t− 1) and time (t − 1).
PH2t−fc(t) The power supplied to the FCs.
ηst_t The hydrogen tank efficiency.
HHVH2 The higher heating value of hydrogen.
PH2t− f c The power input to the FC.
ηfc &ηinv The efficiency of the FC and the inverter respectively.
Pfc−inv The FC output power.
Pren−inv The output power produced from RES.
PH2t− f c The FC input power.
Fgs

The fluctuation rates.
Pgs_max and Pgs_min Max and Min surplus power delivered to the main utility,

respectively.
COE Energy cost.
Can_tot The overall annual cost.
Can_cap, Can_rep, The capital cost of every system component per annum,
and Can_o&m the replacement cost of every system component per annum,

and cost for operation and maintenance every system component
per annum, respectively.

Cgp
and Cgs

The annual cost of purchasing and selling energy to the grid,
respectively.

Ccap_wt, Ccap_fc, Ccap_ele, The initial capital cost of the wind turbine, FC, electrolyzer,
Ccap_H2t, hydrogen tank, PV module, and converter, respectively.
Ccap_pv, and Ccap_con
nwt, nfc, nele, nH2t, npv, The lifetime of the wind turbine module, FC, electrolyzer,
and ncon hydrogen tank, PV module, and converter, respectively.
i The annual interest rate (%).
CRF The capital recovery factor.
ni The lifespan for each subsystem.
Can_rep Annual replacement cost.
Crep_i Replacement cost for individual system.
Can_o&m_pv, Can_o&m_wt, The operation and maintenance cost of wind turbine,
Can_o&m_ f c, PV modules, FC, electrolyzer, hydrogen tank, and converter,
Can_o&m_ele, Can_o&m_h2t, respectively.
and Can_o&m_con
tpv, twt, tfc, tele, th2t, and tcon The operating hours for PV, wind turbine,

FC, Electrolyzer, hydrogen tank, and converter, respectively.
Cpen The penalty costs.
Cpen1

and Cpen2
The penalty costs of the shortage and supply Fluctuation,
respectively.

NPC The net present cost.
MH2t_max and MH2t_min The full and the minimum capacity of the hydrogen.
LPSP Loss of power supply probability.
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Pnew(y) and Pinitial(y) The new position of candidates after preventing collision and the seagull’s
initial position, respectively.

y The present iteration.
Mb The agent’s motion in the search space.
ymax The maximum number of iterations.
Pto_best(y) The position in the direction of the best search seagull.
Pbest(y) The best position in the searching space at iteration y.
Pc_best(y) The best-fit searching agent.
Pinitial(y) The updating position of the seagulls.
Y0 The initial value of the parameters.
Yminand Ymax Lower and Upper boundaries of each variable.
iter and maxiter Current iteration and maximum iterations.
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