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Abstract: A set D ⊆ V(G) is called a dominating set if N[v] ∩ D 6= ∅ for every vertex v in graph G.
The domination number γ(G) is the minimum cardinality of a dominating set of G. The proximity
π(v) of a vertex v is the average distance from it to all other vertices in graph. The remoteness ρ(G)

of a connected graph G is the maximum proximity of all the vertices in graph G. AutoGraphiX
Conjecture A.565 gives the sharp upper bound on the difference between the domination number
and remoteness. In this paper, we characterize the explicit graphs that attain the upper bound in the
above conjecture, and prove the improved AutoGraphiX conjecture.
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1. Introduction

We only consider finite, simple and connected graphs in the present paper. Denote by
G = (V(G), E(G)) the finite, simple and connected graph, where V(G) is the vertex set and
E(G) is the edge set. The open neighborhood of v is the set NG(v) = {u ∈ V(G) | uv ∈ E(G)},
and the closed neighborhood of v is NG[v] = NG(v) ∪ {v}. The degree dG(v) of a vertex v is
the number of edges incident with v in G. The minimum and maximum vertex degree
of G are denoted by δ(G) and ∆(G), respectively. The distance of two vertices u and v is
the length of a shortest path between u and v, denoted by d(u, v). The eccentricity ε(v) of a
vertex v is defined as ε(v) = max{dG(u, v) | u ∈ V(G)}. The proximity π(v) of a vertex v
is the average distance from it to all other vertices in graph. Based on this, the proximity
π(G) and remoteness ρ(G) of a connected graph G denote the minimum and maximum
proximities of vertices in graph G, respectively. Namely,

π(G) = minv∈V(G)π(v) and ρ(G) = maxv∈V(G)π(v).

As we know, the transmission of a vertex is the sum of distances from it to all others in
graph. In other words, π(G) and ρ(G) can be considered as the minimum and maximum
normalized transmission of vertices in graph G, respectively. For more excellent results on
proximity and remoteness, the readers please refer to [1–6].

The AutoGraphiX (AGX) is an automated system that is mainly used for finding
conjectures and extremal graphs for some graph invariant [7]. Aouchiche [8] presented
760 conjectures with regard to 20 graph invariants, and these invariants include proximity
and remoteness. Many conjectures on remoteness or proximity were proved. Each one
of proximity and remoteness was compared to the diameter, radius, average eccentricity,
average distance, independence number and matching number [9,10]. The authors proved
lower and upper bounds on the distance spectral radius using proximity and remoteness,
and lower bounds on the difference between the largest distance eigenvalue and proxim-
ity(remoteness) [11]. The difference, the sum, the ratio and the product of the proximity
and the girth were researched [12]. Four AutoGraphiX conjectures on the quotient of prox-
imity and average distance, the quotient of remoteness and girth, the sum of remoteness
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and maximum degree, the product of proximity and average degree were studied [13].
The upper bound on the difference between the average eccentricity and proximity was
determined [14]. The authors established maximal trees and graphs for the difference of
average distance and proximity(remoteness), as well as minimal trees for the difference of
remoteness and radius [15].

A set D ⊆ V(G) is called a dominating set if N[v] ∩ D 6= ∅ for every v ∈ V(G).
A classical upper bound on the domination number of G is presented by Ore [16] in
1962, that is γ(G) ≤ b n

2 c. The domination number γ(G) is the minimum cardinality of a
dominating set of G. Although determining the domination number is NP-complete [17],
studies on domination number have attracted graph theorists for their applications and
interest [18,19]. Recently, we focus on the relationship between the domination number and
other graph invariants [20–23]. And this includes some AGX conjectures on domination
number. Furthermore, some other AGX conjectures about domination number have been
studied [24–26]. In this paper, we will continue to study the following AGX conjecture
which is related to the domination number and remoteness.

Denote by Ka,b the graph of order n obtained from a complete graph Ka by attaching a
pendent vertex to each of the b vertices of Ka, where a + b = n and 0 ≤ b ≤ a.

Conjecture 1 (Conjecture A.565) ([8]).

γ(G)− ρ(G) ≤
{

n−5
2 + 3

2n−2 , n is even
n−6

2 + 2
n−1 , n is odd

with equality if and only if rad(G) = 2 and γ(G) = b n
2 c. For instance, the equality is attained for

the graph Kd n
2 e,b

n
2 c.

Based on the Conjecture 1, we will characterize the explicit graphs that satisfy the
equation in Conjecture 1, and prove an improved AutoGraphiX conjecture.

2. Results and Discussion

Lemma 1. If G is a connected graph with n ≤ 6 vertices and γ(G) = b n
2 c − 1, then n ≥ 4 and

γ(G)− ρ(G) ≤
{

4
5 , n = 6
0, 4 ≤ n ≤ 5

with equality if and only if G is 4-regular when n = 6, and G ∼= Kn when 4 ≤ n ≤ 5.

Proof. It is obvious that n ≥ 4 since γ(G) = b n
2 c − 1 ≥ 1.

Let n = 6 and γ(G) = b n
2 c − 1 = 2. It is well-known that γ(G) ≤ n−4(G) ([27]).

Then δ(G) ≤ 4(G) ≤ n− γ(G) = 4. If δ(G) = 4, then 4(G) = 4. It implies that G is
4-regular, and thus ρ(G) = π(v) = 1

5 · (1 + 1 + 1 + 1 + 2) = 6
5 , where v is any vertex of G.

Assume that δ(G) ≤ 3 and v is the vertex with d(v) = δ(G) ≤ 3, then ε(v) ≥ 2. Therefore,

ρ(G) ≥ π(v) ≥ 1
5
· [d(v) + 2(n− 1− d(v))] ≥ 7

5
.

To sum up, γ(G)− ρ(G) ≤ 2− 6
5 = 4

5 with equality if and only if G is 4-regular.
Let 4 ≤ n ≤ 5 and γ(G) = b n

2 c − 1 = 1. Then ρ(G) ≥ 1 = ρ(Kn), which implies that
γ(G)− ρ(G) ≤ 0, the equality holds if and only if G ∼= Kn. The result follows.

Lemma 2 ([28]). If a graph G has no isolated vertices and γ(G) ≥ 3, then γ(G) ≤ n+1−δ(G)
2 .
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Lemma 3. Let G be a connected graph of order n ≥ 7 with γ(G) = b n
2 c − 1. Then

γ(G)− ρ(G) <


n−5

2 + 3
2n−2 , n is even

n−6
2 + 2

n−1 , n is odd and n ≥ 9
n−3

4 , n = 7

.

Proof. Assume that v ∈ V(G) is a vertex with d(v) = δ(G). Since γ(G) = b n
2 c − 1 ≥ 3,

one has that γ(G) ≤ n+1−δ(G)
2 by Lemma 2. It follows that

d(v) = δ(G) ≤ n + 1− 2γ(G) =

{
3, n is even
4, n is odd

< n− 1.

Thus ε(v) ≥ 2 and

ρ(G) ≥ π(v) ≥ d(v) + 2(n− 1− d(v))
n− 1

≥
{

2− 3
n−1 , n is even

2− 4
n−1 , n is odd

.

Therefore

γ(G)− ρ(G) ≤
{

n−6
2 + 3

n−1 , n is even
n−7

2 + 4
n−1 , n is odd

<


n−5

2 + 3
2n−2 , n is even

n−6
2 + 2

n−1 , n is odd and n ≥ 9
n−3

4 , n = 7

.

This completes the proof.

Lemma 4. Suppose that G is an n-vertex connected graph with 1 ≤ γ(G) ≤ b n
2 c − 2. Then

γ(G)− ρ(G) <


n−5

2 + 3
2n−2 , n is even

n−6
2 + 2

n−1 , n is odd and n ≥ 9
n−3

4 , n is odd and n ≤ 7

.

Proof. It is obvious that ρ(G) ≥ 1. So

γ(G)− ρ(G) ≤ bn
2
c − 3 =

{
n−6

2 , n is even
n−7

2 , n is odd
<


n−5

2 + 3
2n−2 , n is even

n−6
2 + 2

n−1 , n is odd and n ≥ 9
n−3

4 , n is odd and n ≤ 7

.

The result follows.

Lemma 5 ([29,30]). A connected graph G of order n satisfies γ(G) = b n
2 c if and only if G ∈ G =⋃6

i=1 Gi, where Gi, i = 1, . . . , 6, is the set defined in the following.
Let H be any graph with vertex set {v1, . . . , vk}. Denote by f (H) the graph obtained from H

by adding new vertices u1, . . . , uk and the edges viui, i = 1, . . . , k. Define G1 = {C4} ∪ {G | G =
f (H) for some connected graph H}.

Let F = A ∪B and G2 = F − {C4}, where A = {C4, Gi
7 | i = 1, . . . , 6} and B =

{K3, Gi
5) | i = 1, . . . , 4}, as shown in Figure 1 and Figure 2, respectively.
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Figure 1. Graphs in family A .

Figure 2. Graphs in family B.

For any graph H, let ϕ(H) be the set of connected graphs, each of which can be formed from
f (H) by adding a new vertex x and edges joining x to one or more vertices of H. Then define
G3 = {G | G = ϕ(H) for some graph H}.

Let G ∈ G3 and y be a vertex of a copy of C4. Denote by θ(G) the graph obtained by joining
G to C4 with the single edge xy, where x is the new vertex added in forming G. Then define
G4 = {G | G = θ(H) for some graph H ∈ G3}.

Let u, v, w be the vertex sequence of a path P3. For any graph H, let P(H) be the set of
connected graphs which may be formed from f (H) by joining each of u and w to one or more vertices
of H. Then define G5 = {G | G = P(H) for some graph H}.

For a graph X ∈ B, let U ⊂ V(X) be a set of vertices such that no fewer than γ(X) vertices
of X dominate V(X) \U. Let R(H, X) be the set of connected graphs which may be formed from
f (H) by joining each vertex of U to one or more vertices of H for some set U as defined above and
any graph H. Then define G6 = {G | G ∈ R(H, X) for some X ∈ B and some H}.

Definition 1 ([23]). Let G′ ∈ P(K n−3
2
) ⊆ G5 be the graph obtained from f (K n−3

2
) by joining

each of u and w to every vertex of K n−3
2

, and G′′ ∈ R(K n−3
2

, K3) ⊆ G6 be the graph obtained from
f (K n−3

2
) by joining each vertex of U = {x, y} ⊆ V(K3) to every vertex of K n−3

2
.

Denote by Ka,b the graph of order n obtained from a complete graph Ka by attaching a
pendent vertex to each of the b vertices of Ka, where a + b = n and 0 ≤ b ≤ a.
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Lemma 6. If G is a connected graph with order n(≥ 2) and γ(G) = b n
2 c, then

γ(G)− ρ(G) ≤


2
3 , n = 4
n−5

2 + 3
2n−2 , n is even and n 6= 4

n−3
4 , n is odd and n ≤ 7

n−6
2 + 2

n−1 , n is odd and n ≥ 9

with equality if and only if G ∈ {C4, K n
2 , n

2
| n is even and n 6= 4 } ∪ (G2 − {G5

7)}) ∪
{Kd n

2 e,b
n
2 c, G′, G′′ | n is odd and n ≥ 9}.

Proof. Since γ(G) = b n
2 c, G ∈ G =

⋃6
i=1 Gi by Lemma 2.5. Moreover, the order is even for

the graphs in G1 and odd for the graphs in
⋃6

i=2 Gi by the definition of G .

Claim 1. ρ(G) 6= π(vi) for n > 2, where vi ∈ V(H), i = 1, 2, . . . , k, k = |V(H)| and H is the
graph in the definition of G . Since

π(ui) =
1

n− 1
(d(ui, vi) + ∑

s∈V(G)\{ui ,vi}
d(ui, s))

=
1

n− 1
[d(vi, ui) + ∑

s∈V(G)\{ui ,vi}
(d(ui, vi) + d(vi, s))]

=
1

n− 1
(d(vi, ui) + ∑

s∈V(G)\{ui ,vi}
d(vi, s)) +

n− 2
n− 1

= π(vi) +
n− 2
n− 1

> π(vi).

Hence, the claim is true. By the way, G ∼= P2 and π(ui) = π(vi) for n = 2. In what
follows, we prove the lemma in terms of the parity of n.

Case 1. n is even, that is, G ∈ G1.
Let n 6= 4. Then G = f (H) for some connected graph H and |V(H)| = n

2 by the
definition of G1. Claim 1 implies that ρ(G) = π(ui0) for some i0 ∈ {1, 2, . . . , k}. If G ∼=
f (K n

2
), then

ρ(G) = π(ui0)

=
1

n− 1
[d(ui0 , vi0) + ∑

j∈{1,...,i0−1,i0+1,...,k}
(d(ui0 , uj) + d(ui0 , vj))]

=
1

n− 1
[d(ui0 , vi0) + ∑

j∈{1,...,i0−1,i0+1,...,k}
(2d(ui0 , vi0) + 2d(vi0 , vj) + d(vj, uj))]

=
1

n− 1
· [1 + 5(k− 1)] =

5n− 8
2(n− 1)

.

If G � f (K n
2
), then vsvt /∈ E(G) for some s, t ∈ {1, · · · , n

2 }. Thus

ρ(G) ≥ π(us) >
1

n− 1
· [1 + 5(k− 1)] =

5n− 8
2(n− 1)

.

Moreover,

γ(G)− ρ(G) ≤ n
2
− 5n− 8

2(n− 1)
=

n− 5
2

+
3

2n− 2
,

the equality holds if and only if G ∼= f (K n
2
) ∼= K n

2 , n
2
.
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Let n = 4. Then G ∈ {C4, P4}. And just by doing a direct calculation, we get that

γ(G)− ρ(G) ≤ 2− 4
3
=

2
3

with the equality if and only if G ∼= C4.

Case 2. n is odd, that is, G ∈ ⋃6
i=2 Gi.

Subcase 2.1. G ∈ G2, where G2 = A +B − {C4}.
When G ∼= K3 ∈ B, we get that γ(G)− ρ(G) = 0.
When G ∈ B − {K3} = {G1

5 , G2
5 , G3

5 , G4
5}, one has that ε(v) = 2 for any vertex v ∈

V(G). Then π(v) = 2n−2−d(v)
n−1 . It follows that ρ(G) = 2n−2−δ(G)

n−1 = 3
2 and γ(G)− ρ(G) = 1

2 .
When G ∈ G2 −B,

ρ(G) =

{
2, i f G ∈ {G1

7 , G2
7 , G3

7 , G4
7 , G6

7}
7
3 , i f G ∼= G5

7

by direct calculation. Hence, γ(G) − ρ(G) ≤ 1 with the equality if and only if G ∈
{G1

7 , G2
7 , G3

7 , G4
7 , G6

7}.
In all, γ(G)− ρ(G) ≤ n−3

4 with the equality if and only if G ∈ G2 − {G5
7} in this case.

Subcase 2.2. G ∈ G3. Then G = ϕ(H) for some connected graph H and |V(H)| = k = n−1
2

by the definition of G3.
In consideration of Kd n

2 e,b
n
2 c ∈ G3, where Kd n

2 e,b
n
2 c is the graph obtained from f (Kb n

2 c)
by adding a new vertex x and edges joining x to every vertex of Kb n

2 c. Assume that
G ∼= Kd n

2 e,b
n
2 c. Then Firstly, ρ(G) 6= π(vi), i = 1, . . . , k, by Claim 1. Secondly, for each

i ∈ {1, . . . , k}, we have that

π(ui) =
1

n− 1
[d(ui, x) + d(ui, vi) + ∑

j∈{1,...,i−1,i+1,...,k}
(d(ui, uj) + d(ui, vj))]

=
1

n− 1
[2 + 1 + 5(k− 1)]

=
5
2
− 2

n− 1
. (1)

Finnally, for the vertex x appeared in the definition of G3,

π(x) =
1

n− 1
·

k

∑
i=1

(d(x, vi) + d(x, ui)) =
1

n− 1
· 3k =

3
2

. (2)

Since 5
2 −

2
n−1 ≥

3
2 always true for n ≥ 3, γ(G)− ρ(G) = n−1

2 − ( 5
2 −

2
n−1 ) =

n−6
2 +

2
n−1 .

Assume that G � Kd n
2 e,b

n
2 c. Then vsvt /∈ E(G) or vmx /∈ E(G) for some s, t, m ∈

{1, · · · , k}. Combining with Equation (1), we get that ρ(G) ≥ π(us) >
5
2 −

2
n−1 and ρ(G) ≥

π(um) >
5
2 −

2
n−1 , respectively. As a result, γ(G)− ρ(G) < γ(G)− π(us) <

n−6
2 + 2

n−1 .
In brief, γ(G)− ρ(G) ≤ n−6

2 + 2
n−1 with equality if and only if G ∼= Kd n

2 e,b
n
2 c.

Subcase 2.3. G ∈ G4.
We notice that k = n−5

2 and a cycle C4 is mentioned in constructing G4. Let V(C4) =
{y, y1, y2, y3}, where y1 and y2 be the neighbors of vertex y in the cycle C4. It is obvious
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that π(y3) is greater than π(y1), π(y2), π(y) and π(x), by the definition of G4. Therefore,
ρ(G) /∈ {π(y1), π(y2), π(y), π(x)}. Furthermore,

π(y3) =
1

n− 1
[d(y3, y1) + d(y3, y2) + d(y3, y) + d(y3, x) +

k

∑
j=1

(d(y3, uj) + d(y3, vj))]

=
1

n− 1
{1 + 1 + 2 + 3 +

k

∑
j=1

[(d(y3, x) + d(x, uj)) + (d(y3, x) + d(x, vj))]}

≥ 1
n− 1

[7 + k · (3 + 2 + 3 + 1)]

=
9
2
− 11

n− 1
,

with the equality if and only if {xvj | j = 1, . . . , k} ⊆ E(G). And for i ∈ {1, . . . , k},

π(ui) =
1

n− 1
[d(ui, x) + d(ui, y) + d(ui, y1) + d(ui, y2) + d(ui, y3)

+d(ui, vi) + ∑
j∈{1,...,i−1,i+1,...,k}

(d(ui, uj) + d(ui, vj))]

≥ 1
n− 1

[2 + 3 + 4 + 4 + 5 + 1 + 5(k− 1)]

=
5
2
+

4
n− 1

,

the equality holds if and only if {vix, vivj | j = 1, . . . , i− 1, i + 1, . . . , k} ⊆ E(G). Consider-
ing |V(G)| ≥ 7 for G ∈ G4, and{

9
2 −

11
n−1 < 5

2 + 4
n−1 , i f 7 ≤ n ≤ 8

9
2 −

11
n−1 > 5

2 + 4
n−1 , i f n ≥ 9,

we get that

ρ(G) ≥
{

5
2 + 4

n−1 , i f 7 ≤ n ≤ 8
9
2 −

11
n−1 , i f n ≥ 9,

which follows that

γ(G)− ρ(G) ≤
{

n−1
2 −

5
2 −

4
n−1 , i f 7 ≤ n ≤ 8

n−1
2 −

9
2 + 11

n−1 , i f n ≥ 9

<
n− 6

2
− 2

n− 1
.

Subcase 2.4. G ∈ G5.
By the definition of G5, one gets that V(G) = {u, v, w, v1, . . . , vk, u1, . . . , uk}, where

k = n−3
2 . We analyze the proximity of all the vertices in graph G one by one.

For each i ∈ {1, . . . , k},

π(ui) =
1

n− 1
[d(ui, u) + d(ui, v) + d(ui, w) + ∑

s∈{v1,...,vk ,u1,...,uk}
d(ui, s)]

≥ 1
n− 1

[2 + 3 + 2 + (5k− 4)]

=
5
2
− 2

n− 1
, (3)
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the equality holds if and only if {viu, viw, vivj | j = 1, . . . , i− 1, i + 1, . . . , k} ⊆ E(G). For
the vertex u of path P3,

π(u) =
1

n− 1
[d(u, v) + d(u, w) +

k

∑
i=1

(d(u, vi) + d(u, ui))]

≥ 1
n− 1

(1 + 2 + 3k) =
3
2

, (4)

the equality holds if and only if {uvi | i = 1, . . . , k} ⊆ E(G). Analogously, π(w) ≥ 3
2 .

Moreover,

π(v) =
1

n− 1
[d(v, u) + d(v, w) +

k

∑
i=1

(d(v, vi) + d(v, ui))]

≥ 1
n− 1

(1 + 1 + 5k)

=
5
2
− 3

n− 1
, (5)

and the equality holds if and only if d(v, vi) = 2, i = 1, . . . , k, that is, uvi ∈ E(G) or
wvi ∈ E(G) for each i = 1, . . . , k.

Since max{ 5
2 −

2
n−1 , 3

2 , 5
2 −

3
n−1} = 5

2 −
2

n−1 and ρ(G) 6= π(vi) for i = 1, . . . , k, by
Claim 1,

ρ(G) ≥ 5
2
− 2

n− 1
,

the equality holds if and only if (3), (4) and (5) are tight. Namely G ∼= G′, where G′ is defined
in Definition 1. Otherwise, vsvt /∈ E(G) or vmu /∈ E(G) or vkw /∈ E(G) or d(vlv) > 2 for
some s, t, m, k, l ∈ {1, · · · , k}. It follows that ρ(G) ≥ π(ui) >

5
2 −

2
n−1 , where i is equal to

s, m, k and l, respectively. As a result,

γ(G)− ρ(G) ≤ n− 1
2
− 5

2
+

2
n− 1

=
n− 6

2
+

2
n− 1

,

with equality if and only if G ∼= G′.

Subcase 2.5. G ∈ G6.
By the proof of Lemma 3.4 in [23], we derive that |U| ≤ 2, where U is the set in the

definition of G6.

Subcase 2.5.1. X = K3.
In this case, ρ(G) 6= π(vi) still holds by Claim 1 for i = 1, . . . , k, and k = n−3

2 .
Suppose that s ∈ U and s∗ ∈ V(K3) −U. Similar to the proof of Claim 1, we can

obtain that π(s) < π(s∗), and thus ρ(G) 6= π(s).
Besides,

π(s∗) =
1

n− 1
[ ∑
s′∈V(K3)−{s∗}

d(s∗, s′) +
k

∑
i=1

(d(s∗, vi) + d(s∗, ui))]

≥ 1
n− 1

· (2 + 5k) =
5
2
− 3

n− 1
, (6)
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with the equality if and only if {svi | i = 1, . . . , k} ⊆ E(G). Furthermore, for each i ∈
{1, . . . , k},

π(ui) =
1

n− 1
[ ∑
z∈V(K3)

d(ui, z) +
k

∑
j=1

(d(ui, uj) + d(ui, vj))]

≥ 1
n− 1

[2 + 2 + 3 + (5k− 4)]

=
5
2
− 2

n− 1
, (7)

the equality holds if and only if

{svi, vivj | s ∈ U, |U| = 2, j = 1, . . . , i− 1, i + 1, . . . , k} ⊆ E(G).

Combining the inequalities (6) and (7), and using the analysis similar to Subcase 2.4,
we get that ρ(G) ≥ 5

2 −
2

n−1 and

γ(G)− ρ(G) ≤ n− 1
2
− 5

2
+

2
n− 1

=
n− 6

2
+

2
n− 1

with equality if and only if G ∼= G′′, where G′′ is the graph defined in Definition 1.

Subcase 2.5.2. X ∈ ⋃4
i=1 Gi

5.
In this case k = n−5

2 . For each i ∈ {1, . . . , k}, let

π(ui) =
1

n− 1
[∑
s∈U

d(ui, s) + ∑
s∗∈V(X)−U

d(ui, s∗) +
k

∑
i=1

(d(ui, uj) + d(ui, vj))].

It is easy to know that d(ui, s) ≥ 2 and d(ui, s∗) ≥ 3, so

π(ui) ≥
1

n− 1
[2|U|+ 3(5− |U|) + (5k− 4)]

≥ 1
n− 1

[4 + 9 + (5k− 4)]

=
5
2
− 1

n− 1
, (8)

the equality holds if and only if {svi, vivj | s ∈ U, |U| = 2, U is a dominating set o f X, j =
1, . . . , i− 1, i + 1, . . . , k} ⊆ E(G).

Let s ∈ U. Then π(s) = 1
n−1 [∑z∈X d(s, z) + ∑k

i=1(d(s, vi) + d(s, ui))]. If X = G1
5 , then

π(s) =
1

n− 1
[ ∑
z∈G1

5

d(s, z) +
k

∑
i=1

(d(s, vi) + d(s, ui))]

=
1

n− 1
[1 + 1 + 2 + 2 +

k

∑
i=1

(d(s, vi) + d(s, ui))]

≥ 1
n− 1

(1 + 1 + 2 + 2 + 3k)

=
3
2

(9)
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with equality if and only if {svi | i = 1, . . . , k} ⊆ E(G). If X = Gl
5, l = 2, 3, 4, then

π(s) =
1

n− 1
[ ∑
z∈Gl

5

d(s, z) +
k

∑
i=1

(d(s, vi) + d(s, ui))]

≥ 1
n− 1

(1 + 1 + 1 + 2 + 3k)

=
3
2
− 1

n− 1
, (10)

the equality holds if and only if {svi | i = 1, . . . , k} ⊆ E(G) and s be the vertex with
d(s) = 3 in U.

Let s∗ ∈ V(X) − U. Then π(s∗) = 1
n−1 [∑z∈V(X)−{s∗} d(s∗, z) + ∑k

i=1(d(s
∗, vi)

+ d(s∗, ui))]. Since ε(v) = 2 for each v ∈ V(Gi
5), i = 1, . . . , 4, which follows that ε(s∗) = 2.

Hence,

∑
z∈V(X)−{s∗}

d(s∗, z) = d(s∗) + 2(|V(X)| − 1− d(s∗)) = 2|V(X)| − 2− d(s∗)

≥ 2× 5− 2− 3 = 5

with the equality if and only if d(s∗) = 3. In view of d(s∗, vi) ≥ 2 and d(s∗, ui)) ≥ 3, thus

π(s∗) ≥ 5 + 5k
n− 1

=
5
2
− 5

n− 1
. (11)

Combine with (8)–(11), we obtain that ρ(G) ≥ 5
2 −

1
n−1 . And γ(G)− ρ(G) ≤ n−1

2 −
5
2 + 2

n−1 = n−6
2 + 1

n−1 .
In conclusion,

γ(G)− ρ(G) ≤ n− 1
2
− 5

2
+

2
n− 1

=
n− 6

2
+

2
n− 1

with the equality if and only if X = K3 and G ∼= G′′ by Subcases 2.5.1 and 2.5.2.
Here’s a quick rundown of the above proof. If n is even, then

γ(G)− ρ(G) ≤
{

2
3 , n = 4
n−5

2 + 3
2n−2 , n is even and n 6= 4

with equality if and only if G ∈ {C4, K n
2 , n

2
| n is even and n 6= 4} by case 1. If n is

odd, then γ(G)− ρ(G) ≤ n−6
2 + 2

n−1 with equality if and only if G ∈ {Kd n
2 e,b

n
2 c, G′, G′′}

by Subcases 2.2–2.5. And it is worth mentioning that for n is odd and n ≤ 7, we get a
better bound in Subcase 2.1. Namely, γ(G)− ρ(G) ≤ n−3

4 with the equality if and only if
G ∈ G2 − {G5

7}. Therefore,

γ(G)− ρ(G) ≤
{

n−3
4 , n is odd and n ≤ 7

n−6
2 + 2

n−1 , n is odd and n ≥ 9

with equality if and only if G ∈ (G2 − {G5
7)}) ∪ {Kd n

2 e,b
n
2 c, G′, G′′ | n is odd and n ≥ 9}

This completes the proof.

3. Conclusions

Many of the AutoGraphiX conjectures were studied, but some of them remained
as conjectures. The existing research mainly focus on proving the correct AutoGraphiX
conjectures; improving the not-quite correct AutoGraphiX conjectures; disproving the
incorrect AutoGraphiX conjectures by counter examples. The aim of this note is to improve
the AutoGraphiX conjecture A. 565.
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Recall that 1 ≤ γ(G) ≤ b n
2 c [16], Lemmas 1, 3, 4 and 6 prove the upper bounds on

γ(G)− ρ(G) with 1 ≤ γ(G) ≤ b n
2 c− 2, γ(G) = b n

2 c− 1 and γ(G) = b n
2 c, respectively. The

maximum value of γ(G)− ρ(G) can be obtained immediately by comparing the results in
Lemmas 1, 3, 4 and 6. It can not be reached for 1 ≤ γ(G) ≤ b n

2 c− 2 by Lemmas 4 and 6. But
it can be reached for γ(G) = b n

2 c and γ(G) = b n
2 c − 1 with n = 6, by Lemmas 1, 3 and 6.

On this basis, we are obtain Theorem 1 in the following, which implies that Conjecture
1 is not entirely true. In Theorem 1, we are improve the bound for n = 3, 4, 5, 7, and
recharacterize the extremal graphs that satisfy the equation in Conjecture 1.

Theorem 1. Let G be a connected graph of order n(≥ 2). Then

γ(G)− ρ(G) ≤


2
3 , n = 4
n−5

2 + 3
2n−2 , n is even and n 6= 4

n−3
4 , n is odd and n ≤ 7

n−6
2 + 2

n−1 , n is odd and n ≥ 9

with equality if and only if G ∈ {C4} ∪ {4-regular 6-vertices graph, K n
2 , n

2
| n is even and n 6= 4

} ∪ (G2 − {G5
7)}) ∪ {Kd n

2 e,b
n
2 c, G′, G′′ | n is odd and n ≥ 9}.

In this paper, we present the sharp upper bound on the difference between the domina-
tion number and remoteness. AutoGraphiX conjectures A.566, A.567, A.568 in [8] give the
bounds on the sum, the ratio and the product of the domination number and remoteness,
which are still open. It is very meaningful to study the above conjectures. This research
method is, in all probability, available in the AutoGraphiX conjectures about the domination
number and proximity.
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25. Du, Z.B.; Ilić, A. On AGX conjectures regarding average eccentricity. MATCH Commun. Math. Comput. Chem. 2013, 69, 597–609.
26. Pei, L.D.; Pan, X.F.; Wang, K.; Tian, J. Proofs of the AutoGraphiX conjectures on the domination number, average eccentricity and

proximity. Discrete Appl. Math. 2021, 289, 292–301. [CrossRef]
27. Berge, C. Theory of Graphs and Its Applications; Methuen: London, UK, 1962.
28. Marcu, D. A new upper bound for the domination number of a graph. Quart. J. Math. Oxf. Ser. 1985, 36, 221–223. [CrossRef]
29. Xu, B.G.; Cockayne, E.J.; Haynes, T.W.; Hedetniemi, S.T.; Zhou, S.C. Extremal graphs for inequalities involving domination

parameters. Discrete Math. 2000, 216, 1–10.
30. Payan, C.; Xuong, N.H. Domination-balanced graphs. J. Graph Theory 1982, 6, 23–32. [CrossRef]

http://dx.doi.org/10.1016/j.dam.2016.04.031
http://dx.doi.org/10.1016/j.dam.2017.01.025
http://dx.doi.org/10.1016/j.dam.2014.02.011
http://dx.doi.org/10.1016/j.ipl.2012.02.001
http://dx.doi.org/10.2298/FIL1308425S
http://dx.doi.org/10.1186/s13660-017-1597-3
http://dx.doi.org/10.1142/S1793830920500524
http://dx.doi.org/10.1016/j.ipl.2018.03.003
http://dx.doi.org/10.2298/FIL1903699P
http://dx.doi.org/10.1016/j.dam.2015.08.002
http://dx.doi.org/10.1016/j.dam.2020.11.012
http://dx.doi.org/10.1093/qmath/36.2.221
http://dx.doi.org/10.1002/jgt.3190060104

	Introduction
	Results and Discussion
	Conclusions
	References

